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Abstract

We examine corresponding Cauchy-Riemann equations by using the non-commutativity for the product
on split-biquaternions. Additionally, we describe the regularity of functions and properties of their differen-
tial equations on split-biquaternions. We investigate representations and calculations of the derivatives of
functions of split-biquaternionic variables. (©)2016 all rights reserved.
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1. Introduction

The algebraic properties of H contribute to the various fields of analysis, where H := {q = xo + e121 +
eaxs + esxs | &, € R being the set of real numbers (r = 0,1,2,3)} is the set of quaternions which has the

imaginary base e, eo, and eg such that e% = e% = e§ = —1, ejeg = e3 = —egeq, e9e3 = €1 = —egzes and
ese] = ex = —ejes. Since quaternions are non-commutative to each other, there are two ways to define

the limits of a difference quotient for holomorphy (see [10]): let U be a domain in H and f : U — H be a
function such that f(q) = fo + e1f1 + eafe + esfs and f, = fr(xo,x1,22,23) (r =0,1,2,3) are real-valued
functions. For Az, #0 (r=0,1,2,3),

(Aq)_l{f(q + Aq) . f(q)} — lim A[B()Af — €1A[131Af — BQA[EQAf — €3A[E3Af

li 1.1
A(IJILIO Ag—0 (A$0)2 + (A.%'l)2 + (A$2)2 + (A$3)2 ( )
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and
. -1 _ 1 AfA:L’O - AfA:L’lel — AfAZEQEQ - AfA:Ege‘g,
Aim £f(g+Ag) — f(9)}(Ag)™ = lim (Brol + Buy )’ 1 (A + (Brg)? (1.2)
where
Af = flg+Aq) — flq) = Afo+e1Afi +e2Afo + e3Af3
and

Afr = fr(xo + Azg, 21 + Az, 0 + Ao, 23 + Azs) — fr(zo,21,22,23) (r=0,1,2,3),

by allowing Aq = Axg + e1Ax; + eaAxs + egAxg with Az, € R (r =0,1,2,3) to approach 0. When these
limits exist, by setting Aq equal to Axg, e1Azy, eaAxo, and esAxs, we can obtain equations to get the
derivatives from each above equation. The existence of the limits and give the Cauchy-Riemann
equations for a quaternionic-valued function as follows:

o _ Of _0fy _ 0fs
8%0 B 8%1 N 8.732 B 8.7537

O __0f __0fs _0f
8%0 N 8111 N 83}2 N 8.7:37
Ofr _0fs _ _9f _ 9N
8330 N 8%1 N axg N 81‘37
Ofs _ 0 _ 0 __0h
8330 N 8901 N ({9%2 N 8.%'3’

and

-

O _0H _0f2 _Ofs

8%0 N 8%1 N 8.7:2 N 8%37

Oh _ _0fo _0fs _ _0f

8%0 - 6951 - 6952 N (91'37

Of _ _0fs _ _0fo _ O

8330 - a.%'l N 81'2 - 8.%‘3’

Ofs _0fr _ _0h _ _0f

8330 - 8.%‘1 N 8902 N 81‘3’

respectively, which are useful in the theories of polymorphic functions in a quaternion analysis. For instance,
a function f of quaternion variables is holomorphic which has continuously differential components if and

only if f satisfies the equations 9,f = 0 and it has a derivative 9, f of f, where the differential operator

Oy : 1<i+eli+egi e 8)

= 2 8$0 81’1 81‘2 + 3(97.13
and 1,0 o P B
%= 5 (5m ~ 150~ 5~ az)

used to a quaternion analysis.

Herein, we consider functions of a split-biquaternionic variable and research two analogous definitions
of a holomorphic function. There are many studies about relations between holomorphy and the Cauchy-
Riemann equations on quaternions and split-quaternions. Libine [9] approached the split-quaternions as a
real form, introduced the notion of regular functions and gave two different analogues of the Cauchy-Fueter
formula valid for different classes of functions. Masrouri et al. [I0] studied the theory of mathematical
analysis over split quaternions, formulated in a closely analogous condition for analyticity of functions of
a split quaternion variable. Noéno [11] studied the properties of quaternions and the definition of hyper-
holomorphic functions of quaternion variables. Kajiwara et al. [2] gave a basic estimate for inhomogeneous
Cauchy-Riemann systems in quaternion analysis. They applied the theory to a closed, densely defined op-
erator and a priori estimate for the adjoint operator in Hilbert space and biconvex domains. Kim et. al.
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[4, [7] obtained some results regarding the regularity of functions on the reduced quaternion field, and on
the form of (dual) split quaternions, defined by differential operators in Clifford analysis. In addition, Kim
and Shon [5l 6] researched corresponding Cauchy-Riemann systems and the properties of functions with
values in special quaternions (such as reduced or split-quaternions) by using a regular function with values
in dual split-quaternions and gave properties and calculations of functions of bicomplex variables with the
commutative multiplication rule [§]. Kim [3] studied the corresponding inverse of functions of multidual
complex variables in Clifford analysis.

Now, we give the two different analogous ways of defining a holomorphic function of a split-biquaternionic
variable. We research the corresponding Cauchy-Riemann equations on split-biquaternions by compar-
ing the left-side with the right-side calculations together. Also, we give regularities of functions of split-
biquaternionic variables and properties of their differential equations on split-biquaternions.

2. Preliminaries

The split-biquaternions are the complex Clifford algebra which are elements of the following set, denoted
by Sc;,
Sc = {Z =20+ 210+ 225 +231) 1 zp = wp +iyr €C, 2y, € R},

where i = v/—1 and C is the set of complex numbers. Moreover, i, j are non-commutative base elements
with 2 = —1, j2 = 1, and ij = —ji, which are commutative with i. The set S¢ is isomorphic to C*. For
two split-biquaternions Z = zg + 217 + 225 + 2315 and W = wg + w1i + wej + wszij, where wy € C, addition
and multiplication are given by

Z+W = (20+wo)+ (21 +w1)i+ (22 +w2)j + (23 + w3)ij,
and

ZW = (zowp — z1w1 + 22wz + z3w3) + (2ow1 + z1wo — z2ws + 23wWa)i

+ (zowe — z1w3 + 2w + z3w1)J + (2ows + z1wWe — zowy + 23W0)ij.
Consider a conjugation Z' of S¢ such that ZT = 2y — 215 — 225 — 23ij. Then we obtain the following form
ZZN =217 =22+ 22 — 23 — 22 € C.

We give a modulus M (Z) of Z € S¢ as

M(Z) = (z§ —yg + 27 — v — 23+ y5 — 25 + y3)° + 4(zoyo + T1y1 — T2y2 — T3Y3)°.

From the conjugation of S¢, we have the inverse element of Z in S¢ such that

Al

Z =
27t

(@ #yr, 7=0,1,2,3).

There is a representation of the base of the split-quaternions as 2 x 2 matrices over R. We correspond the
following relations (see [I]):

1 o 10 R 0 —1 N 0 1 TIUN -1 0
0o1) ' 10 ) Y 1o) Y 0 1)
Then we can map Sc¢ to the real 2 x 2 matrices as follows:

. . .. zZ0 — % —Z z
20 + 210 + 22) + 231) < 0 3 L 2).

21+ 20 2o+ z3
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Thus, we also have
20— 23 —21+ %
det | 073 LT =2+ -2-2cC.
+ 21+ 22 20+ 23

Consider the following function
F:UcCC" - Sc
and
F(z0, 21, 22,23) = fo+ fii + faj + f3i],

where U is open in C* and f, : C* — C; f, = f.(20, 21,22, 23) (r = 0,1,2,3) are complex-valued functions.
We try to construct the analogous definition of holomorphy. The first method considers split-biquaternionic-
valued differential operators and the second utilizes a difference quotient (see [9] and [10]).

We give the following Dirac operators Dz and DTZ:

D 1<3 .8+.3+..8) and D! 1<8+8 .0 8)
=l —i— — +ij— n =—|=—+iz——j=——

Z 820 azl ‘]822 ‘]823 Z 2 aZO 82’1 jaZQ 823

where a%r = 6?» — ia%T and TZ = BTT + iaiyr (r = 0,1,2,3) are usual differential operators in complex

analysis. Since the Dirac operators are non-commutative for the product on S¢, these operators are acted
to functions on either the left-side or right-side, and each calculation provides different results. The product
of Dy and DTZ gives the Laplacian for complex analysis, denoted by As.,

As. = -

4 872'34— 82% 823 8z§

1 ( 0r 0 02 07 )

Definition 2.1. Let U be an open set in S¢ and let ' : U — 8¢ be a function in C}(U) being the
class which consists of all differentiable functions whose derivative is continuous. A function F' is said to be
left-regular if

. 10F OF OF  OF
DZF_2<820+ 021 3822 3823>

ig(0h _0fi _Ofh Of, (0fs O Of  0fs

= {( )+(8z1+azo az?,JrazQ)Z

Ofy _Of _Of Oy, ( 0h  0fi , 0%  Ofy. y_
+< D2y 02 821+820)‘7+( 623+822+8z1+8z0>m}_0’

for every Z € U. Similarly, we say that F' is right-regular if
Lycdfo Ofi 9fr Ofs Ofo  Ofi  Of2 Ofs\.
Fpy = (20 _ 2L P2 T8 Jiz 918
b=l (G =50 "5 ) (G ¥ e * 5 )’
0 0 0 0 0 0 0 0
_|_< fO i ﬁ £)+< fO fl £+£)'j}:0’

822 + 6Z3 + 820 + 821 J _8723 - 6722 B 82’1 82’0 !

for every Z € U.

Proposition 2.2. Let F: U — Sc be a function in CY(U). Then F is left-reqular if and only if F' satisfies
the following partial differential equations (PDEs):

oh _0h 0k _ 9k _
820 821 822 82’3 ’

oh  Ofo  Ofs 0F _

820 6z1 82’2 82’3 ’ (2 1)
Of2 _0fs 0fo _0fH _ '
620 821 82’2 8Z3 ’

afs | Of  Oh _0f _,

620 621 (92’2 823 '
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Proposition 2.3. Let F : U — Sc be a function in CY(U). Then F is right-regular if and only if F
satisfies the following of PDFEs:

of _Of 0 _0f _
820 621 82’2 823 ’
Ofi  90fo 9fs  0f

o 0n  0m  0m
oh  Of _Oh  Oh _
820 8,21 822 823 ’
ol _0f _0h _Oh _,
820 (921 822 823 '

Referring to [12], we offer the following example which shows that F' is not a left-regular function in Sc.

Example 2.4. Let A =a + bi + ¢j + dij € Sc, where a,b, ¢, d are constants in S¢. Then

AZ =(azy — bz1 + cza + dz3) + (bzo + az1 + dzo — cz3)i
+ (cz0 + dz1 + aza — bz3)j + (dzp — cz1 + bza + az3)ij.

Thus, we have
DL(AZ) =(a + bi + ¢j + dij) +i(=b + ai + dj — cij) — j(c + di + aj + bij) — ij(d — ¢i — bj + aij)
=—a+bitcitdij=—-AT#0
and

DTZ(ZA) =(a+bi+cj+dij)+i(—=b+ai—dj + cij) — j(c — di + aj — bij) — ij(d + ci + bj + aij)
=—a—bi—cj—dij=—A#0.

Similarly, using the differential operator DTZ on right-side, we can show that AZ and ZA are not right-
regular.

3. Differential function

A corresponding Cauchy-Riemann equations are obtained by allowing AZ = Azy+ Az1i+ Azoj + Azsij
to approach 0 being equivalent to Azy — 0, iAz; — 0, jAzy — 0, and ijAzs — 0. Referring to [10], because
of non-commutativity of the split-quaternions, we consider two ways which are used to construct analogue
of holomorphy. These ways are defined by, for x, # y, (r =0,1,2,3),

(AZO)AF — (Azl)zAF — (AZQ)]AF — (AZg)kAF

Jm (AZ)"H{F(Z + AZ) - F(Z)} = Jim (B20) + (Asr 2 = (A)? — (Bzy)? (3:-1)
and
. -1 _ 1 AF(AZO) — AF(AZl)Z — AF(AZQ)] — AF(AZg)k
A AF(Z+A2) - F(Z)HAZ) = lim (Az0)2 + (A21)2 — (Az9)? — (Azy)? o (32)
where
AF = F(Z + AZ) — F(Z) = Ao + Afri + Afoj + Afsk
and

Afr(zo + Azo, 21 + Azy, 29 + Azo, 23 + Azs) — fr(20,21,22,23) (r=20,1,2,3).
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Such functions are called left- and right-Sc-differentiable, respectively, if each limit exists. By taking the
limits as (3.1) and (3.2), we get the derivatives of F' in S¢ as follows:

' Jim (Az) UF(Z + Az) — F(2)} = ‘;Z‘; + gﬁ; + ‘;Z i+ gfi
i ()(Aa) F(Z +Am) - F2)} =~ OISRy Sl -
Jim j(aa) M+ A) - F2)y = 905 - Sy O S, |
| i 18 P2+ M) = F(2)) = g+ o 20 B0
and ( L 0fy  Of. Ofs  Ofs..
IZIOIE)O{F(Z + Az) — F(Z)}(Az)~ 8720 + 8720 (an 87209 + 872023’
A {F(Z 4 Azy) — F(Z)}=i)(Az) ™t = —g‘i)i + gz + gﬁj gfl” 1 o
i (P24 8z) - F)b (8 = S04 Sl S22 1 20 |
(P24 Az) = F2))ij(ae) = 04— 20y 2Ry OB,
where each Az, = Az, +iAy, and (Az) ™! = 255 with 2, # 0 and y, # 0 (r = 0,1,2,3), is the

form of the inverse element in complex numbers. Dealing with the equations (3.3)), we obtain the following

system of PDEs:

yOf _0f 0L _ 0%
32’0 8,21 N 822 a 82’37
of _ _ofy __0fs_0f
aZO B 821 a 82’2 N 823’

3.5
oL _0fs _0fo_0h ()
820 02’1 822 823 ’
ofs _ 0 _ 0L _ 0
az() 821 62’2 82’3 '
If we consider the equations , we also have the following system of PDEs:
(0fo _0h _0fr _0fs
aZO 32’1 (922 823 ’
Oh _ _9fo _0fs _ _0f
820 821 822 82’3 (3.6)

of:  Ofs 0fs  Oh

92 Oz 0z 0z
dfs _0f _0h _ 0
820 821 82’2 82’3 '

Example 3.1. Consider a function

AZ 4+ K =(azp — bz1 + cza + dzg + k) + (bzo + az1 + dzo — cz3 + 1)1
+ (cz0 + dz1 + aza — bzs +m)j + (dzo — cz1 + bza + azz + n)ij,

where A and K are arbitrary constants in Sc. Because of the non-commutativity for ¢ and j, there dose not
exist the limit (3.1)) for (AZ)~!. However, there exists the limit (3.2) such as

lim {A(Z+AZ)+ K — AZ — KY(AZ)™' = lim (AAZ)(AZ)"! = A.
Ago{(ﬂL ) + HAZ) Aggo( )(AZ)
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Theorem 3.2. Let F : U — Sc be a function in CY(U). Then F is right-Sc-differentiable if and only if
F(Z)=AZ+ K for constants A and K in Sc.

Proof. Suppose that F is right-Sc-differentiable. In order to obtain the form F(Z) = AZ + K, it is sufficient
to show that Dz(DzF) = 0. The equations (3.6) give that each component of F' is continuous with respect
to the complex variables z, (r = 0,1,2,3). From the equations , the first term of Dz (DzF') has the
following expansion:

1(82f0 282]‘1 82f0>+.1<82f1 232f0 82f1)

4 82(2) 021029 B 82% 21 823 02102 82%
:}( 9*fi . 0* f3 n *fy 82f2)
4 &zlazo 8Z3(920 (9226Z1 8z38z1
(LI PR B
4 822820 82382’0 822821 823821
_1p 0 (0f Ofs\ . 0 (0fs Of
_4{821(8z0 8z2)+8z'3(0z0 3z1>}
Ay 0 (0fs Of2 9 (0fa  Ofo\\| _
14{822 (67:0 0z1) 620 (8,23 821)} - 07

and the second term of Dy (DyzF) has the following expansion:

1<82f2 Ly P fy 82f2) N .1<32f3 ) P fr 5’2f3>

4 6z§ 822823 82’?2’ Z4 82% 82’282’3 82%

:}< 0% f3 n 9 fi n *fy 32f0)

4 622823 823820 622823 823821

il ( Pho Pf 9y 82f2)
4 822820 823822 822621 823622

Ly 0 (0fs Oh\ . 9 (3fs  Of

_4{823 (622 6Z0> + 023 (822 + 8Z1>}
dp 0 (0fi  0Of2 0 (0fs Of2\\ _
o Ga *52) ~ 55 (5a ~ 90 =

Similarly, for another terms, we get that each expansion of all terms of Dy (DzF) is zero, by using the
equations (3.6). Thus, F' has the form AZ + K, where A and K are constants in Sc.

Conversely, if F(Z) = AZ + K is right-Sc-differentiable (see Example [3.1). Therefore, we obtain the
result. O

Corollary 3.3. Let F : U — Sc be a function in C*(U). Then F is left-Sc-differentiable if and only if
F(Z)=ZA+ K, where A and K are in Sc.

Example 3.4. A function F(Z) = AZ + K is not right-Sc-differentiable. However, F(Z) = ZA+ K is
left-Sc-differentiable.

Let F: U — Sc consist of the elements of C2(U), which is the class of functions having the first and
second derivative of the function both exist and are continuous, and F’ satisfies at least one of the following
equations:

DLF=0, FD,=0, D,F=0, and FD}, =0,

Then each component of F satisfies Johns equation (which is referred by [9]):
As.fr=0 (r=0,1,2,3).

Such functions are said to be pseudo-hyperbolic. From the definition of pseudo-hyperbolic functions, we
give a representation of regular functions. Let ¢ : U — C be pseudo-hyperbolic. Then Dz is both left-
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and right-regular. Let F' = Dzp. Then we have
DLF = DL (D7) = As.p =0
and
FD}, = (Dz¢)D}, = As.p = 0.
We can also deal with left- and right-Sc-differentiable functions which are formed by pseudo-hyperbolic.

Theorem 3.5. Let F : U — Sc be comprised of functions in C2(U). Suppose that F is left-Sc-differentiable.
Then the components of F' are pseudo-hyperbolic.

Proof. Suppose F'(2o, 21, 22, 23) = fo+ fii + faj + f3ij is right-Sc-differentiable. Then
P Oy Pfo Phy_ 0 9h 0 0f 9 Oh 9 0

Ozg 82’% azg 62§ - 8720821 87218721 B 87238722 87,2387:3
0 /0 0 0 /0 0
7( fl+ﬁ)+ (fl+ fo):()'

- 82’1 8720 821 (9723 822 6723

A similar process for the other f,. (r = 1,2,3) gives the result as desired. O

Corollary 3.6. Let F : U — Sc be comprised of functions in C>(U). Suppose that F is right-Sc-
differentiable. Then the components of F' are pseudo-hyperbolic.

Proof. A similar method shown in the Theorem [3.5] gives the result as desired. O

From the property shown above, we consider more simple expression of left- and right-Sc-differentiable
functions. We let the idempotent elements, whose symbols is referred by [1], such as

1+

L
jr=—5% and jo=-—1

2 9y
which satisfy
Jr=iJv, =i, jr+j-=1 and ji—j =3
Remark 3.7. From the above properties of j; and j_, we have
ijr =j—i and ij_ = jyi.
Then we can also represent

Z =20+ 210 + 29] + 231]

= 1220 + 2200 + 220 + 2230 + (20] — 20j + 22 — 22+ 21) — 2] + 23— )}

-7
2
We put {4+ = 2o+ 22, (— = 20 — 29, Ny = 21 + 23 and n— = z1 — z3. Then

1+ 1—3
2]+(21—23) j}.

;Lj—i-(Zo—Zg) 5

— (50 + 22) vil(z+2)

Z =i+ + G- +i(nedy +n-J-).

Also, for the differential operators, let

0 0 0
%= e o R
0 0 0 0
I = o T oy O = 9 "

Then we have 1
D} = 5{(3@]4 +0¢,5-) +i(0y_j+ + a’7+j*)}'
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Theorem 3.8. Let F: U C C* — Sc be a function in C1(U). Then F has the following form:

F(20, 21, 22, 23) ={@0(Cysne) +01(C—,n-)} + {p2(Cym—) + w3(Ch,me) b
+{p0(Ct,n4) — w1(C=,m-)}i + {w2(C-n-) — @3(Ct,m4) }id,

where ¢, : U — C (r =0,1,2,3) in CY(U) if and only if F satisfies DTZF =0.

Proof. We write the function F' = fo + f1i + faoj + f3ij, where fo = @o + ¢1, f1 = @2 + @3, fo = Yo — 1
and f3 = @9 — 3. Since @, (r =0,1,2,3) are continuously differentiable on U, they content the equations
. So, the function F' satisfies the equations and then F' assures the equation DTZF = 0.

Conversely, suppose that F' satisfies DTZF =0. Let &, := fo+ fo, P_ = fo— fo, ¥4 = f1 + f3 and
U_ := f1 — f3. Then we also write F' = (®j; + P_j_) +i(V;jr + P_j_). Using the properties of j; and
j—, we see that the settings imply the function F' satisfies DTZF = 0 if and only if F' satisfies the following
equations:

8<+\I/+j+ + 8c_\If_j_ = —(6,,7<I>+j+ + 877+(I)—j—)'

We put &4 = o, P_ = @1, ¥y = @9, and ¥_ = ¢3. Then ¢, (r = 0,1,2,3) satisfy (3.5) and they are
continuously differentiable and construct a function such as

{ O @y + 0., P j =08y, Uyjp+0, V_j_,

F'(20, 21, 22, 23) ={@0(C4sn+) + 01(C=,n-)} + {p2(C- ) + w3(Ch,m4) Hi
+{po(C+,n4) — 1(C—m-)}i + {p2(C—,n-) — @3(Cr,m4) }ig-

Thus, the function F' has the form as desired. O
Example 3.9. Consider a split-biquaternionic-valued function
F(20, 21, 22, 23) = 212223 — 2022231 + 202123] + 2021221].

Then F satisfies the equation DTZF = 0. However, if we write F' as in the above proof, then

(3 — 0% )(Cris — C—j-) Y (R (—Chis +C—jo)
4 4 '

F=

Hence, we have

2 .2 . .
(Oncs + i) (s "Mf* S ‘)} — 2 Gy — 2 £ 0.

Thus, F is not of the form which has shown in Theorem
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