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Abstract

This paper deals with iterative methods for approximating the minimum-norm common fixed point of
nonexpansive mappings. The proposed cyclic iterative algorithms and simultaneous iterative algorithms
combined with a relaxation factor, which make them more flexible to solve the considered problem. Under
certain conditions on the parameters, we prove that the sequences generated by the proposed iteration
scheme converge strongly to the minimum-norm common fixed point of a finite family of nonexpansive
mappings. Furthermore, as applications, we obtain several new strong convergence theorems for solving
the multiple-set split feasibility problem which has been found application in intensity modulated radiation
therapy. Our results extend and improve some known results in the literature. c©2016 All rights reserved.
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1. Introduction

Many problems in engineering, signal and image processing can be modeled by finding fixed points
of nonexpansive mappings. To find these fixed points, it usually needs to develop an efficient iterative
algorithm. Since the nonexpansive mappings may have more than one fixed point, it is a very interesting
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problem to construct iterative algorithms to find the minimum-norm fixed point of it. A unique x∗ ∈ Fix(T )
is said to be the minimum-norm fixed point of T , which satisfies:

‖x∗‖ = min{‖x‖ : x ∈ Fix(T )}.

In other words, x∗ is the metric projection of the origin onto Fix(T ), i.e., x∗ = PFix(T )0. In this paper,
Fix(T ) denotes the fixed points set of mapping T . A number of iterative algorithms for finding the fixed
point of nonexpansive mappings have been proposed. See for example [6, 12–15, 18, 24, 26, 27, 29]. In
particular, Cui and Liu [8] and Yao and Xu [28] independently introduced two iterative algorithms. One is
implicit iterative algorithm, which is defined by the following

xt = PC((1− t)Txt), t ∈ (0, 1). (1.1)

The other is explicit iterative algorithm, which is defined as

xn+1 = PC((1− tn)Txn), tn ∈ (0, 1), n ≥ 0. (1.2)

They proved that both the net {xt} and the sequence {xn} converge strongly to the minimum-norm fixed
point of nonexpansive mapping T in real Hilbert spaces. These iterative algorithms (1.1) and (1.2) can be
viewed as a modification of the well-known iterative algorithms of Browder [1] and Halpern [9], respectively.
Yang et al. [25] proposed two relaxed iterative algorithms below,

xt = (1− β)PC [(1− t)xt] + βTxt, t, β ∈ (0, 1),

and
xn+1 = (1− β)PC [(1− tn)xn] + βTxn, n ≥ 0,

where β ∈ (0, 1), {tn} ⊂ (0, 1). They proved that the two iterative sequences converge strongly to the
minimum-norm fixed point of the nonexpansive mapping T provided certain conditions on the parameters.
Cai et al. [4] proposed two new implicit and explicit iteration methods, they proved strong convergence
of the iterative sequence to the minimum-norm fixed point of nonexpansive mappings T under weaker
assumptions about the iterative parameters than in [8] and [28]. If the iterative sequence {Txn} involved in
[4] is replaced by {TPCxn}, then the self-mapping T defined on nonempty closed convex cone in [4] could
be relaxed to nonempty closed convex set. It is different from those iterative algorithms proposed by Yang
et al. [25], Tang and Liu [21] introduced a new relaxed implicit and explicit iterative scheme to approximate
the minimum-norm fixed point of nonexpansive mappings in a real Hilbert spaces. Sunthrayuth et al. [16]
proved several iteration schemes converges strongly to a fixed point of nonexpansive mappings T , which is a
unique solution of some variational inequalities. As a direct result, they obtained the unique minimum-norm
fixed point of T . The corresponding results recovered the main results of Tang and Liu [21]. In addition
to the nonexpansive mappings, Zegeye et al. [31] proposed an implicit and explicit iteration process to
approximate a minimum fixed point of pseudocontractive mappings.

There are also some real application problems, which require to find a common fixed point of nonex-
pansive mappings. In [11], Liu and Cui extended the iterative algorithms for finding the minimum-norm
fixed point of a single nonexpansive mapping to the case of a finite family of nonexpansive mappings. They
proposed the following iteration methods:

A cyclic iteration method
xn+1 = PC((1− tn)T[n+1]xn), n ≥ 0,

where {tn} ⊂ (0, 1), T[n] := Tn mod N with the mod N function taking values in the set {1, 2, · · · , N}.
A simultaneous iteration method

xn+1 = PC((1− tn)

N∑
i=1

λ
(n)
i Tixn), n ≥ 0,
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where λ
(n)
i > 0 for all n ≥ 0, i = 1, 2, · · · , N , and

∑N
i=1 λ

(n)
i = 1 for all n ≥ 0. They proved that the

sequence {xn} generated by the cyclic, and the simultaneous iteration method converges strongly to the
minimum-norm common fixed point of nonexpansive mappings {Ti}Ni=1 provided appropriate conditions on
the parameters. The cyclic algorithmic structures cater for the row action approach while the simultaneous
algorithmic structures favor parallel computing platforms. A relaxed simultaneous iterative algorithm for
finding minimum-norm common fixed point of (asymptotically) nonexpansive mapping was proposed by
Zegeye and Shahzad [30]. For the nonexpansive mappings, the sequence {xn} was given by

xn+1 = βn,0xn +
N∑
i=1

βn,iTiPC((1− αn)xn), n ≥ 0. (1.3)

They obtained that the sequence {xn} converges strongly to the minimum-norm common fixed point of
mappings {Ti}Ni=1 provided certain conditions for the iterative parameters. To find minimum-norm common
fixed point of infinite noncountable nonexpansive mappings, Tang et al. [20] proposed a relaxed iteration
method for finding the minimum-norm common fixed point of a nonexpansive semigroup.

We are interested to combine the relaxation iteration method with the cyclic and simultaneous iteration
methods. The proposed simultaneous iterative sequences are different from the simultaneous iteration
scheme of (1.3). Under appropriate conditions on the iterative parameters, we prove that the iterative
sequences generated by the proposed iteration methods converge strongly to the minimum-norm common
fixed point of a finite family of nonexpansive mappings. Furthermore, we apply these results to solve the
multiple-set split feasibility problem.

The paper is organized as follows. In the next section, we introduce notations and provide preliminary
results. In Section 3, we propose a relaxed cyclic iteration method and prove strong convergence of the
sequences generated by the proposed methods to the minimum-norm common fixed point of nonexpansive
mappings. Further, we introduce a relaxed simultaneous iteration method. Under appropriate conditions
on the iterative parameters, we prove that the iterative sequences converge strongly to the minimum-norm
common fixed point of nonexpansive mappings. In Section 4, we present the relaxed cyclic and simultaneous
methods for solving the linear inverse problem of the multiple-set split feasibility problem. Finally, we give
some conclusions.

2. Preliminaries

Throughout this paper, H is a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, C is a nonempty
closed convex subset of H. We use the following notions in the sequel: (i) ⇀ for weak convergence and
→ for strong convergence; (ii) ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω−limit set of {xn}. For any
x, y ∈ H and α ∈ R, it is easy to check that

‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2. (2.1)

Recall that the orthogonal projection PCx of x onto C is defined by

PCx = arg min
y∈C
‖x− y‖.

The orthogonal projection has the following properties. For any x ∈ H,

(i) 〈x− PCx, z − PCx〉 ≤ 0 for all z ∈ C;

(ii) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉 for all x, y ∈ H.

Definition 2.1. A mapping T : C → C is called

(1) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for any x, y ∈ C;
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(2) averaged if T := (1− λ)I + λS, where λ ∈ (0, 1) and S is nonexpansive;

(3) firmly nonexpansive if ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉 for all x, y ∈ C.

It is obviously observed the following relationship

projection operator =⇒ firmly nonexpansive =⇒ averaged =⇒ nonexpansive.

The following lemma was proved in [19]. See also [11].

Lemma 2.2. Let C be a nonempty closed convex subset of a Hilbert space H and let T1, T2, · · · , TN : C → C
be mappings such that

∅ 6=
N⋂
i=1

Fix(Ti) = Fix(TNTN−1 · · ·T1).

Then we must have that the relation

∅ 6=
N⋂
i=1

Fix(Ti) = Fix(TNTN−1 · · ·T1)

= Fix(T1TN · · ·T2)

...

= Fix(TN−1 · · ·T1TN )

holds.

We denote by N the set of all positive integers. Bruck [2] proved the following lemma.

Lemma 2.3 ([2]). Let C be a closed convex subset of a strictly convex Banach space X. Let {Tn : n ∈ N}
be a sequence of nonexpansive mappings on C. Suppose

⋂
Fix(Tn) is nonempty. Let {λn} be a sequence of

positive numbers with
∑
λn = 1. Then a mapping S on C defined by

Sx =
∑

λnTnx

for all x ∈ C is well-defined, nonexpansive and Fix(S) =
⋂

Fix(Tn) holds.

We shall make use of the following lemmas.

Lemma 2.4 (Demiclosedness principle of nonexpansive mapping). Let T : C → C be a nonexpansive
mapping with F (T ) 6= ∅. If xn ⇀ x and (I − T )xn → 0, then x = Tx.

The following lemma was proved in [17].

Lemma 2.5 ([17]). Let {xn} and {yn} be bounded sequences in a Banach space E and let {βn} be a sequence
in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = βnyn + (1− βn)xn for all n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

The next lemma was established in [22].

Lemma 2.6 ([22]). Let {an} be a sequence of nonnegative real sequences satisfying the following inequality:

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=0 γn = +∞;

(2) lim supn→∞ δn ≤ 0 or
∑∞

n=0 |γnδn| < +∞.

Then limn→∞ an = 0.
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3. Main results

In this section, we propose several relaxed cyclic and simultaneous iterative algorithms to approximate
the minimum-norm common fixed point of nonexpansive mappings. Then, we prove strong convergence of
these iterative sequences under appropriate conditions on the iterative parameters.

3.1. Relaxed cyclic iterative algorithms

In this subsection, we introduce two relaxed cyclic iterative algorithms for finding the minimum-norm
common fixed point of a finite family of nonexpansive mappings. Then, we prove the iterative sequences
converge strongly to the minimum-norm common fixed point of

⋂N
i=1 Fix(Ti). For any initial value x0, we

define the following two iterative algorithms,

xn+1 = (1− αn)xn + αnPC((1− tn)TN · · ·T1xn), n ≥ 0, (3.1)

and
xn+1 = (1− αn)xn + αnPC((1− tn)T[n+1]xn), n ≥ 0, (3.2)

where {αn}, {tn} ⊂ (0, 1).
First, we investigate the convergence analysis of the iterative sequence {xn} generated by (3.1).

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Ti : i =
1, 2, · · · , N} : C → C be a family of nonexpansive mappings and satisfying the condition:

∅ 6= F :=

N⋂
i=1

Fix(Ti) = Fix(TNTN−1 · · ·T1).

Let the iterative sequence {xn} generated by (3.1), where {αn} and {tn} ⊂ (0, 1), satisfy the conditions:

(i) limn→∞ tn = 0 and
∑∞

n=0 tn = +∞;

(ii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.

Then the sequence {xn} converges strongly to the minimum-norm common fixed point of {Ti}Ni=1.

Proof. Let U := TN · · ·T1, since Ti : C → C is nonexpansive mapping for i = 1, 2, · · · , N , then the
composition TN · · ·T1 is nonexpansive mapping from C to C, i.e., U is nonexpansive mapping. Therefore,
the iterative scheme (3.1) can be equivalently rewritten as

xn+1 = (1− αn)xn + αnPC((1− tn)Uxn)
∆
= (1− αn)xn + αnzn, (3.3)

where zn = PC((1− tn)Uxn). Given any p ∈ F , we have

‖xn+1 − p‖ = ‖(1− αn)(xn − p) + αn(PC((1− tn)Uxn)− p)‖
≤ (1− αn)‖xn − p‖+ αn‖(1− tn)Uxn − p‖
≤ (1− αn)‖xn − p‖+ αn(1− tn)‖Uxn − p‖+ αntn‖p‖
≤ (1− αntn)‖xn − p‖+ αntn‖p‖
≤ max{‖xn − p‖, ‖p‖}.

By the induction, we obtain
‖xn − p‖ ≤ max{‖x0 − p‖, ‖p‖}, n ≥ 0.

Hence {xn} is bounded. So are {Tixn} for each i = 1, 2, · · · , N and {Uxn}. Let M > 0 satisfy

sup{‖xn‖, ‖Uxn‖} ≤M.
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Notice that zn = PC((1− tn)Uxn), we immediately have

‖zn+1 − zn‖ = ‖PC((1− tn+1)Uxn+1)− PC((1− tn)Uxn)‖
≤ ‖(1− tn+1)Uxn+1 − (1− tn)Uxn‖
≤ ‖(1− tn+1)Uxn+1 − (1− tn+1)Uxn‖+ ‖(1− tn+1)Uxn − (1− tn)Uxn‖
≤ (1− tn+1)‖xn+1 − xn‖+ |tn − tn+1|M,

which leads to
‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ |tn − tn+1|M.

By the condition (i), we deduce

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

With the help of Lemma 2.5, we obtain

lim
n→∞

‖xn − zn‖ = 0.

Furthermore, by (3.3), we have

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

αn‖xn − zn‖ = 0.

Then we have

‖xn − Uxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Uxn‖
≤ ‖xn − xn+1‖+ (1− αn)‖xn − Uxn‖+ αn‖PC((1− tn)Uxn)− Uxn‖
≤ ‖xn − xn+1‖+ (1− αn)‖xn − Uxn‖+ αntnM,

which implies that

‖xn − Uxn‖ ≤
‖xn − xn+1‖

αn
+ tnM → 0 as n→∞. (3.4)

Next, we prove lim supn→∞〈x∗ − xn, x∗〉 ≤ 0, where x∗ = PF 0. Indeed, we can choose a subsequence
{xnj} of {xn} such that

lim sup
n→∞

〈x∗ − xn, x∗〉 = lim
j→∞
〈x∗ − xnj , x

∗〉.

Since {xnj} is bounded, there exists a subsequence of {xnj} which converges weakly to a point x̃. Without

loss of generality, we may assume that {xnj} converges weakly to x̃. Therefore, from (3.4) and Lemma 2.4,

we have xnj ⇀ x̃ ∈ Fix(U). Thus x̃ ∈
⋂N

i=1 Fix(Ti). Since x∗ = PF 0, it follows from the properties of
projection operator that

lim sup
n→∞

〈x∗ − xn, x∗〉 = 〈x∗ − x̃, x∗〉 ≤ 0. (3.5)

Finally, we prove that xn → x∗. It is easy to observe that

〈x∗ − Uxn, x∗〉 = 〈x∗ − xn, x∗〉+ 〈xn − Uxn, x∗〉 ≤ 〈x∗ − xn, x∗〉+ ‖xn − Uxn‖‖x∗‖.

Taking the limsup on the both sides of the above inequality and together with (3.4) and (3.5) yield

lim sup
n→∞

〈x∗ − Uxn, x∗〉 ≤ 0.
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Consequently, from (2.1) and (3.3), we have

‖xn+1 − x∗‖2 = ‖(1− αn)(xn − x∗) + αn(PC((1− tn)Uxn)− x∗)‖2

≤ (1− αn)‖xn − x∗‖2 + αn‖PC((1− tn)Uxn)− x∗‖
≤ (1− αn)‖xn − x∗‖2 + αn‖(1− tn)(Uxn − x∗)− tnx∗‖2

= (1− αn)‖xn − x∗‖2 + αn(1− tn)2‖Uxn − x∗‖2 + 2αn(1− tn)tn〈x∗ − Uxn, x∗〉+ αnt
2
n‖x∗‖2

≤ (1− αntn)‖xn − x∗‖2 + 2αn(1− tn)tn〈x∗ − Uxn, x∗〉+ αnt
2
n‖x∗‖2.

It is clear that all conditions of Lemma 2.6 are satisfied. Therefore, we immediately deduce that xn → x∗

as n→∞. This completes the proof.

Next, we prove strong convergence of the iterative algorithm (3.2).

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Ti}Ni=1 : C → C
be a family of nonexpansive mappings and satisfying the condition:

∅ 6= F :=
N⋂
i=1

Fix(Ti) = Fix(TNTN−1 · · ·T1).

Let the iterative sequence {xn} given by (3.2), where the parameters {αn} and {tn} ⊂ (0, 1) and satisfy the
following conditions:

(i) 0 < a < αn ≤ 1 and limn→∞ αn = 1;

(ii) either
∑∞

n=0 |αn − αn+N | < +∞ or limn→∞ αn/αn+N = 1;

(iii)
∑∞

n=0 tn = +∞ and limn→∞ tn = 0;

(iv) either
∑∞

n=0 |tn − tn+N | < +∞ or limn→∞ tn/tn+N = 1.

Then the sequence {xn} converges strongly to the minimum-norm common fixed point of {Ti}Ni=1.

Proof. For convenience, we divide the proof into six steps.

Step 1. We prove that the sequence {xn} is bounded. In fact, let p ∈ F . Then, by (3.2), we have

‖xn+1 − p‖ = ‖(1− αn)(xn − p) + αn(PC((1− tn)T[n+1]xn)− p)‖
≤ (1− αn)‖xn − p‖+ αn‖(1− tn)T[n+1]xn − p‖
= (1− αn)‖xn − p‖+ αn‖(1− tn)(T[n+1]xn − p)− tnp‖
≤ (1− αn)‖xn − p‖+ αn(1− tn)‖xn − p‖+ αntn‖p‖
= (1− αntn)‖xn − p‖+ αntn‖p‖
≤ max{‖xn − p‖, ‖p‖}.

By the induction, we get
‖xn − p‖ ≤ max{‖x0 − p‖, ‖p‖}, n ≥ 0.

Thus {xn} is bounded. Since the mappings {Ti}Ni=1 are nonexpansive, they are continuous and then
{T[n+1]xn} are also bounded. Let M > 0 such that M ≥ sup{‖xn‖, ‖T[n+1]xn‖}.
Step 2. We show that ‖xn+1 − T[n+1]xn‖ → 0 as n→∞. From (3.2), we have

‖xn+1 − T[n+1]xn‖ = ‖(1− αn)xn + αnPC((1− tn)T[n+1]xn)− T[n+1]xn‖
≤ (1− αn)‖xn − T[n+1]xn‖+ αn‖(1− tn)T[n+1]xn − T[n+1]xn‖
≤ (1− αn)‖xn − T[n+1]xn‖+ αntn‖T[n+1]xn‖ → 0 as n→∞.

Notice the conditions (i) and (ii) that limn→∞ αn = 1 and limn→∞ tn = 0, and the sequences {xn} and
{T[n+1]xn} are bounded. Then we have the above conclusion.
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Step 3. We claim that ‖xn+N − xn‖ → 0 as n → ∞. Indeed, by the facts that T[n+N ] = T[n] and PC and
Ti are nonexpansive, we obtain

‖xn+N − xn‖ = ‖(1− αn+N−1)xn+N−1 + αn+N−1PC((1− tn+N−1)T[n+N ]xn+N−1)

− (1− αn−1)xn−1 − αn−1PC((1− tn−1)T[n]xn−1)‖
≤ (1− αn+N−1)‖xn+N−1 − xn−1‖+ |αn+N−1 − αn−1|‖xn−1‖

+ αn+N−1‖(1− tn+N−1)T[n+N ]xn+N−1 − (1− tn−1)T[n]xn−1‖
+ |αn+N−1 − αn−1|‖PC((1− tn−1)T[n]x[n−1])‖
≤ (1− αn+N−1)‖xn+N−1 − xn−1‖+ |αn+N−1 − αn−1|‖xn−1‖

+ αn+N−1(1− tn+N−1)‖xn+N−1 − xn−1‖+ |tn−1 − tn+N−1|‖T[n]xn−1‖
+ |αn+N−1 − αn−1|‖PC((1− tn−1)T[n]x[n−1])‖

= (1− αn+N−1tn+N−1)‖xn+N−1 − xn−1‖+ |tn−1 − tn+N−1|‖T[n]xn−1‖
+ |αn+N−1 − αn−1|‖xn−1‖+ |αn+N−1 − αn−1|‖PC((1− tn−1)T[n]x[n−1])‖
≤ (1− αn+N−1tn+N−1)‖xn+N−1 − xn−1‖+ |tn−1 − tn+N−1|‖T[n]xn−1‖

+ |αn+N−1 − αn−1|‖xn−1‖+ |αn+N−1 − αn−1|‖PC((1− tn−1)T[n]x[n−1])‖.

This together with Lemma 2.6 implies that

lim
n→∞

‖xn+N − xn‖ = 0.

Step 4. We prove that ‖xn − T[n+N ] · · ·T[n+1]xn‖ → 0 as n→∞. By Step 2, we have

‖xn+N − T[n+N ]xn+N−1‖ → 0 as n→∞.

Repeatedly, using Step 2 and the nonexpansivity of Ti, we have

‖Tn+Nxn+N−1 − T[n+N ]T[n+N−1]xn+N−2‖ → 0,

‖T[n+N ]T[n+N−1]xn+N−2 − T[n+N ]T[n+N−1]T[n+N−2]xn+N−3‖ → 0,

...

‖T[n+N ]T[n+N−1] · · ·T[n+2]xn+1 − T[n+N ]T[n+N−1] · · ·T[n+1]xn‖ → 0.

By the triangle inequality, we obtain

‖xn+N − T[n+N ]T[n+N−1] · · ·T[n+1]xn‖ → 0 as n→∞.

Notice that Step 3 tells that limn→∞ ‖xn+N − xn‖ = 0 and

‖xn − T[n+N ]T[n+N−1] · · ·T[n+1]xn‖ ≤ ‖xn − xn+N‖+ ‖xn+N − T[n+N ]T[n+N−1] · · ·T[n+1]xn‖
→ 0 as n→∞.

Step 5. We show that lim supn→∞〈x∗ − xn, x
∗〉 ≤ 0, where x∗ = PF 0 . To attain this, we choose a

subsequence {xnj} of {xn} such that

lim sup
n→∞

〈x∗ − xn, x∗〉 = lim
j→∞
〈x∗ − xnj , x

∗〉.

Since {xn} is bounded, without loss of generality, we may further assume that xnj ⇀ x. Consequently, we
have

lim sup
n→∞

〈x∗ − xn, x∗〉 = 〈x∗ − x, x∗〉. (3.6)
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Since the pool of mappings is finite, we may assume (via a subsequence if necessary) that T[n′+1] = Tl
for some l ∈ {1, 2, · · · , N} and for all n′ ≥ 1. It then follows that

T[n′+N ] · · ·Tn′+1 = T[l+N−1] · · ·Tl−1Tl =: T .

Observe that T is nonexpansive and, by Lemma 2.2, Fix(T ) = F .
By Step 4, we get

xnj − Txnj → 0 as j →∞.

This together with Lemma 2.4 implies that x ∈ Fix(T ) =
⋂N

i=1 Fix(Ti) = F .
Since x∗ = PF (0), we have 〈x∗, x− x∗〉 ≥ 0 for any x ∈ F . In particular, letting x = x and using (3.6),

we obtain
lim sup
n→∞

〈x∗ − xn, x∗〉 ≤ 0.

Step 6. Finally, we prove xn → x∗ as n→∞. In fact, by (3.2), we have

‖xn+1 − x∗‖ = ‖(1− αn)(xn − x∗) + αn(PC((1− tn)T[n+1]xn)− x∗)‖
≤ (1− αn)‖xn − x∗‖2 + αn‖PC((1− tn)T[n+1]xn)− x∗‖2

≤ (1− αn)‖xn − x∗‖2 + αn‖(1− tn)(T[n+1]xn − x∗)− tnx∗‖2

= (1− αn)‖xn − x∗‖2 + αn(1− tn)2‖T[n+1]xn − x∗‖2

+ 2αn(1− tn)tn〈T[n+1]xn − x∗,−x∗〉+ αnt
2
n‖x∗‖2

≤ (1− αntn)‖xn − x∗‖2 + 2αn(1− tn)tn〈x∗ − T[n+1]xn, x
∗〉+ αnt

2
n‖x∗‖2

= (1− δn)‖xn − x∗‖2 + δnθn,

where δn = αntn and θn = 2(1− tn)〈x∗ − T[n+1]xn, x
∗〉+ tn‖x∗‖2. In addition, we have

〈x∗ − T[n+1]xn, x
∗〉 = 〈x∗ − xn+1, x

∗〉+ 〈xn+1 − T[n+1]xn, x
∗〉

≤ 〈x∗ − xn+1, x
∗〉+ ‖xn+1 − T[n+1]xn‖‖x∗‖.

By (i), Step 2 and Step 5, it can be easily found that
∑∞

n=0 δn = +∞ and lim supn→∞ θn ≤ 0. We can
therefore apply Lemma 2.6 and conclude that xn → x∗ as n→∞. This completes the proof.

Remark 3.3.

(1) Theorem 3.1 generalizes the corresponding results of Combettes [7] from firmly nonexpansive mappings
to nonexpansive mappings.

(2) A simple example of sequence {αn}n≥0 which satisfies the conditions (i)-(ii) of Theorem 3.2 is αn = n
n+1

for all n ≥ 0.

3.2. Relaxed simultaneous iterative algorithms

In the following, we establish two relaxed simultaneous iterative algorithms and prove strong convergence
of iterative sequences to the minimum-norm common fixed point of nonexpansive mappings {Ti}Ni=1. For
any initial x0, define the following iterative sequences:

xn+1 = (1− αn)xn + αnPC((1− tn)

N∑
i=1

λ
(n)
i Tixn), n ≥ 0, (3.7)

and

xn+1 = (1− αn)xn + αn

N∑
i=1

λ
(n)
i PC((1− tn)Tixn), n ≥ 0, (3.8)

where {αn}, {tn} ⊂ (0, 1) and λ
(n)
i > 0 for all n ≥ 0 and 1 ≤ i ≤ N such that

∑N
i=1 λ

(n)
i = 1 for all n ≥ 0.
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Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Ti}Ni=1 : C → C be
a family of nonexpansive mappings, and ∅ 6= F :=

⋂N
i=1 Fix(Ti). Assume that the sequence {xn} is defined

by (3.7). Let the parameters {αn} and {tn} ⊂ (0, 1) satisfy the following conditions:

(i) limn→∞ tn = 0 and
∑∞

n=0 tn = +∞;

(ii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;

(iii) lim infn→∞ λ
(n)
i > 0 for all 1 ≤ i ≤ N and limn→∞(

∑N
i=1 |λ

(n+1)
i − λ(n)

i |) = 0.

Then the sequence {xn} converges strongly to the minimum-norm common fixed point of {Ti}Ni=1.

Proof. Define

An :=

N∑
i=1

λ
(n)
i Ti.

It is easy to see that An is nonexpansive. Then the iterative scheme (3.7) can be rewritten as

xn+1 = (1− αn)xn + αnPC((1− tn)Anxn)
∆
= (1− αn)xn + αnzn, (3.9)

where zn = PC((1− tn)Anxn).
First, we show that the sequence {xn} is bounded. In fact, let p ∈ F . Then, by (3.9), we have

‖xn+1 − p‖ = ‖(1− αn)xn + PC((1− tn)Anxn)− p‖
≤ (1− αn)‖xn − p‖+ αn‖(1− tn)Anxn − p‖
≤ (1− αn)‖xn − p‖+ αn‖(1− tn)(Anxn − p)− tnp‖
≤ (1− αn)‖xn − p‖+ αn(1− tn)‖xn − p‖+ αntn‖p‖
= (1− αntn)‖xn − p‖+ αntn‖p‖
≤ max{‖xn − p‖, ‖p‖}.

By the induction, we get
‖xn − p‖ ≤ max{‖x0 − p‖, ‖p‖}, n ≥ 0.

This implies that the sequence {xn} is bounded.
Second, we prove that ‖xn+1 − xn‖ → 0 as n → ∞. Since {xn} is bounded, there exists a constant

M > 0 such that ‖Tixn‖ ≤M for all i = 1, 2, · · · , N . With zn = PC((1− tn)Anxn), we have

‖zn+1 − zn‖ = ‖PC((1− tn+1)An+1xn+1)− PC((1− tn)Anxn)‖

=
∥∥PC((1− tn+1)

N∑
i=1

λ
(n+1)
i Tixn+1)− PC((1− tn)

N∑
i=1

λ
(n)
i Tixn)

∥∥
≤ ‖(1− tn+1)An+1xn+1 − (1− tn)Anxn‖
≤ ‖(1− tn+1)An+1xn+1 − (1− tn+1)An+1xn‖+ ‖(1− tn+1)An+1xn − (1− tn)Anxn‖
≤ (1− tn+1)‖xn+1 − xn‖+ ‖(1− tn+1)An+1xn − (1− tn+1)Anxn‖

+ ‖(1− tn+1)Anxn − (1− tn)Anxn‖

≤ (1− tn+1)‖xn+1 − xn‖+
[
(1− tn+1)

N∑
i=1

|λ(n+1)
i − λ(n)

i |+ |tn − tn+1|
]
M,

that is,

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤
[
(1− tn+1)

N∑
i=1

|λ(n+1)
i − λ(n)

i |+ |tn − tn+1|
]
M.
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Notice from the conditions (i) and (iii),

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

With the help of Lemma 2.5, we obtain limn→∞ ‖xn − zn‖ = 0. Consequently, by (3.9), we deduce that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

αn‖xn − zn‖ = 0.

Third, we show that ‖xn −Anxn‖ → 0 as n→∞. In fact, we have

‖xn −Anxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 −Anxn‖
= ‖xn − xn+1‖+ ‖(1− αn)xn + αnPC((1− tn)Anxn)−Anxn‖
= ‖xn − xn+1‖+ ‖(1− αn)(xn −Anxn) + αn(PC((1− tn)Anxn)−Anxn)‖
≤ ‖xn − xn+1‖+ (1− αn)‖xn −Anxn‖+ αn‖(1− tn)Anxn −Anxn‖
≤ ‖xn − xn+1‖+ (1− αn)‖xn −Anxn‖+ αntnM.

From the above inequality, we obtain

‖xn −Anxn‖ ≤
‖xn − xn+1‖

αn
+ tnM.

Since limn→∞ tn = 0 and limn→∞ ‖xn+1 − xn‖ = 0, limn→∞ ‖xn −Anxn‖ = 0.
Fourth, we prove that lim supn→∞〈x∗ − xn, x

∗〉 ≤ 0, where x∗ = PF 0. To achieve this, we take a
subsequence {xnj} of {xn} such that

lim sup
n→∞

〈x∗ − xn, x∗〉 = lim
j→∞
〈x∗ − xnj , x

∗〉.

Since {xn} is bounded, without loss of generality, we may assume that xnj ⇀ x̃. Consequently, we have

lim sup
n→∞

〈x∗ − xn, x∗〉 = 〈x∗ − x̃, x∗〉.

Next, we show that ωw(xn) ⊂ F . To see this, we may assume that λ
nj

i → λi as j → ∞ for all

i = 1, 2, · · · , N . Due to the assumption (iii), we have λi > 0 for all i = 1, 2, · · · , N . Notice that
∑N

i=1 λi = 1.

Set A :=
∑N

i=1 λiTi. It is easily checked that A is nonexpansive, Anjx→ Ax for all x ∈ C and Fix(A) = F
(due to Lemma 2.3). Moreover, we have

‖xnj −Axnj‖ ≤ ‖xnj −Anjxnj‖+ ‖Anjxnj −Axnj‖ → 0 as j →∞.

By the demiclosedness of nonexpansive mapping, we obtain x̃ ∈ F . Since x∗ = PF 0, it follows from the
properties of projection operator that

lim sup
n→∞

〈x∗ − xn, x∗〉 = 〈x∗ − x̃, x∗〉 ≤ 0.

Finally, by the iterative scheme (3.7), we have

‖xn+1 − x∗‖2 = ‖(1− αn)(xn − x∗) + αn(PC((1− tn)Anxn)− x∗)‖2

≤ (1− αn)‖xn − x∗‖2 + αn‖PC((1− tn)Anxn)− x∗‖2

≤ (1− αn)‖xn − x∗‖2 + αn‖(1− tn)(Anxn − x∗)− tnx∗‖2

= (1− αn)‖xn − x∗‖2 + αn(1− tn)2‖Anxn − x∗‖2

+ 2αn(1− tn)tn〈Anxn − x∗,−x∗〉+ αnt
2
n‖x∗‖2

≤ (1− αntn)‖xn − x∗‖2 + 2αn(1− tn)tn〈x∗ −Anxn, x
∗〉+ αnt

2
n‖x∗‖2.

(3.10)
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Observe that

〈x∗ −Anxn, x
∗〉 = 〈x∗ − xn, x∗〉+ 〈xn −Anxn, x

∗〉 ≤ 〈x∗ − xn, x∗〉+ ‖xn −Anxn‖‖x∗‖.

Taking the limsup on the both sides of the above inequality and noticing Step 3 and Step 4, we have

lim sup
n→∞

〈x∗ −Anxn, x
∗〉 ≤ 0.

Therefore, using (3.10) together with the conditions (i), (ii), and Lemma 2.6, it follows that xn → x∗ as
n→∞. This completes the proof.

The difference between the iterative algorithms (3.7) and (3.8) is that the sum of weighted parameters
is inside the projection operator in (3.7), while the sum of weighted parameters is outside the iterative
algorithm (3.8). We can prove the strong convergence of iterative sequence generated by (3.8) based on the
same proof method before. Then we have the following convergence theorem.

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Ti}Ni=1 : C → C
be a family of nonexpansive mappings, and ∅ 6= F :=

⋂N
i=1 Fix(Ti). Assume that the iterative sequence {xn}

is defined by (3.8), where {αn} and {tn} ⊂ (0, 1) satisfy the following conditions:

(i) limn→∞ tn = 0 and
∑∞

n=0 tn = +∞;

(ii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;

(iii) lim infn→∞ λ
(n)
i > 0 for all 1 ≤ i ≤ N and limn→∞(

∑N
i=1 |λ

(n+1)
i − λ(n)

i |) = 0.

Then the sequence {xn} converges strongly to the minimum-norm common fixed point of {Ti}Ni=1.

Proof. For notation simplicity, we set An :=
∑N

i=1 λ
(n)
i Ti and zn :=

∑N
i=1 λ

(n)
i PC((1 − tn)Tixn). With this

notation, the iterative algorithm (3.8) can be written as

xn+1 = (1− αn)xn + αnzn.

The remainder of the proof is the same as Theorem 3.4. So it is omitted here.

Remark 3.6. Theorems 3.4 and 3.5 improve the results of [11] in two aspects: (i) we relax the assump-

tion “
∑∞

n=0

∑N
i=1 |λ

(n+1)
i − λ

(n)
i | < +∞” required in [11]; (ii) the condition “either

∑∞
n=0 |tn+1 − tn| <

+∞ or limn→∞(tn/tn+1) = 1” was removed in our theorems.

4. Applications

In this section, we present an application of the obtained results to solve the multiple-set split feasibility
problem. Recall that the multiple-set split feasibility problem (MSSFP, for short), which was first introduced
by Censor et al. [5]:

Find a point x∗ ∈
N⋂
i=1

Ci such that Ax∗ ∈
M⋂
j=1

Qj , (4.1)

where N,M ≥ 1 are integers, {Ci}Ni=1, {Qj}Mj=1 are closed convex subset of Hilbert spaces H1 and H2,
respectively, and A : H1 → H2 is a bounded linear operator. The multiple-set split feasibility problem is a
generalization of the split feasibility problem as follows (say SFP, for short):

Find a point x∗ ∈ C such that Ax∗ ∈ Q, (4.2)

where C and Q are closed convex subset of Hilbert spaces H1 and H2, respectively. To solve the MSSFP
(4.1), Censor et al. [5] first proposed a gradient projection algorithm. However, this iterative algorithm
could not reduce to the CQ iterative algorithm [3] for solving the SFP (4.2). Xu [23] proved that the MSSFP
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(4.1) is equivalent to find a common fixed point of mappings {Ti}Ni=1, where Ti = PCi(I − γ∇q), ∇q(x) =∑M
j=1 βjA

∗(I − PQj )Ax, {βj}Mj=1 are nonnegative real numbers and γ > 0. Under mild assumption on the
parameter γ, Xu [23] proposed several iterative algorithms included cyclic iteration scheme and simultaneous
iteration scheme to solve the MSSFP (4.1). The main characteristic of these iterative algorithms is that they
will reduce to the CQ iterative algorithm when the MSSFP (4.1) is reduced to the SFP (4.2). Further, He
et al. [10] generalized the iterative algorithms introduced by Xu [23] to the relaxed iteration method. It is
worth mentioning that these iterative algorithms have only weak convergence except for finite dimensional
space. Thus, we establish several strong convergence theorems, and its limit is the minimum-norm solution
of the MSSFP (4.1).

Theorem 4.1. Assume that the MSSFP (4.1) is consistent. Let {xn} be the sequence generated by the
iteration scheme

xn+1 = (1− αn)xn + αn ((1− tn)PCN
(I − γ∇q) · · ·PC1(I − γ∇q)xn) ,

where 0 < γ < 2/L with L = ‖A‖2
∑M

j=1 βj and the parameters {αn} and {tn} satisfy the conditions in
Theorem 3.1. Then the sequence {xn} converges strongly to the minimum-norm solution of the MSSFP
(4.1).

Proof. It is known that the mapping Ti = PCi(I − γ∇q) : H1 → Ci for any i = 1, 2, · · · , N is averaged.
So {Ti}Ni=1 are nonexpansive mappings. Consequently, it is followed from the results of Xu [23] that the
MSSFP (4.1) is equivalent to the common fixed point of nonexpansive mappings {Ti}Ni=1. Substituting the
projection operator PC in (3.1) with an identity operator I, by Theorem 3.1, we can conclude that the
sequence {xn} converges strongly to the minimum-norm solution of the MSSFP (4.1).

Similarly, with the help of Theorem 3.2, we have the following strong convergence theorem.

Theorem 4.2. Assume that the MSSFP (4.1) is consistent. Let {xn} be defined by

xn+1 = (1− αn)xn + αn

(
(1− tn)PC[n+1]

(I − γ∇q)xn
)
,

where 0 < γ < 2/L with L = ‖A‖2
∑M

j=1 βj and the parameters {αn} and {tn} satisfy the conditions in
Theorem 3.2. Then the sequence {xn} converges strongly to the minimum-norm solution of the MSSFP
(4.1).

From Theorem 4.1, we know that Ti = PCi(I − γ∇q) is averaged. It is easy to check that the convex

combination of S :=
∑M

j=1 λ
(n)
i Ti is also averaged. Thus S is nonexpansive. The simultaneous iterative

algorithms (3.7) and (3.8) are indeed equivalent by taking the projection operator PC with the identity
operator. By Theorem 3.4 or Theorem 3.5, we have the following strong convergence theorem for finding
the minimum-norm solution of the MSSFP (4.1).

Theorem 4.3. Assume that the MSSFP (4.1) is consistent. Define the iterative sequence {xn} as follows:

xn+1 = (1− αn)xn + αn

(
(1− tn)

N∑
i=1

λ
(n)
i PCi(I − γ∇q)xn

)
,

where {αn}, {tn}, and λ
(n)
i for all i = 1, · · ·N satisfy the assumptions (i)-(iii) in Theorem 3.4, and 0 < γ <

2/L with L = ‖A‖2
∑M

j=1 βj. Then the sequence {xn} converges strongly to the minimum-norm solution of
the MSSFP (4.1).
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5. Conclusions

Iterative methods of finding fixed points or common fixed points of nonexpansive mappings is a very
challenging problem. There are several methods have been studied to approximate the minimum-norm fixed
point of nonexpansive mappings. In this paper, we have proposed cyclic iteration methods and simultaneous
iteration methods with relaxation factors. The strong convergence of the proposed iterative sequences has
been proved under weaker assumptions of the parameters than existing results. Based on these results, we
have obtained several new strong convergence theorems for solving the multiple-set split feasibility problem.
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