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Abstract

In this paper, we present a new modified semi-implicit midpoint rule with the viscosity technique for
finding a common fixed point of nonexpansive mappings and 2-generalized hybrid mappings in a real Hilbert
space. The proposed algorithm is based on implicit midpoint rule and viscosity approximation method.
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1. Introduction

The implicit midpoint rule is one of the powerful numerical methods for solving ordinary differential
equations (in particular, the stiff equations) and differential algebra equations. For related works, we refer

to [2, 13, 19, 11}, (13} 14 20-22].

For the ordinary differential equation

7 = f(t), x(0)=xo, (1.1)
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the implicit midpoint rule generates a sequence {z,} by the recursive procedure

Ty + Tntl

xn—i-l:mn"_hf( 9

), (1.2)
where h > 0 is a stepsize. It is known that if f : RV — R is Lipschitz continuous and sufficiently smooth,
then the sequence {x,} generated by converges to the exact solution of as h — 0 uniformly over
t € [0,¢) for any fixed t > 0.

If we write the function f in the form f(t) = g(t)—t, then differential equation becomes 2’ = g(t)—t.
Then the equilibrium problem associated with the differential equation is the fixed point problem ¢ = g(t).

Based on the above fact, in [1] and [26], the authors presented the following semi-implicit midpoint rule
for nonexpansive mappings:

Ty + X
Tng1 = (1 — o)y + T (20 5 nitly, (1.3)
and n
T x
Tn+l1 = anf(xn) + (1 — Oén)T( = 9 n+1)7 (14)

where f is a contraction and T : H — H is a nonexpansive mapping. They proved the weak convergence of
and strong convergence of under some mild conditions, respectively.

Furthermore, Yao et al. [29] applied the viscosity technique to the implicit rules of nonexpansive map-
pings in Hilbert spaces and proved that the sequence {x,} defined by the following viscosity semi-implicit

midpoint rule
Tp + Tn41

),

converges strongly to the unique solution z € Fix(T") of the variational inequality (VI)

Tn4+1 = anf(xn) + ﬁnxn + 'YnT(

(I —=f)z,x—2) >0, VxeFix(T). (1.5)

Motivated and inspired by the above facts, Yu and Wen [31] also proved that the sequence {x,} defined
by the following iterative method

Tn+1 = anf($n> + ann + "YnT((gnxn + (1 - (5n)$n+1)7

converges strongly to the unique solution z € Fix(T") of the variational inequality VI (1.5).

Remark 1.1. The usefulness of ([1.4)) is that it can be used to find a periodic solution of the time-dependent
nonlinear evolution equation (see [26])

d
CT:: + A = g(t,u), t>0,

where A(t) is a family of closed linear operators in a Hilbert space H and g maps R! x H into H.

In this paper, we present a new modified semi-implicit midpoint rule with the viscosity technique for
finding a common fixed point of nonexpansive mappings and 2-generalized hybrid mappings in a real Hilbert
space. The proposed algorithm is based on implicit midpoint rule (see [Il, 26]) and viscosity approximation
method (see [19, 24) 28]). Under some mild conditions, the strong convergence of the iteration sequences
generated by the proposed algorithm is derived. Our results extend, improve and develop the corresponding
results in [I1, [26], 29, [37].

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space, C' is a nonempty and closed convex
subset of H. In the sequel, we denote by x,, — = and z,, — z the strong and weak convergences of {x,,},
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respectively. Denote by Fix(T') the set of fixed points of a mapping T': C' — C. Namely,
Fix(T) ={z € C: Tz = x}.
For each x,y € H and «y € [0, 1], we have
2 _ 2 2 2
vz + @ =yl" =7zl + Q=) llyl” =@ =) lz = ylI”.
Furthermore, we see that, for all z,y,u,v € H,
2 2 2 2
20z —y,u—v) = flz—o|" +ly — ul|” = [z —ul|" — [ly — ol|". (2.1)

Definition 2.1. A mapping T : C — H is said to be:

(1) a nonexpansive mapping, if [|Tz — Ty|| < ||z — y||, for all z,y € C;

(2) a nonspreading mapping, if 2 ||Tz — Ty||*> < | Tz — y||* + ||z — Ty||?, for all 2,y € C;

(3) a hybrid mapping, if 3|7z — Ty||* < ||z — y|* + | Tz — y|* + ||z — Ty|]?, for all 2,y € C;
(4)

4) a generalized hybrid mapping, if there exist a;, 8 € R such that

a|Tz = Ty|* + (1 - a) o = Tyl < 8| Tz - ylI* + (1 = B) | - ylI*, Vz,y € C;
(5) a 2-generalized hybrid mapping, if there exist d1, d2, €1, €2 € R such that
2 2
Wt HT2$ —Ty||" + 62 || Tz — Tyl 4+ (1 =6, — &) |z —Ty|* < e HT2$ — |
+e|Tz—y|* + (1 —a —e) |z -yl
for all z,y € C.

We know that the class of 2-generalized hybrid mappings contains the classes of nonexpansive mappings,
nonspreading mappings, hybrid mappings and generalized hybrid mappings in a Hilbert space (see[15] [30]).
We give an example for a 2-generalized hybrid mapping.

Example 2.2 ([I8]). Let S : [0,2] — R be defined as

_ [0, ze0,2);
Sx_{1, z=2.

Then S is a 2-generalized hybrid mapping and Fix(S) = {0}.

In 2012, Hojo et al. [I2] also gave an example for a 2-generalized hybrid mapping which is not a
generalized hybrid mapping with Fix(7') = {(0,0)} as follow.

Example 2.3. Let A= {z € R?: ||z <1} and T : A — R be defined as

v Tall? r € R?/A.

Hojo et al. [12] showed that T is a 2-generalized hybrid mapping, but 7" is not a generalized hybrid
mapping. Note that 7' does not have the demiclosed property. Indeed, there exists a sequence {z,} C A
such that z,, — w and lim, s || T2, — 2,|| = 0, but w in R?/Fix(T) = R?/{(0,0)}.

Proof. Let r, =1+ %, Xy, = (ry cosb,ry, sinf) for all n € N, then z,, — (cos#,sin ) and Tz, = (cosf,sinb).
We also have ||T'z,, — zp|| = ||(rn, — 1) cos 8, (1, — 1)sin@)|| = (r, — 1) — 0, but (cos#,sinf) # (0,0). O

To obtain our main results, we need the following lemmas.
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Lemma 2.4 ([23]). Let {a,} be a sequence of nonnegative numbers satisfying the property
Op+41 < (1 - /Vn)an + bn + YmCn, NE N,
where {yn}, {bn}, {cn} satisfy the restrictions:

(i) ZZO:1 Yo =00, limy o0 v = 0;
(11) bn Z 07 Zzozl bn < 00y
(iii) limsup,, o cn < 0.

Then, lim, ., o, = 0.

Lemma 2.5 ([32]). Let H be a Hilbert space. Then for all x; € H and o; € [0,1] fori=0,1,2,---,n such
that g + a1 + - - - + an, = 1, the following inequality holds

n 2 n
Doai|| <Y aillwl’ = Y ey llz -l
=0 1=0

0<i,j<n
Lemma 2.6 ([I6]). Let {a,} be a sequence of real numbers such that there exists a subsequence {n;} of
{n} such that oy, < an,+1 for all i € N. Then there exists a nondecreasing sequence {my} C N such that
myg — oo and the following properties are satisfied for all (sufficiently large) numbers k € N:

Oy, < Q41 and o < iy 41
In fact, my, = max{j < k:o; < aj1}.

Lemma 2.7 ([I7,27]). Let C be a closed convex subset of a real Hilbert space H. Suppose x € H andy € C
are given. Then y = Pox, if and only if the following inequality holds

<:C—y,z—y> SO)
for every z € C.

Lemma 2.8 ([10]). (Demiclosedness principle). Let C' be a nonempty closed convex subset of a real Hilbert
space H, and let T : C — C be a nonexpansive mapping. Then, the mapping I — T is demiclosed. That is,
if {xn} is a sequence in C such that x,, = x and (I —T)zy, — y, then (I —T)z =y.

3. Main results

Theorem 3.1. Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let T : C — C' be
a nonexpansive mapping and S : C — C be a 2-generalized hybrid mapping. Moreover, let f : C — C be a
contraction with coefficient o € [0,1). Suppose that F := Fix(T) (Fix(S) # 0. For given x1 € C arbitrarily,
define

n—1
dn, Z
k=0

where {an}, {Pn}, {1} and {0,} are real number sequences in [0, 1] satisfying
(1) limp—yoo an =0 and Y 7 | o = 00;
(i) om + Bn+m = 1;
(iii) 0 < liminf, oo Bn < limsup,,_,o On < 1;
)

(iv) 0 < liminf, o 6, < limsup,,_, . 0n < 1.
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Then {x,} converges strongly to a point p € F, where p = Prf(p).

Proof. Equation ({3.1)) is well-defined. As a matter of fact, for fixed u € C, we can define a mapping

N—-1
0 k
z— Tyx = af(u) + pu+~T (NkZ_OS u+(1—5)x>, xzeC.

In light of the nonexpansiveness of 7', we deduce that

5 N-1 5 N-1
AT (N > SFu+(1 —5)1:) —T (N kzzo Sku+ (1 —5)y) H

k=0
<y(1 =) [z -yl

This means T;, is a contraction with coefficient v(1 — d) € (0,1). Hence the algorithm (3.1)) is well-defined.
We show the sequence {x,} generated by (3.1) is bounded. Take any z* € F and let

[Tuz — Tuyll =

Sy, = Sk,

1 n
n
k=0

We see S, is quasi-nonexpansive. Indeed, since S is a 2-generalized hybrid mapping, we know that S is a
quasi-nonexpansive mapping, and hence

1 n—1 1 n—1
—ZSkaz—x* §—ZHS’“:L‘—;U*
"o "o

From (3.1)), we find that

1n—1
<= e —a*] = fla—a*|.
n
k=0

[zn+1 — 2| = lanf(zn) + Bnn + T (0nSnan + (1 = 0p)2pt1) — 7|

< an |[f(@n) = f@) + an || f(2") = 2" + Bn l2n — 27|
+ Y [|T(6nSpn + (1 = 0n)Tn1) — 7|

< ana ||z — 2| 4 o | f(27) = 27| + B [lan — 27 (3.2)
+ Y 160 (Snan — %) + (1 = 0p) (241 — 7))

< ana ||z — 2| 4 o || f(27) — 27| + B [lzn — 27
+ Yl |Snn — 2| + Yn (1 = 6n) [Tn+1 — 27|

<an[[f(@*) — 2| + (ana + B + Yndn) (|20 — 27| + 40 (1 = 0n) [[Tn+1 — 27| .

We derive from (3.2)) that

(L =L = 0n)) lzns1 — 27| < o [[£(2") — 27(| + (na + Bn + bn) [|2n — 27|,
which implies
an(l—a) [|f(@") "] 11— —6dn) —an(l—a)
— V(1 = 0p) 11—« 1=y (1=96,)

[ f(z*) — 2|
11—«

e [ — 27|

< max{

o[l — 2}

By the induction, we deduce

f(x*) —a*
e — ) < ma LI ey,
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This implies that the sequence {z,} is bounded.
From Lemma and , we have
|2n41 = 2*(* = lanf (n) + Batn + 10T (0nSnwn + (1 = 8n)zns1) — 2*|?

< ap [[f(@n) = 21 + Ballzn — 2|7 + 30 1T (G0 Snan + (1 = 8n)zp41) — 2|
= Bun 1T (0nSnn + (1 = 62)ns1) — 24

< ag | (@) = |7 + Ball2n — *[* + Yn 62 Sn@n + (1 = 6p)Tnt1 — ¥
= Buvn | T(6nSnan + (1 = n)ens1) — 2al?

< o[£ (@n) = 27 + Ba 2 — %[ + mn 2 — %[ + (1 = 6,) |@ng1 — 2*||
= B [T (6nSpn + (1 = 0n)Tny1) — an2

< ap |f(xn) = |7 + (Bo + 06n) |20 — 2°[° + (1 = 6n) |@ni1 — ¥
= B | T(5nSnan + (1 = 6p)nt1) — 2|,

which implies
B Yo | T (00 Snwn + (1 — 0p)Tni1) — an2 < an(||f(2n) — x*”Q = [|Znt1 — x*H2) (3.3)
+ (Bn + m0n) (lzn — 2*|% = lznsr — 27I).
Similarly, we also have
|Zn+1 — x*HQ = |lanf(xn) + Bnn + T (00 Snxn + (1 — 0p)Tna1) — x*HQ
< an ||f(@n) — 21> + Bn lon — 2711 + 7 1T (0n S + (1 = 8p)2ng) — ¥
< ap ||f(2n) — 513*H2 + Ba llzn — x*HQ + Yo [|0nSnTn + (1 = 0p)Tnt1 — x*H2
< an ||f(@n) — 21 + Bn llzn — 2*I° + Yndn 20 — %[> + (1 = 62) l2nss — =¥
— Yn0n(1 = 6n) [|Snn — xn+1||2

< ap ||[f(2n) — fE*HQ + (Bn 4 Ynbn) |70 — m*HQ + Y (1 = 8n) [[Tns1 — x*H2
= Yn0n(1 — 6n) [|Snn — xn+1||2 )

which yields that
Vnbn(1 = 62) [|Sn@n — i1 |* < an (1 f(@n) = 27> = [@ns1 — 2*[|?) (3.4)
+ (Bn + mbn) (I — 2*|° = l|zn41 — 2*[).

Since F is a nonempty closed convex subset of H, we can take p € F such that p = Ppf(p). By Lemma
this point p is also a unique solution of the hierarchical variational inequality

(f(p) =p,a—p) <0, VgeF.
Next we divide our proof into two possible cases.

Casel: Suppose that there exists ng € N such that
zn1 = pll < llzn — pll, (3.5)
for all n > ng.
Then we see that {||z, — p||} is convergent. Thus, from (i)-(iii), (3.3]) and (3.5)), we obtain

lim || 78 Spzn + (1= 6)n41) — 2| = 0. (3.6)
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By (i), (3.1) and (3.6), we have that

lim || zp41 — zn|| = Um |lan(f(zn) — 2n) + (T (0nSnzn + (1 — 6p)Xnt1) — zp)|| = 0. (3.7)
n—oo n—oo
Moreover, from (i)-(iv), (3.4)) and (3.5) we get
nlLIEO |1Shzn — Tpy1|| = 0. (3.8)

It follows immediately from (3.7)) and (3.8 that
lim ||Spzy, — z,| = 0. (3.9)
n—oo
By setting y,, = 0,Snzn + (1 — 0p) @41, we find that
[n — Znll = [|00Sn@n + (1 = 6n)Tnt1 — nl| < 0n [[Sn@n — Tl + (1 = 6n) |Tn41 — 2nll-
This along with (3.7)) and (3.9) implies that
lim ||y, —2z,] =0. (3.10)
n—o0

Further, in light of (3.6]), (3.10) and the fact ||Tyn — ynll < [|Tyn — x|l + ||yn — znl| , we deduce that

lim || Ty — gl = 0. (3.11)
n—oo
Next, we want to show that
limsup(f(p) — p, an — p) < 0. (3.12)
n—oo

Without loss of generality, there exists a subsequence {z,,} of {x,} such that z,, — w for some w € C' and

limsup(f(p) — p, = —p) = lim (f(p) — p, Tn, — p)-

n—00 i—00
Since S is a 2-generalized hybrid mapping, there exist d1, d2, €1, €2 € R such that
2 2
&1 [|S%x — Syl||” + 62 || Sz — Syl + (1 =61 — ) |lz — Sy|* < e 5%z — y||” + e2 || Sz — ylI?
+(1—e —e)llz —y?,

for all z,y € C. By replacing z by S*z, in above inequality, we have from (2.1)), for all y € C and
k=0,1,2....n—1,

5 Hs’f”xn _ SyH2 + 6y HSkan — 5@”2 (1= 61— b) Hs’fxn _ SyH2
< st of o
+(1—€ —e2) HSkazn — yH2
< (][54 — sy + 115y — ol
+2(S" 2z, — Sy, Sy — y))
+ ez(HS’““xn - SyH2 +11Sy —ylI®
+2(S" 1, — Sy, Sy — y))

+(1—€ — 62)(HSka:n - Sy”2



Y. L. Song, Y. G. Pei, J. Nonlinear Sci. Appl. 9 (2016), 6348-6363 6355

+ 1Sy — y|I* + 2(S* . — Sy, Sy —y)).
This implies that
0< (a—6) HS"“”% — SyH2 + 1Sy — yl* + 2e1(8" 22, — Sy, Sy —y)
+ (e2 = 82) |41 — SyH2 + 2655 e, — Sy, Sy — y)
F 01—+ o) [t — Sy 20— 61— @) (85 — S, 5y — ) (3.13)
¥ S MUY DU P T
+ ||y — yl|* + 2(S*z,, — Sy + e1(S¥ 22, — S*a,) + e(SFa, — SFx,), Sy — y).

By summing up these inequalities (3.13]) with respect to k =0 to k = n — 1 and dividing by n, we have

€1—90 " 2 n
0 < S22 (5" = Sy||” + 1™ — Syl = 1Sz = Syl = lle = Syl*)
-4

+ 2=

(1" zn = Syl|* = llen — SylI*) + 1Sy — ylI* + 2(Snzs — Sy, Sy — ) (3.14)
+ %(el(S”Hxn + S"xy — Sxy — ) + €2(S" Ty — x0), Sy — Y).
Replace n by n; and let n; — co. Then from and , we have S, z,, = w and
0 < ||Sy —yl* +2(w — Sy, Sy — ).
By taking y = w in the above inequality, we have

0 < ||Sw — w|* + 2(w — Sw, Sw — w) = ||Sw — w||* = 2||Sw — w||* = — || Sw — w]||?.

This implies that w € Fix(S). In light of (3.10)), (3.11)) and Lemma [2.8] we also have that w € Fix(T'). Then
it turns out that

limsup(f(p) — p,zn — p) = lim (f(p) — p, Tn, — p)

=(f(p) —p,w—p)
= (f(p) — Prf(p),w — Prf(p))
<0.

Finally, we prove that x,, — p. Notice

|Znse1 — pl* = (anf(@n) + Bazn + T (0nSntn + (1 — 6,)Tnt1) — Ps Tni1 — D)
= an(f(zn) — f(D), Tnr1 — D) + an{f (D) — Py Tnt1 — D) + Bn{Tn — Py Tns1 — D)
+ YT (0 Snzn + (1 — 60)Tni1) — Py Tni1 — D)
< anar on = pll 12041 — Pl + @ (F () — B s1 — ) + B In — 2l Nzmss — p
+ Y 1T (60 Snxn + (1 — 6p)Tns1) — Pl || 01 — p|
< ant [n = pl 2041 = pll + 0l F) - p,msr — P} + B 70 — pll msr — pl
+ 90 |Tn = Dl |Tns1 — pll + (1 = 6n) lzns1 — pl|”

1 1
< 5(0%04 + Bn + 'Ynén) Hxn - p||2 + 5(0%0‘ + Bn + '7n5n) me—l - pH2

+ an{f(p) = Py xng1 — P) + (L = 6) |Zns1 — pl?
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It follows that

1 1

1 1 1 1
(o — iana + §ﬁn + 5%6”) |xnt1 — p”2 < <an — iana + iﬁn + 5%5” —an(l— a)>

X ||zn — p”2 + an(f(p) — P Tny1 — p),

which yields

= e+ 380 + 27060 — an(l — ) 9

a1 —pl* <

l2n = p
Op — %ana + %/Bn + %’Ynén " (3 15)
an(l — a) (f(p) = P, Tnt1 — p)
Tt 1 i3 11,5 1— '
O — 50p0 + Qﬁn + 5Yn0n «Q
Applying Lemma and (3.12) to (3.15) to deduce that x,, — p.
Case 2: Suppose that there exists {n;} of {n} such that ||z,, — p| < ||zn,+1 — p|| for all i € N.
By Lemma there exists a nondecreasing sequence {m;} in N such that
o, ~oll < fomger —sll and Yy = 0 < o1 — ] 310
Then by (3.3]), we have
2 2 2
Bim;m, HT(‘SmJ‘Smjxmj + (1= O, )@y 41) — Ty |7 < oo, (|| f(@my) = p||” = “$ma‘+1 —pH ) (3.17)

+ (B + vm; Oy ) ([|2m —pH2 = [lwm; 1 —pH2).
And hence (i)-(iii), and imply that

lim HT (5ijmj:Umj +(1- 5m].)mmj+1) — T H =0. (3.18)

Jj—00

Moreover, from (i) and (3.18)), we deduce

Jlggo ||xmj+1 — T, H = glggo Hamj (f (@m;) = @m;) + Ym; (T (Om; Sm; Tm; + (1 = Om)Tm;41) — $m])H (3.19)
=0.

Thus, like in Case 1, we derive from (3.4)), (i)-(iv) and (3.16) that

]ll)nolo HS’mj:rmj — xijH =0. (3.20)
By combining and (3.20)), we find that
]lgglo HSmjxmj — aszH =0. (3.21)

By setting ym, = 6m;Sm;Tm; + (1 — 6m;)Tm;+1, we have

[Ym; = @, || = |0, Sy, + (1= 6, )1 = T |
< Om, ”Smjxmj — Tmy H + (1= 0m;) meﬁl - me” :
Thus, we have from , and that
im ||ym, — @m,|| = 0. (3.23)

Jj—o0

(3.22)
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Due to , and the fact that HTymj — yij < HTym]. — :Jcm]H + Hym]. — .Z'm]H , We see

Lim {|Tym; — Ym, || = 0. (3.24)
j—oo
We want to show that
limsup(f(p) — p,zm; —p) <0, (3.25)
Jj—o0

where p = Ppf(p). Without loss of generality, there exists a subsequence {@y,, } of {@,;} such that
Ty, — W for some w € C and

limsup(f(p) — p,zm; —p) = lim (f(p) — p, Tm,;, —p).

j—o0 k—o0

By virtue of (3.23)), (3.24) and Lemma we deduce that w € Fix(T). By following a similar argument as
in the proof of Case 1, we also have w € Fix(S). Therefore, we have

lim sup(f(p) — p, m; — p) = lim (f(p) — p, &m,, — D)

j—00 k—o0

= (f(p) — Prf(p),w — Prf(p))
<0.

It follows that

2
me]‘—l—l _pH = <amjf(xmj) + ijxmj + '}/ij((sijmjxmj + (1 - 5mj)$mj+1) — P, Tmj+1 _p>

+ Ym; <T(5m15’mj$mj +(1— 5mj)$mj+1) — D, Tmj+1 —p)

< o, [[@m, = p|| [|#m;41 = pl| + am, (F(0) = P, 241 = D) + B, [[2m, — 2| [|2m, 41 — 1]
+%m || T (Om,; Sy T, + (1= 0, )2m,+1) = || [|om,+1 — |

< oy [[@m, = p|| [|#m;41 = pl| + am, (F(0) = P, 241 = D) + B, [[2m, — 2| [|2m, 41 — 1|
Yoy Oy ([, = Il 2,1 = P+ vy (1= 8o, |7, 41 = ]|

1 1
< 5(0‘ij‘+ Bing + Ym;Om; ) || 2m, —pH2 + §(O‘mja + By + Ym, Om,) ||, 41 —pH2

2
+ amj<f<p) — P, Tmj+1 _p> + 7mj(1 - 6m3) mej-f—l _p‘ ’

which yields that

1 1 1 2 1 1 1
(Oémj — §C¥mj06 + §ﬁmj + Q’ijfsmj) Hajmj—l—l _pH < (amj - iamja + 5/6771J + §7mj5mj - amj(l - O[))

x ||m, — | (3.26)
+ Qm; (f(p) —p, Lmj+1 — p).

Then we derive from (3.16)) and (3.26)) that (1 — «) mej —pH2 <{(f(p) = p,xm;+1 — D).
By noticing (3.19) and (3.25)), we have that

lim ||, — p| = 0. (3.27)

j—00
By using and , we get lim;_, mejH — pH = 0, and by virtue of , we have that
lim |lz; — p|| < lim ||zp, 11 — p|| =0.
J]—00 J]—00

This completes the proof. O
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Remark 3.2. Theorem extends, improves and develops Theorem 2.6 of Alghamdi et al. [I], Theorem
3.1 of Xu et al. [26], Theorem 4.4 of Yao et al. [29] and Theorem 3.5 of Yu and Wen [31] in the following
aspects:

e Theorem extends, improves and develops corresponding results in [I} 26], 29] [3T] from the problem
for finding an element of the set of Fix(T") to the more general and challenging problem for finding an
element of the set of Fix(T') (| Fix(S).

e The algorithm is more advantageous and more flexible than the ones given in [II, 26] 29, 31].
Therefore, the new algorithm is expected to be widely applicable.

e The proof of our Theorem is very different from the proof of Theorem 2.6 [I], Theorem 3.1 [26],
Theorem 4.4 [29] and Theorem 3.5 [31]. In Theorem Lemma [2.6|is used to prove the result, while
it was not applied in [I}, 26, 29| 31].

As a direct consequence of Theorem we obtain the following two corollaries.

Corollary 3.3. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. LetT : C — C
be a monexpansive mapping and let S : C' — C be a generalized hybrid mapping. Moreover, let f : C — C
be a contraction with coefficient o € [0,1). Suppose that F := Fix(T)(Fix(S) # 0. For given x1 € C
arbitrarily, define

S n—1
Tn+l1 = anf(xn) + /ann + ’YnT (;: Z Sk‘rn + (1 - 5n)l‘n+1> , N2z 17
k=0

where {an}, {Bn}, {1} and {6,} are real number sequences in [0,1] satisfying the conditions (i)-(iv) in
Theorem . Then {z,} converges strongly to a point p € F, where p = Pp f(p).

Corollary 3.4. Let H be a Hilbert space and let C' be a nonempty closed convexr subset of H. Let T,S :
C — C be two nonexpansive mappings. Moreover, let f : C' — C be a contraction with coefficient o € [0,1).
Suppose that F := Fix(T) N Fix(S) # 0. For given x1 € C arbitrarily, define

T+l = anf(xn) + By + ynT(énan =+ (1 - 6n)xn+1)7 n2>1, (328)

where {an}, {Bn}, {1} and {6,} are real number sequences in [0,1] satisfying the conditions (i)-(iv) in
Theorem . Then {z,} converges strongly to a point p € F, where p = Ppf(p).

Proof. By using the demiclosedness principle for the nonexpansive mapping S and by a similar argument
as in the proof of Theorem [3.I] we can obtain the desired results immediately. O

4. Applications

In this section, we apply our main results to approximate common solutions of split feasibility problems
and fixed point problems.
Let C and @ be nonempty closed convex subsets of two Hilbert spaces H; and Ho, respectively, and let
A : H — H be a bounded linear mapping. The split feasibility problem (SFP) is the problem of finding a
point with the property
z*eC and Az"€Q. (4.1)

The SFP in finite-dimensional Hilbert spaces was first introduced by Censor and Elfving [6] for
modeling inverse problems which arise in phase retrievals and in medical image reconstruction [4]. In [5, 7, 8],
it has been shown that the SPF (4.1]) can also be used to model the intensity-modulated radiation therapy.

The following lemma appears implicitly in Xu [25].

Lemma 4.1. A point z* € H solves SFP (4.1)), if and only if =* is a fized point of the operator Po(I —
yA*(I — Pg)A).
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Lemma 4.2. For any v € R with 0 < vy < the operator Po(I —vA*(I — Pg)A) is nonexpansive.

2
W;
Theorem 4.3. Let C' and QQ be nonempty closed conver subsets of two Hilbert spaces H1 and Hs, respectively.
Let A: Hy — Hj be a bounded linear mapping and S : C — C' be a 2-generalized hybrid mapping. Moreover,
let f:C — C be a contraction with coefficient o« € [0,1). Denote the set of SFP by Q and assume
QN Fix(S) # 0. For arbitrarily given x1 € C, let {x,} be the sequence generated iteratively by

On

where {an}, {Bn}, {} and {0,} are real number sequences in [0,1] satisfying the conditions (i)-(iv) in
Theorem and vy is a positive number satisfying v € (0, Then {x,} converges strongly to a point

p € QN Fix(S), where p = Poarix(S) f(p).

Theorem 4.4. Let C' and Q be nonempty closed conver subsets of two Hilbert spaces H1 and Hs, respectively.
Let A : Hi — Hs be a bounded linear mapping and S : C — C' be a nonexpansive mapping. Denote the
set of SFP by Q and assume Q N Fix(S) # 0. For arbitrarily given x1 € C, let {x,} be the sequence
generated iteratively by:

2
IIAIIQ)'

Tnt1 = Bnn +mPo (I —vA (I — Pg)A) (0,52, + (1 — 6p)xng1), n>1, (4.2)

where {Bn}, {1} and {0,} are real number sequences in [0,1] and v is a positive number satisfying the
conditions

(1) hmn%oo( — Bn — ’Yn) =0 and 220:1(1 — Bn — ’Vn) = 00y

(ii) 0 < liminf, o By < limsup,,_, Bn < 1;
(iii) 0 < liminf,, o 0, < limsup,,_ . 0n < 1;
) v

(iv

€ IIEHQ)'

Then {x,} converges strongly to a point p € QN Fix(S). Moreover, this point p is the minimum common
norm solution of the split feasibility problem (4.1)) and fixed point problem of nonexpansive mapping S.

Proof. If we take f =0 and T' = Po (I — vA*(I — Pg)A), then (3.28)) reduces to (4.2). Thus, z, — p which
satisfies
(=p,q—p) <0, Vg€ QNFix(S).

Therefore, |[p||* < (p,q) < ||p|l|lqll, which implies |[p|| < ||q|| for all ¢ € QN Fix(S). This completes the
proof. O

5. Numerical examples
The purpose of this section is to give two numerical examples supporting Theorem

Example 5.1. Let T\ f : [0,2] — [0,2] be defined by Tz = %x and f(z) = %az, respectively. Let S be the
same as Example Let sequence {z,} be generated iteratively by (3.1), where a,, = n%rl, Bpn = 0p = 7

and v, = % — Then sequence {x,} converges strongly to 0.

n+1

Solution: It can be observed that all the assumptions of Theorem are satisfied. And it is also easy to
check
Fix(T) N Fix(S) = {0}.
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We rewrite (3.1) as follows
24n? + 65n — 3 3n—1
ntl = n+ ———5x,. 5.1
Tl S T3t 5) T Bt (5:1)

By using the algorithm (5.1)) and choosing x1 = 2, we see that numerical results in Table [I| and Figure
demonstrate Theorem [3.1]

Table 1: The values of the sequence {xn}.

Tn

1-5
6-10
11-15
16-20
21-25
26-30

2.000000000000
0.066721465543
0.000601502799
0.000004498248
0.000000030607
0.000000000197

0.954022988506
0.026648182357
0.000228348285
0.000001667939
0.000000011196
0.000000000071

0.917695473251
0.010491588802
0.000086169519
0.000000616450
0.000000004087
0.000000000026

0.394138440435
0.004082723801
0.000032347354
0.000000227161
0.000000001489
0.000000000009

0.164069177567
0.001573479503
0.000012087219
0.000000083485
0.000000000542
0.000000000003

0.8 [~ 1

0.6 - i

04 o i

02F 4

0 10 20 30 40 50 60 70 80 90 100

Figure 1: The convergence of {x,} with initial values z1 = 2.

Next, we present a numerical example in R? that also supports our result.

Example 5.2. Let an inner product (-,-) : R x R3 — R be defined by (x,y) = x-y = 21-y1 +22- Y2+ 2393

and a usual norm ||-|| : R® — R defined by ||x|| = \/2? + 23 + 23 for all x = (z1,22,23), y = (y1,y2,y3) € R>.

Let C = {x € R®: [|x|| <2} and T, f : C — C be defined by Tx = 3x and f(x) = 1x, respectively. Let
0,0,0), xe{xeR: x| <2}

S : C — C be defined as
5% = { (1,0,0), xe{xeR3: x| =2

Let sequence {xn} be generated iteratively by (3.1)), where a,, =
sequence {xy} converges strongly to (0,0,0).

3 _

= B =0n = jand vy, = . Then,

1
n+1
Solution: It can be observed that all the assumptions of Theorem are satisfied. It is also easy to check
Fix(T) N Fix(S) = {(0,0,0)}. We rewrite (3.1)) as follows

24n? + 65n — 3
3n(23n +5)

" 2n4+5

Xn+1 = (52)

By utilizing the algorithm (5.2)) and choosing x1 = (v/2, %, 1/ %), we report the numerical results in
Table [2} In addition, Figure [2] also demonstrates Theorem 3.1
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0 5 10 15 20 25
n

(a) 2D

Figure 2: The convergence of {x,} with initial values x;

Table 2: The values of the sequence {x,}.

30

35 40

CeRVERVESY

1

2

3

n X, X;, X,
1 1.414213562373095 0.790569415042095 12.000000000000000

2 0.674596124580269 0.377110697979850 2.000000000000000

3 0.654935301640607 0.354617556541516 1.482539682539682

4 0.281286315448209 0.152303694155651 0.947402160129433

5 0.117091888792877 0.063399910480541 0.614609008256618

10 0.001122951243861 0.000608026816108 0.000901849510747

15 8.626332460955843x107%  4.670765084056447x107%  6.927864189991733%x 106
20 5.958106411228669x10~%  3.226042529501134x10~%  4.784994345318513%x 108
25 3.865693355959523x 10710 2.093096415470645x10~10  3.104563693951749x 1010
30 2.406823664130327x 10712 1.303185100363625x10712  1.932935873944464 x 1012
36 0.522463890075058 x 10~ 14 0.282890336824844x 10714 0.419594177594879x 1014
37 0.187408074983236x 10~  0.101472914134002x10~1*  0.150508654456355x 1014
38 0.067171073725230x 10714 0.036370068883204x 10714  0.053945529965437x 1014
39 0.024057745143698x10~1*  0.013026170336804x10~1* 0.019320932948891x 1014
40 0.008610366797317x10714  0.004662120406309x10714  0.006915042060785x 1014
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