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Abstract

In this paper, we study a general viscosity iterative method due to Aoyama and Kohsaka for the fixed
point problem of quasi-nonexpansive mappings in Hilbert space. First, we obtain a strong convergence
theorem for a sequence of quasi-nonexpansive mappings. Then we give two applications about variational
inequality problem to encourage our main theorem. Moreover, we give a numerical example to illustrate our
main theorem. (©2016 All rights reserved.

Keywords: Quasi-nonexpansive mapping, variational inequality, fixed point, viscosity iterative method.
2010 MSC: 47H10, 47J20.

1. Introduction

Throughout the present paper, let H be a real Hilbert space with inner product (-,-) and norm | - |.
Let C be a nonempty closed convex subset of H and T : C — C be a mapping. In this paper, we denote
the fixed-point set of T by Fiz(T). A mapping T is said to be quasi-nonexpansive, if Fiz(T) # () and
| Tx—p ||<|z—p]| for all z € C and p € Fiz(T). We know that if T : C — C' is quasi-nonexpansive, then
Fix(T) is closed and convex (see [3] for more general results). A mapping 7' is said to be nonexpansive, if
| Tx —Ty ||<|| z —y | for all z,y € C. A mapping T is called demiclosed at 0, if any sequence {x, } weakly
converges to z, and if the sequence {Tx,} strongly converges to 0, then Tz = 0.

The viscosity iterative method was proposed by Moudafi [I1] firstly. Choose an arbitrary initial o € H,
the sequence {z,} is constructed by:

€ 1

Tp4+1 = 1+e
n
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where T' is a nonexpansive mapping and f is a contraction with a coefficient a € [0,1) on H, the sequence
{en} isin (0,1), such that:

(if) >nzgen = 003

mnlmmﬁm@%_aiﬂ):o

Then lim,, 00 &, = 2, where 2* € C(C = Fiz(T)) is the unique solution of the variational inequality

(I—fla*,x—a") >0, Ve e Fiz(T). (1.1)

Maingé considered the viscosity iterative method for quasi-nonexpansive mappings in Hilbert space in
[9]. His focus was on the following algorithm:

Tnt1 = anf(xn) + (1 — ap)Toxn,

where {a;,} is a slow vanishing sequence, and w € (0,1], T, := (1 — w)I +wT', T has two main conditions:

(i) T is quasi-nonexpansive;
(ii) I — T is demiclosed at 0.

He proved the sequence {x, } converges strongly to the unique solution of the variational inequality (1.1).
Tian and Jin considered the following iterative process in [13]:

Tpi1 = oY f(2n) + ([ — anA)Tyxyn, YR >0,

where the sequence {a, } satisfies certain conditions, w € (0, 3), T, = (1 —w)I + w7, and T is also satisfied
the same conditions in Maingé [9] . Then they proved that {z,} converges strongly to the unique solution
of the variational inequality:

(vf — A)z*,x —2*) <0, Ve Fiz(T).

Recently, Aoyama and Kohsaka considered the following general iterative method in [1]:

Tn+l1 = Oénfn(xn) + (1 - an)Snxm

where f,, is a #-contraction with respect to Q@ = N2, Fixz(S,) and {f,} is stable on €, and {S,} is a
sequence of strongly quasi-nonexpansive mappings of C' into C'. That is to say, S, is quasi-nonexpansive
and S,x, — x, — 0 whenever {z,} is a bounded sequence in C and || z,, — p || — || Snxn —p ||— 0 for some
point p € Q. Then they proved that if the sequence {a,,} satisfies appropriate conditions, {z,} converges
strongly to the unique fixed point of a contraction Pg o fi.

Many various iterative algorithms have been studied and extended by many authors, especially about
quasi-nonexpansive mappings (see [I], 4, [6H13 [15]).

Motivated by the above results, we extend the iterative method to quasi-nonexpansive mappings. We
consider the following iterative process:

Tn4+1 = Oénfn(xn) + Z(ai—l - Oéi)S;\".’L'n, (12)

=1

where Si)‘” = (1 — X)L + A\.Si, and {S;}32, is a sequence of quasi-nonexpansive mappings. Under the
appropriate conditions, we establish the strong convergence of the sequence {z,} generated by (1.2).
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2. Preliminaries

We denote the strong convergence and the weak convergence of {z,} to x € H by z, — = and z,, — z,
respectively.

Let f : C — C be a mapping, € is a nonempty subset of C, and 6 is a real number in [0,1). A mapping
f is said to be a f-contraction with respect to €2, if

[ f(@) = f) IO le—z], Veel zeQ.

f is said to be a f-contraction, if f is a #-contraction with respect to C. The following lemmas are useful
for our main result.

Lemma 2.1 ([1]). Let Q be a nonempty subset of C and f : C — C a 0-contraction with respect to S, where
0<0<1. IfQ s closed and convez, then Poo f is a 8-contraction on ), where Pq is the metric projection
of H onto ).

Lemma 2.2 ([1]). Let f : C — C be a 0-contraction, where 0 < 0 <1 and T : C — C a quasi-nonezpansive
mapping. Then foT is a O-contraction with respect to Fiz(T).

Let D be a nonempty subset of C. A sequence {f,} of mappings of C into H is said to be stable on D,
if {fn(2) : n € N} is a singleton for every z € D. It is clear that if {f,} is stable on D, then f,(z) = fi(z)
foralln € Nand z € D.

Lemma 2.3 ([9]). Let T, := (1 —w)I +wT, with T be a quasi-nonexpansive mapping on H, Fix(T) # ¢,
and w € (0,1], g € Fiz(T). Then the following statements are reached:

(i) Fiz(T) = Fiz(T,);
(ii) T, is a quasi-nonexpansive mapping;
(iii) || Twx —q |IP<||z —q|]? —w(l —w) || Tx —x ||? for all z € H.
Lemma 2.4 ([5]). Assume {s,} is a sequence of nonnegative real numbers such that

Sn-i-l S (1 - Bn)sn + /Bnéru n Z 07
Sn+1 < Sp —Np +tn, 120,

where {Bn} is a sequence in (0,1), n, is a sequence of nonnegative real numbers, and {0, } and {t,} are two
sequences in R such that:

(1) >20Z0 Bn = 00;
(ii) limp o0 tn = 0;
(iil) limg—oo Mn, = 0 implies lim supy,_, oo Op,, < 0 for any subsequence {ny} C {n}.
Then lim,, oo s, = 0.
Lemma 2.5 ([I0]). Assume A is a strongly positive linear bounded operator on Hilbert space H with coeffi-
cient ¥ >0 and 0 < p <|| A||7t. Then || I —pA|<1 - p7.
3. Main results

In this section, we prove the following strong convergence theorem.

Theorem 3.1. Let H be a real Hilbert space, C' a nonempty closed convex subset of H, {S,} a sequence of
quasi-nonezpansive mappings of C' into C' such that Q = N2, Fix(S;) is nonempty, and I —S; is demiclosed
at 0. Assume that {f.} is a sequence of mappings of C into C such that each fy is a 0-contraction with
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respect to 0 and {fn} is stable on Q, where 0 < 0 < 1. Let {x,} be a sequence defined by x1 € C' and

n
Tnl = Oénfn(xn) + Z(O‘i—l - ai)SiAnxna

=1

forn € N, where SZ-)‘" = (1=A)I+XSi, A\ € (0,1] and {\,,} satisfies 0 < liminf, o Ay, < limsup,,_,., A\p <
1. Suppose that {ay,} is a sequence in (0, 1] such that ag =1, oy — 0, >0 | oy, = 00 and {o,} is strictly
decreasing. Then {z,} converges to w € Q, where w is the unique fixed point of a contraction Pq o f.

First, we show some lemmas, then we prove Theorem In the rest of this section, we set
Brn = an(1+(1-20)(1 - an)),

and
n

Tn = 0‘% | fo(zn) —w H2 +2a, Z(O‘i—l - a,-)<5'i)‘"a;n —w, fi(w) —w).
=1

Lemma 3.2. {z,}, {Sizn} and {fn(xn)} are bounded, and moreover,

|21 —w (I an || falan) —w ||+ (@i1 = i) | Sz —w |, (3.1)
i=1

and
| 2ns1 = w [P< (1= Ba) [l 20 = w [I* +7m,
hold for every n € N.
Proof. From Lemma we know S{\” is quasi-nonexpansive and Fiz(S;) = F m:(SZA”) for all ¢ € N. Since

fn is a B-contraction with respect to €, S{\" is quasi-nonexpansive, w € Q C Fix(S;) = Fix(S{\"), and {fn}
is stable on €2, it follows that

n
| ng1 —w || =l anfalan) + D (i1 — ) S ma, —w |
=1

< an([| fa(zn) = fulw) | + [ fa(w) —w )

+3 (e — ) || SMan —w | (32)
=1
< anl || 2 —w || +an || fi(w) —w | +(1 = an) | 20 —w ||
| fiw) —w |

= (1= an(1=0) | 20— w || +an(l - 07

for every n € N. Thus, by the induction on n, for every ¢ € N, we have

| Aw) -]
S

| Siwn — w [|<[| 2n — w [[< max{]| 21 — w |

Therefore, it turns out that {x,} and {S;z,} are bounded, and moreover, {f,(x,)} is also bounded.

Equation (3.1)) follows from ([3.2)).
By assumption, for every i € N | it follows that
(S = w, fa(zn) = w) S| S @n —w || - || falza) = falw) |
+ <S{\n$n _van(w) _W> (3'3)
<O zn—w ||? HS M@, —w, fi(w) —w),
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and thus
| nir —w [P =] an(falzn) —w) + > (@it — ) (S} 2 — w) ||
i=1
= ap || falzn) —w [P+ || D (@it — ai) (S @n — w) |
i=1
+ 2an<2(ai—1 - a,)(SZ)‘"xn - w), fn(xn) - w>
i=1
<ap || falwn) —w |2 +1 —an)? || 25 —w |
+ 200 Y (aic1 — i) (S} T — w, folan) — w)
=1
< O‘EL | fo(Tn) —w H2 +(1— O‘n)Q | zn —w H2 +205 (1 — )0 || 25 —w H2
+ 20, Z(ai—l - ai)<S{\"$n —w, filw) —w)
=1
= (1= 6a) [l2n —w > +7a
for every n € N. O

Lemma 3.3. The following hold:

e 0< (B, <1 for everyn € N;
e 20, (1 —ay)/Bn — 1/(1 —0) and 2a, /B — 1/(1 —0);
o op || falwn) —w|? /B0 = 0;
e > ™ Bn = 0%.
Proof. Since 0 < a, <1 and —1 <1 — 26 <1, we know that
0<a2=ap(l+ (1)1 —an) <Bp<an(l+(l—an)=an(2—a,) <1

From «,, — 0 we have 2a,,(1 — a,,) /B, — 1/(1 —0) and 2a,, /5, — 1/(1 —6). Since {f,(xy)} is bounded

and

2
oy an

Bn 1+ (1—20)(1—ap)
it follows that a2 || fu(zn) —w ||? /Bn — 0.
Finally, we prove Y ° | 3, = co. Suppose that 1 —26 > 0. Then it follows that ,, > a, for every n € N.

Thus, > 2 | B, = co. Next, we suppose that 1 — 26 < 0. Then £, > 2(1 — 0)a,, for every n € N. Thus,
S Bn > 2(1—0)>7 ay = oo. This completes the proof.

— 0,

O

Proof of Theorem [3.1] By Lemma [2.1] it implies that Py o fi is a #-contraction on © and hence it has a
unique fixed point on (2.
From Lemma |3.2] we know that

lzni1 —w 7 < (1= Bn) 20 —w |? +ai | falzn) —w |?
n

+ 2, Z(aiq — Oéi)<si>\n$n —w, filw) —w)
i=1
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= (1= Bn) | 20 —w > +ap || falzn) —w |I?

n

+ 2a, Z(OAZ‘—1 — @) (M (Sitn — ), fi(w) —w)
i=1

+ 2a, Z(aifl —a;)(Tn —w, fi(w) —w),

i=1

which implies that

ap || fulzn) —w |2

| Znss = I < (1= Ba) @0 —w 2 +6a

Bn
+ QB%M (i1 —aq) | 2 — Sixn || - || fr(w) —w || (3.4)
=1
n 2;;”(1 — an){@n — w, fi(w) — w)].

On the other hand, we obtain from Lemma (iii) that

| 2ni1 = w 12 = an(fa(zn) —w) + Z(O‘i—l - ozi)(SZ-)‘":cn —w) |

i=1
= ap || falzn) —w [P+ | D (@it — ai)(S @0 — w) |
=1
n i—1 — Qg S n s Jn\bn) —
+ 20 (0int — @)t = . folen) =) )

By using (3.3]), we have

(1= an)? | 2n —w [ +200 Y (i1 — @) (S0 — w, folwn) — w)
i=1
<(1—on)? || zn—w|]® +200(1 — )0 || 2n —w |2
<( 7)1 | | ( )0 |l | (3.6)

+ 2a, Z(Oli—l - Oéz')<5¢>\"l“n —w, fi(w) —w))
i=1

<(1=Bn) ll2n —w > +20n(1 = o) [ 2n —w || - || fi(w) —w |l -
Since S?” is quasi-nonexpansive, from (3.5 and (3.6)), it follows that

| Tpy1 —w H2 <|| zn —w ||2 +O‘EL | fr(rn) —w H2 F2on(1 —ap) [ 2n —w | - || fr(w) —w ||

n

— (L= an)An (1= A) D (i1 — ) || Siwn — |1
=1

Suppose that M is a positive constant such that

M > sup{ay || fa(zn) = w > +2(1 = an) | @0 = w || - | filw) = w |, € N}.
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So we have
| 2ni1 —w [P<[l 20 = w > +anM = (1 = ap)Aa(1 = An) Z (i1 = ) || Siwn — 2 |1* . (3.7)
i=1
Set
sn = &n —w |, tn = @M,
2 || folzn) —w|? 2an "
g = S LB 20 I 2000 S i — ) 0 = S |- fule) = |
n =1
200,
+ 67(1 — an) (T —w, fi(w) —w),
= (1= ap)An(1 = An) Y (i1 — o) || Siwn — 2 |* .

i=1
Then (3.4) and (3.7)) can be rewritten as the following forms, respectively,

Sn+1 < (1 - 6n)3n + ﬁn(sny Sn+1 < s, — Mn + tn.

Finally, we observe that the condition lim, o a;, = 0 and Lemma [3.3] imply lim,, o t, = 0 and
>0 | Bn = 00, respectively. In order to complete the proof by using Lemma it suffices to verify that

li =0,
s

implies
lim sup 6, <0,

k—o0
for any subsequence {n;} C {n}.
In fact, for every ¢ € N, if n,, — 0 as k — oo, then

Nk
(1 - ank))\nk(]‘ - )\nk) Z (ai—l - ai) H S”L‘rnk — Ty, ”2_> 0.
i=1
And since 0 < liminf, o A, < limsup,,_,., An < 1, there exist A > 0 and A > 0, such that 0 < A <
An < A < 1. Since lim,, o o, = 0, there exist some positive integer ng and @ < 1, such that «,, < @, when
n > ng, then
g

(L= @)A1 = X)(@im1 — ) || Sittny — @y, |7 < (L= @)A1 = X) Y (i1 — ) || Siwn, — 2, |

i=1
g

<(1- ank)Ank(l - Ank) Z(O‘Fl —ai) | Sy, — Tn, ||2—> 0.
i=1
Therefore, since {a,} is strictly decreasing, it follows that
ng
| Siztny, — Ty, | 0 and D (i1 = @) || Siny, — @, [0
i=1
for every i € N.
By using the condition that I — S; is demiclosed at 0, we obtain wy(zy,) C F = N2, Fixz(S;). From
Lemma [3.3] it turns out that

2 1-—
lim sup SQng (2 T ) ( Oy (

k—o0 Bnk

1
nk_wufl(w)_o‘)): 179112115111)@% w,fl(W)—W>
—00

=L s mwAiw) —w) <0
1-0 zeww(xnk)
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Since limy o0 atn, = 0, D%y (vic1 — a5) || Sin,, — Ty |- 0 and {f,(zn)}, {Sizs} are bounded, it is
easy to see that limsupy,_,., 0, < 0. From Lemma [2.4] we conclude that z, — w. O

Remark 3.4. When S,, = S, we can remove the following conditions: oy = 1 and {ay,} is strictly decreasing.
In fact, the above conditions guarantee the coefficients «;_1 — «; greater than 0 for every ¢ € N.

The following corollary is the direct consequence of Theorem

Corollary 3.5. Let H be a real Hilbert space, C a nonempty closed convex subset of H, S : C — C a
quasi-nonexpansive mapping, such that Fiz(S) # 0 and I — S is demiclosed at 0. Assume that oy, — 0,
Yol an = 00, and [y satisfies the same conditions of Theorem . Let {x,} be a sequence defined by
z1 € C and

Tntl = anfn(xn) + (1 - an)‘g/\nxn (38)
forn € N, where S* = (1 — \,)I + A\, S, and {\,} also satisfies the same conditions of Theorem . Then

{zn} converges to w € Q, where w is the unique fixed point of a contraction Pq o f.

Remark 3.6. If f,, = f and A\, = A for all n € N, (3.8) becomes the viscosity approximation process which
is introduced by Maingé (see [9]).

4. Application to variational inequality problem

In this section, by applying Theorem and Corollary first we study the following variational
inequality problem, which is to find a point x* € €2, such that

(F(z*),x —2*) >0, VreQ, (4.1)

where 2 is a nonempty closed convex subset of a real Hilbert space H, and F : H — H is a nonlinear
operator.

The problem is denoted by VI(2, F'). It is well-known that VI(2, F') is equivalent to the fixed
point problem (see, [7]). If the solution set of VI(2, F') is denoted by I', we know that I' = Fiz(Pq(I —AF)),
where A > 0 is an arbitrary constant, Pq is the metric projection onto €2, and [ is the identity operator on
H.

Assume that, F' is n-strongly monotone and L-Lipschitzian continuous, that is, F’ satisfies the conditions
<F.’L‘—Fy,.%'—y>277”.ilf—y”2, vx?ZJGQa
| Fe—Fyl|<L|lz—yl, VryeQ.
By using Corollary we obtain the following convergence theorem for solving the problem VI(€, F').

Theorem 4.1. Let F' be n-strongly monotone and L-Lipschitzian continuous with n > 0, L > 0. Assume
that S is a quasi-nonexpansive operator with Q = Fixz(S) # 0, and I — S is demiclosed at 0. And {ay,} is a
sequence in (0,1] such that o, — 0, > 07 | ay, = 00. Let {xn} be a sequence defined by x1 € H and

Tyt = (I — uanF)SA"xn, (4.2)

where S* = (1 — M)+ AoS, A € (0,1], 0 < liminf,, o0 Ay < limsup,, oo Ap < 1, and 0 < p < % Then
{zn} converges strongly to the unique solution of VI(Q, F).

Proof. Set f, = (I — pF)S* for n € N and 6 = \/1 — 2un + p2L2. Note that

| (I = P — (1= pF)y |2 =) 2 — y |* ~2pe — y, Fz — Fy) + 4 | Fz— Fy |
<lz—y|*=2un|z—y|*+p’L* |z —y |
=(1—p@2n—pl?*) [[z—y|*.
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From 0 < p < %, we obtain that I — pF' is a f-contraction. Since S is quasi-nonexpansive, from Lemma
S is quasi-nonexpansive. By Lemma fn is a f-contraction with respect to Fiz(S), and it is stable
on 2. Moreover, it follows from (4.2)) that

Tntl = anfn(xn) + (1 - an)S/\nxn

for n € N. Thus from Corollary we have that {x,} converges strongly to w = Ppiy(g) o fi1(w) =
Ppizs)(I — pF)w, which is the unique solution of VI($, F). O
Remark 4.2. The iteration (4.2) is called the hybrid steepest descent method, (see[2], 14] for more details).

Finally, we study the following variational inequality problem, which is to find a point z* € Fiz(S), such
that
((vf— A",z —2*) >0, Vze Fiz(S), (4.3)

where f is a a-contraction and A is strongly positive, that is, there exists a constant 4 > 0 such that
(Az,x) >~ || x ||? for all x € H. Assume that 0 < v < 7/a. The problem (4.3)) is denoted by VIP, where
x* is the unique solution of VIP, and we have x* = Ppj,s)(I — A+ f)z".

Theorem 4.3. Assume that S : H — H is a quasi-nonexpansive operator with Q = Fix(S) # 0, and I — S
is demiclosed at 0. Let {x,} be a sequence defined by x1 € H and

Tpt1 = apytf(z,) + (I — antA)S)‘"xn, Vn > 0, (4.4)

where SM = (1 = A1+ M\, S, and 0 < t < m, {A\n} and {an} satisfy the same conditions of Theorem H
Then {x,} converges strongly to the unique solution of the VIP.

Proof. Set f, =tyf + (I —tA)S*. By using Lemma note that
| fn(@) = Fu(®) 1= | (v + (1 = tA)S*)a — (tyf + (I — tA)S™)p |
<tva|[z—pl+1 —t7) [z —p]|
=1-t(y=—va)lz-pl.
From 0 < v < J/a, we obtain that f, is a #-contraction with respect to Fiz(S), and it is stable on
Fiz(S). Moreover, it follows from (4.4) that
Tn+1 = anfn(xn) + (1 - an)S)\nxn
for n € N. Thus from Corollary we have that {z,} converges strongly to the unique solution of VIP. [

Remark 4.4. Let &, = ant, since ay, — 0 and Y 7 | oy = 00, we have &, — 0 and > 2 | &, = oo, then (4.4)
become that
Tn+1 = ’En’}/f(xn) + (I — an)S)\"JJn,

which is introduced by Tian and Jin (see [13]).

5. Numerical example
In this section, we give an example to support Theorem

Example 5.1. In Theorem we assume that H = R. Take f,(z) = %, Siz = xcos 7, where x € [, 7.
Given the parameter A\, = 36,”” for every n € N.
By the definitions of S;, we have N, Fiz(S;) = {0}. S; is a quasi-nonexpansive mapping since, if

x € [—m, 7] and ¢ = 0, then

x
I'Siz —q =]l Siz =0 |=] & |- [ cos — |<]z |=] 2 — ¢ .
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From Theorem we can conclude that the sequence {z,} converges strongly to 0, as n — co. We can

rewrite ([1.2)) as follows

1 = 4n — 3 3+2n T
Tntl = —Qnlin + ;(ai_l — ai)(GTa;n + o Ty, COS Tn) (5.1)

Next, we give the parameter a,, has three different expressions in (5.1)), that is to say, we set 0@(11) =1

n+1’
047(12) = 2n1+1, 047(13) = \/T% =g Then, through taking a distinct initial guess 1 = 3, by using software Matlab,

we obtain the numerical experiment results in Table |1, where n is the iterative number, and the expression

of error we take [Zn1=2nl
e
Table 1: The values of {xn}.
1 2 3
o) o o
n
Tn error Tn error Tn error

50  0.0313 1.97x1072 -0.0699 1.04x10~2 0.0001 1.38x107!
100 0.0159 9.90x1073 -0.0488 5.20x10™2 0.0000 9.89x1072
500  0.0032 2.00x1073 -0.0210 1.10x1073
1000  0.0016 9.99x10~* -0.0146 5.24x10~*
5000 0.0003 1.99x10~* -0.0063 1.04x10~*
10000 0.0002 9.99x10~°> -0.0044 5.22x10°5

From Table|l} we can easily see that with iterative number increases, {z, } approaches to the unique fixed

point 0 and the errors gradually approach to zero. And with the change of «,, the convergent speed of the

sequence {xz,} will be changed, when «,, = ag’), the speed of the sequence {z,} is more faster than others,

(2)

and when o, = an2 the convergent speed of the sequence {x,} become slower. Through this example, we
can conclude that our algorithm is feasible.
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