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Abstract

The gradient-projection algorithm (GPA) is an effective method for solving the constrained convex
minimization problem. Ordinarily, under some conditions, the minimization problem has more than one
solution, so the regulation is used to find the minimum-norm solution of the minimization problem. In
this article, we come up with a regularized gradient-projection algorithm to find a common element of the
solution set of equilibrium and the solution set of the constrained convex minimization problem, which is
the minimum-norm solution of equilibrium and the constrained convex minimization problem. Under some
suitable conditions, we can obtain some strong convergence theorems. As an application, we apply our
algorithm to solve the split feasibility problem and the constrained convex minimization problem in Hilbert
spaces. c©2016 All rights reserved.

Keywords: Iterative method, equilibrium problem, constrained convex minimization problem, variational
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a subset of H, which is
nonempty, closed and convex. Let N and R denote the sets of positive integers and real numbers, respectively.
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A nonlinear operator T : C → C is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. We use Fix(T )
to denote the fixed point of T . A nonlinear mapping A : H → H is monotone if 〈x− y,Ax−Ay〉 ≥ 0 for all
x, y ∈ H. It can be easily seen that if T is nonexpansive, then I − T is monotone.

Firstly, consider the following equilibrium problem (EP), find z ∈ C such that

ϕ(z, y) ≥ 0, ∀y ∈ C, (1.1)

where ϕ is a bifunction of C × C into R. Assume the EP (1.1) is solvable, and denote the solution set of
EP by EP (ϕ). We also know that the EP is equivalent to variational inequality problem, where a mapping
F : C → H, let ϕ(x, y) = 〈Fx, y − x〉 for all x, y ∈ C. We can conclude that EP (ϕ) is the solution set of
the variational inequality.

As we all know that the equilibrium problem is widely used in many aspects such as physics, optimization
and economics. Therefore, how to solve the equilibrium problem has became a hot problem. Many authors
proposed different methods, we can see from the references [11, 12, 18, 20, 28].

Secondly, consider the constrained convex minimization problem as follows:

min
x∈C

g(x), (1.2)

where g : C → R is a real-valued convex function. Assume that the constrained convex minimization
problem (1.2) is solvable, let U denote its solution set. A sequence {xn} generated by the following recursive
formula:

xn+1 = PC(I − λn∇g)xn, ∀n ≥ 0, (1.3)

is called the gradient-projection algorithm, where the parameters {λn} are real positive numbers, and PC
is the metric projection from H onto C. In general, if the gradient ∇g is Lipschitz continuous and strongly
monotone, then the sequence {xn} generated by (1.3) converges strongly to a minimizer of (1.2), where the
parameters {λn} satisfy some suitable conditions. However, if the gradient ∇g is only to be inverse strongly
monotone, the sequence {xn} generated by (1.3) converges weakly.

Recently, many authors not only combine the equilibrium problem with a fixed point problem [4, 14, 16,
17, 22], but also combine the constrained convex minimization problem with a fixed point problem [5–7]. So
we can also composite iterative algorithms for finding a common solution of the equilibrium problem and
the constrained convex minimization problem [23, 24].

Ordinarily, the gradient-projection method converges weakly, Xu [27] came up with two modifications of
it, then obtained two strong convergence theorems. On the other hand, regularization can be used to find
the minimum-norm solution of the minimization problem.

Thirdly, we consider the following regularized minimization problem:

min
x∈C

gβ(x) := g(x) +
β

2
‖x‖2,

where the regularization parameter β is positive, g is a convex function and gradient ∇g is 1
L -ism. Then, a

sequence {xn} generated by the following formula:

xn+1 = PC(I − λ∇gβn)xn = PC(I − λ(∇g + βnI))xn, ∀n ≥ 0, (1.4)

where the regularization parameters βn is positive, PC is the metric projection from H onto C. λ is a
positive number. Then, a sequence {xn} generated by (1.4) converges weakly.

In 2011, Ceng et al. [7] proposed a sequence {xn} generated by the following iterative algorithm:

xn+1 = PC [θnrf(xn) + (I − θnµF )Tn(xn)], ∀n ≥ 0, (1.5)

where f : C → H is an l-Lipschitzian mapping with a constant l > 0, and F : C → H is a k-Lipschitzian
and η-strongly monotone operator with constants k,η > 0. θn = 2−λnL

4 , PC(I − λn∇g) = θnI + (1− θn)Tn,
for all n ≥ 0. Then a sequence {xn} generated by (1.5) converges strongly to a minimizer of (1.2).
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In 2014, Tian and Liu [24] firstly proposed implicit and explicit composite iterative algorithms for solving
equilibrium and the constrained convex minimization problem.

The implicit iterative algorithm:{
ϕ(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn = αnf(xn) + (1− αn)Tnun, ∀n ∈ N. (1.6)

The explicit iterative algorithm:{
ϕ(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1− αn)Tnun, ∀n ∈ N, (1.7)

where un = Qrnxn, PC(I − λn∇g) = snI + (1− sn)Tn, sn = 2−λnL
4 , {rn}, {αn}, {λn} satisfy some suitable

conditions, then a sequence {xn} generated by (1.6) or (1.7) converges strongly to a point q ∈ U ∩ EP (ϕ),
which solves the variational inequality 〈(I − f)q, p− q〉 ≥ 0, for all p ∈ U ∩ EP (ϕ).

Then, in 2014, Lin [30] proposed the following iterative algorithm, for x1 ∈ C:

xn+1 = Jρ(I − ρ(F + βnI))Trxn, ∀n > 0, (1.8)

where Jρ, Tr are the resovent of maximal monotone mapping B, G, ρ is a constant where 0 < ρ < 2
2+L ,

βn ∈ (0, 1), and F is 1
L -ism. Then the sequence {xn} generated by (1.8) converges strongly to x, where

x = P(F+B)−1(0)∩G−1(0)(0).

From the article of Lin, we obtain a new condition of parameter ρ, 0 < ρ < 2
2+L , which is used widely in

our article. By using this new condition, we obtain some new strong convergence theorems.
In this article, motivated inspired by Tian, Liu and Lin, [24, 30] we come up with a new iterative

algorithm: {
ϕ(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = PC(I − λ(∇g + βnI)un, ∀n ∈ N, (1.9)

for finding an element of U ∩ EP (ϕ), where ϕ : C × C → R, PC is the self-mapping on C. Under
appropriate conditions, we can prove that the sequence {xn} generated by (1.9) converges strongly to a
point q ∈ U ∩ EP (ϕ), where q = PU∩EP (ϕ)(0) is the minimum-norm solution of equilibrium and the
constrained convex minimization problem.

Finally, we give concrete examples and the numerical results to illustrate the practical value of our
algorithm in the last section.

2. Preliminaries

In this part, we also introduce some lemmas and some properties that be used in the rest part. Through-
out this paper, let H be a real Hilbert space, and C be a nonempty, closed, and convex subset of H. We
also use the sign ′ ⇀′ to denote that the sequence {xn} converges weakly to a point x ∈ C, and we use the
sign ′ →′ to denote that the sequence {xn} converges strongly to a point x ∈ C, and we use F (T ) to denote
the fixed point of T .

Solving the equilibrium problem is not an easy thing, we should assume that ϕ : C × C → R satisfies
the following conditions:

(A1) ϕ(x, x)=0 for all x ∈ C;

(A2) ϕ is monotone, that is to say, ϕ(x, y) + ϕ(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, lim
t→0

ϕ(tz + (1− t)x, y) ≤ ϕ(x, y);

(A4) for each x ∈ C, y 7→ φ(x, y) is convex and lower semicontinuous.

Then, the equilibrium problem can be transformed as the fixed point problem. The following lemma
plays an important role in solving equilibrium problem.
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Lemma 2.1 ([1, 10]). Let ϕ be a bifunction of C ×C into R satisfying (A1)-(A4). Then for any r > 0 and
x ∈ H, there exists z ∈ C such that

ϕ(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Then we define a mapping Qr : H → C as follows:

Qr(x) = {z ∈ C : ϕ(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}.

Then, the following hold:

(1) Qr is single-valued;

(2) Qr is a firmly nonexpansive mapping, when for all x, y ∈ H,

‖Qrx−Qry‖2 ≤ 〈Qrx−Qry, x− y〉;

(3) Fix(Qr) = EP (ϕ);

(4) EP (ϕ) is closed and convex.

Takahashi gave the following lemma about equilibrium problem.

Lemma 2.2 ([21]). Let H be a Hilbert space and C be a nonempty, closed, and convex subset of H. Let
ϕ : C × C → R satisfying (A1)-(A4). Let Aϕ be a set-valued mapping of H into itself defined by

Aϕx =

{
{z ∈ H : ϕ(x, y) ≥ 〈y − x, z〉, ∀y ∈ C}, ∀x ∈ C,
∅, ∀x /∈ C.

Then, EP (ϕ) = A−1ϕ 0 and Aϕ is a maximal monotone operator with domAϕ ⊂ C. Furthermore, for any
x ∈ H and r > 0, the resolvent Qr of ϕ coincides with the resolvent of Aϕ, that is,

Qrx = (I + rAϕ)−1x.

Lemma 2.3 ([15]). Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let iC
be the indicator function of C, then iC is a proper lower semicontinuous convex function on H and the
subdifferential ∂iC of iC is a maximal monotone operator. Define Qλx = (I + λ∂iC)−1x, for all x ∈ H. We
see that for any x ∈ H and u ∈ C,

u = Qλx⇐⇒ u = PCx.

Then, we introduce some definitions and properties of the operators which are well-known in the litera-
tures.

Definition 2.4 ([25]). A mapping T : H → H is said to be an averaged mapping if it can be written as the
average of the identity I and a nonexpansive mapping, that is,

T = (1− α)I + αS,

where α ∈ (0, 1) and S : H → H is nonexpansive. Then T is called α-averaged.

Definition 2.5 ([2]). A nonlinear operator B whose domain D(B) ⊆ H and range R(B) ⊆ H is said to be:

(1) monotone if
〈x− y,Bx−By〉 ≥ 0, ∀x, y ∈ D(B);

(2) β-strongly monotone if there exists β > 0 such that

〈x− y,Bx−By〉 ≥ β‖x− y‖2, ∀x, y ∈ D(B);

(3) v-inverse strongly monotone (v-ism) if there exists v > 0 such that

〈x− y,Bx−By〉 ≥ v‖Bx−By‖2, ∀x, y ∈ D(B).
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Proposition 2.6 ([3]). Let T : H → H be an operator from H to itself.

(1) T is nonexpansive if and only if the complement I − T is 1
2 -ism.

(2) If T is v-ism, then for r > 0, rT is v
r -ism.

(3) T is averaged if and only if the complement I − T is v-ism, for some v > 1
2 . Indeed, for α ∈ (0, 1), T

is α-averaged if and only if I − T is 1
2α -ism.

Recall that PC is the metric projection from H into C, then for each point x ∈ H, the unique point
PC ∈ C satisfies the property:

‖x− PCx‖ = inf
y∈C
‖x− y‖ =: d(x,C).

PC has the following characteristics.

Lemma 2.7 ([19]). For a given x ∈ H:

(1) z = PCx if and only if 〈x− z, z − y〉 ≥ 0, ∀y ∈ C;

(2) z = PCx if and only if ‖x− z‖2 ≤ ‖x− y‖2 − ‖y − z‖2, ∀y ∈ C;

(3) 〈PCx− PCy, x− y〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H.

From (3), we can derive that PC is nonexpansive and monotone. The inequality in the following lemma
is always used in the process of proof.

Lemma 2.8 ([9]). In an inner product space X,

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ X.

The so-called demiclosedness principle for nonexpansive mapping and the last lemma are often used in
the process of proof.

Lemma 2.9 ([13]). Let T : C → C be a nonexpansive mapping with F (T ) 6= ∅. If {xn} is a sequence in
C weekly converging to x and if {(I − T )xn} converges strongly to y, then (I − T )x = y. In particular, if
y = 0, then x ∈ F (T ).

Lemma 2.10 ([26]). Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1− αn)an + αnδn, n ≥ 0,

where {αn}∞n=0 and {δn}∞n=0 are sequences of real numbers in (0, 1) such that

(1)
∑∞

n=0 αn =∞;

(2) lim sup
n→∞

δn ≤ 0 or
∑∞

n=0 αn|δn| <∞.

Then lim
n→∞

an = 0.

3. Main results

In this paper, we always assume that g : C → R is real-valued convex function and the gradient ∇g is
1
L -ism, which implies that λ∇g is 1

λL -ism.
Suppose that the minimization problem (1.2) is consistent, and let U denote solution set. Let {Qrn} be

a sequence of mappings defined as in Lemma 2.1. Consider the following mapping Gn on C defined by

Gnx = PC(I − λ(∇g + βnI))Qrnx, ∀x ∈ C, n ∈ N,

where λ ∈ (0, 2
L+2), βn ∈ (0, 1). By Lemma 2.1, we have
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‖Gnx−Gny‖2 = ‖PC(I − λ(∇g + βnI))Qrnx− PC(I − λ(∇g + βnI))Qrny‖2

≤ ‖(I − λ(∇g + βnI))x− (I − λ(∇g + βnI))y‖2

= (1− λβn)2‖x− y‖2 + λ2‖∇g(x)−∇g(y)‖2

− 2λ(1− λβn)〈x− y,∇g(x)−∇g(y)〉
≤ (1− λβn)2‖x− y‖2 + λ2‖∇g(x)−∇g(y)‖2

− 2

L
λ(1− λβn)‖∇g(x)−∇g(y)‖2

≤ (1− λβn)2‖x− y‖2 − λ(
2

L
(1− λ)− λ)‖∇g(x)−∇g(y)‖2

≤ (1− λβn)2‖x− y‖2.

Then we have
‖Gnx−Gny‖ ≤ (1− λβn)‖x− y‖.

Since 0 < 1−λβn < 1, it follows that Gn is a contraction. Therefore, by the Banach contraction principle,
Gn has a unique fixed point x∗n ∈ C, such that

x∗n = PC(I − λ(∇g + βnI))Qrnx
∗
n.

For simplicity, we will write xn for x∗n provided no confusion occurs. Next, we prove the convergence of
{xn}, while we claim the existence of the q ∈ U ∩ EP (ϕ), which solves the variational inequality

〈−q, p− q〉 ≤ 0, ∀p ∈ U ∩ EP (ϕ). (3.1)

Equivalently, q = PU∩EP (ϕ)(0).

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and ϕ be a bifunction
C × C into R satisfying (A1)-(A4). Let g : C → R be real-valued convex function and assume that the
gradient ∇g is 1

L -ism with L > 0. Assume that U ∩ EP (ϕ) 6= ∅. Let {xn} be a sequence generated by{
ϕ(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn = PC(I − λ(∇g + βnI))un, ∀n ∈ N,

where un = Qrnxn, 0 < λ < 2
2+L . Let {rn} and {βn} satisfy the following conditions:

(i) {rn} ⊂ (0,∞), lim inf
n→∞

rn > 0;

(ii) {βn} ⊂ (0, 1), lim
n→∞

βn = 0,
∑∞

n=1 βn =∞.

Then {xn} converges strongly to a point q ∈ U ∩ EP (ϕ), where q = PU∩EP (ϕ)(0).

Proof. First, we claim that {xn} is bounded. Indeed, pick any p ∈ U ∩ EP (ϕ), since un = Qrnxn, and
p = Qrnp, then we know that for any n ∈ N,

‖un − p‖ = ‖Qrnxn −Qrnp‖ ≤ ‖xn − p‖. (3.2)

Thus, we derive that

‖xn − p‖ = ‖PC(I − λ(∇g + βnI))Qrnxn − PC(I − λ∇g)Qrnp‖
≤ ‖(I − λ(∇g + βnI))xn − (I − λ(∇g + βnI))p‖

+ ‖(I − λ(∇g + βnI))p− (I − λ∇g)p‖
≤ (1− λβn)‖xn − p‖+ λβn‖p‖.
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Then we have
‖xn − p‖ ≤ ‖p‖,

and hence {xn} is bounded. From (3.2) we also derive that {un} is bounded.
Next, we obtain that ‖xn − un‖ → 0. Indeed, for any p ∈ U ∩ EP (ϕ), by Lemma 2.1, we have

‖un − p‖2 = ‖Qrnxn −Qrnp‖2

≤ 〈xn − p, un − p〉

=
1

2
(‖xn − p‖2 + ‖un − p‖2 − ‖un − xn‖2).

This implies that
‖un − p‖2 ≤ ‖xn − p‖2 − ‖un − xn‖2. (3.3)

Then from (3.3) we derive that

‖xn − p‖2 = ‖PC(I − λ(∇g + βnI))un − PC(I − λ∇g)p‖2

= ‖PC(I − λ(∇g + βnI))un − PC(I − λ(∇g + βnI))p

+ PC(I − λ(∇g + βnI))p− PC(I − λ∇g)p‖2

≤ ‖PC(I − λ(∇g + βnI))un − PC(I − λ(∇g + βnI))p‖2

+ 2〈PC(I − λ(∇g + βnI))p− PC(I − λ∇g)p, xn − p〉
≤ (1− λβn)2‖un − p‖2 + 2λβn‖p‖ · ‖xn − p‖
≤ ‖un − p‖2 + 2λβn‖p‖ · ‖xn − p‖
≤ ‖xn − p‖2 − ‖un − xn‖2 + 2λβn‖p‖ · ‖xn − p‖.

Since βn → 0 as n→∞, it follows that

lim
n→∞

‖xn − un‖ = 0, as n→∞.

Then we show that ‖PC(I − λ∇g)un − un‖ → 0 as n→∞.

‖PC(I − λ∇g)un − un‖ = ‖PC(I − λ∇g)un − PC(I − λ(∇g + βnI))un

+ PC(I − λ(∇g + βnI))un − un‖
≤ ‖PC(I − λ∇g)un − PC(I − λ(∇g + βnI))un‖

+ ‖PC(I − λ(∇g + βnI))un − un‖
≤ λβn‖un‖+ ‖xn − un‖.

Since βn → 0 and ‖xn − un‖ → 0, we obtain that

‖PC(I − λ∇g)un − un‖ → 0, as n→∞.

Since ∇g is 1
L -ism, PC(I − λ∇g) is a nonexpansive self-mapping on C. As a matter of fact, we have for

each x, y ∈ C

‖PC(I − λ∇g)x− PC(I − λ∇g)y‖2 ≤ ‖(I − λ∇g)x− (I − λ∇g)y‖2

= ‖x− y − λ(∇g(x)−∇g(y))‖2

= ‖x− y‖2 − 2λ〈x− y,∇g(x)−∇g(y)〉+ λ2‖∇g(x)−∇g(y)‖2

≤ ‖x− y‖2 − λ(
2

L
− λ)‖∇g(x)−∇g(y)‖2

≤ ‖x− y‖2.
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Consider a subsequence {uni} of {un}. Since {uni} is bounded, there exists a subsequence {unij
} of

{uni} which converges weakly to q. Next, we show that q ∈ U ∩EP (ϕ). Without loss of generality, we can
assume that uni ⇀ q. Then by Lemma 2.9, we obtain

q = PC(I − λ∇g)q.

This shows that q ∈ U . Next, we show that q ∈ EP (ϕ). Since un = Qrnxn, for any y ∈ C, we obtain

ϕ(un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0.

From (A2), we have
1

rn
〈y − un, un − xn〉 ≥ ϕ(y, un).

Replacing n by ni, we have

〈y − uni ,
uni − xni

rni

〉 ≥ ϕ(y, uni).

Since
uni−xni
rni

→ 0 and uni ⇀ q, it follows from (A4) that 0 ≥ ϕ(y, q), for all y ∈ C. Let

zt = ty + (1− t)q, ∀t ∈ (0, 1), y ∈ C,

then, we have zt ∈ C and hence ϕ(zt, q) ≤ 0. Thus, from (A1) and (A4), we have

0 = ϕ(zt, zt) ≤ tϕ(zt, y) + (1− t)ϕ(zt, q) ≤ tϕ(zt, y),

hence 0 ≤ ϕ(zt, y). From (A3), we have 0 ≤ ϕ(q, y) for all y ∈ C, and so q ∈ EP (ϕ). Therefore,
q ∈ U ∩ EP (ϕ). On the other hand, we note that

xn − q = PC(I − λ(∇g + βnI))Qrnxn − PC(I − λ∇g)Qrnq.

Hence, we obtain

‖xn − q‖2 = ‖PC(I − λ(∇g + βnI))Qrnxn − PC(I − λ∇g)Qrnq‖2

≤ 〈(I − λ(∇g + βnI))xn − (I − λ∇g)q, xn − q〉
= 〈(I − λ(∇g + βnI))xn − (I − λ(∇g + βnI))q, xn − q〉

+ 〈−λβnq, xn − q〉
≤ (1− λβn)‖xn − q‖2 + λβn〈−q, xn − q〉.

It follows that
‖xn − q‖2 ≤ 〈−q, xn − q〉.

In particular,
‖xni − q‖2 ≤ 〈−q, xni − q〉.

Since ‖xn − un‖ → 0, uni ⇀ q, we have that xni ⇀ q. Then we can derive that xni → q as i→∞.
Next, we show that q solves the variational inequality (3.1). Let x̃ be the minimum-norm solution of

U ∩ EP (ϕ). That is, x̃ = PU∩EP (ϕ)(0). Since {xn} is bounded, there exists a subsequence {xni} of {xn}
such that xni ⇀ z. As the above proof, we know that xni → z, z ∈ U ∩ EP (ϕ). Then, we derive that

‖xn − x̃‖2 = ‖PC(I − λ(∇g + βnI))Qrnxn − PC(I − λ∇g)Qrn x̃‖2

≤ 〈(I − λ(∇g + βnI))xn − (I − λ∇g)x̃, xn − x̃〉
= 〈(I − λ(∇g + βnI))xn − (I − λ(∇g + βnI))x̃, xn − x̃〉
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+ 〈−λβnx̃, xn − x̃〉
≤ (1− λβn)‖xn − x̃‖2 + λβn〈−x̃, xn − x̃〉.

Thus,
‖xn − x̃‖2 ≤ 〈−x̃, xn − x̃〉.

In particular,
‖xni − x̃‖2 ≤ 〈−x̃, xni − x̃〉.

Since xni → z, we have
‖z − x̃‖2 ≤ 〈−x̃, z − x̃〉 ≤ 0.

Then, we have z = x̃. From the arbitrariness of z ∈ U ∩ EP (ϕ), it follows that q ∈ U ∩ EP (ϕ) is a
solution of the variational inequality (3.1). By the uniqueness of solution of the variational inequality (3.1),
we conclude that xn → q as n→∞, where q = PU∩EP (ϕ)(0).

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H and ϕ be a bifunction
C × C into R satisfying (A1)-(A4). Let g : C → R be real-valued convex function and assume that the
gradient ∇g is 1

L -ism with L > 0. Assume that U ∩ EP (ϕ) 6= ∅. Let {xn} be a sequence generated by
x1 ∈ C and {

ϕ(un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = PC(I − λ(∇g + βnI))un, ∀n ∈ N,

where un = Qrnxn, 0 < λ < 2
2+L . Let {rn} and {βn} satisfy the following conditions:

(i) {rn} ⊂ (0,∞), lim inf
n→∞

rn > 0,
∑∞

n=1 |rn+1 − rn| <∞;

(ii) {βn} ⊂ (0, 1), lim
n→∞

βn = 0,
∑∞

n=1 βn =∞,
∑∞

n=1 |βn+1 − βn| <∞.

Then {xn} strongly converges to a point q ∈ U ∩ EP (ϕ), where q = PU∩EP (ϕ)(0).

Proof. First, we show that {xn} is bounded. Indeed, pick any p ∈ U ∩ EP (ϕ). Since un = Qrnxn, and
p = Qrnp, then we know that for any n ∈ N,

‖un − p‖ = ‖Qrnxn −Qrnp‖ ≤ ‖xn − p‖. (3.4)

Thus, we derive that

‖xn+1 − p‖ = ‖PC(I − λ(∇g + βnI))Qrnxn − PC(I − λ∇g)Qrnp‖
≤ ‖(I − λ(∇g + βnI))xn − (I − λ(∇g + βnI))p‖

+ ‖(I − λ(∇g + βnI))p− (I − λ∇g)p‖
≤ (1− λβn)‖xn − p‖+ λβn‖p‖
≤ max{‖xn − p‖, ‖p‖}.

By the induction
‖xn − p‖ ≤ max{x1 − p‖, ‖p‖},

and hence {xn} is bounded. From (3.4), we also derive that {un} is bounded. Next, we show that ‖xn+1 −
xn‖ → 0.

‖xn+1 − xn‖ = ‖PC(I − λ(∇g + βnI))un − PC(I − λ(∇g + βn−1I))un−1‖
≤ ‖(I − λ(∇g + βnI))un − (I − λ(∇g + βn−1I))un−1‖
= ‖(I − λ∇g)(un − un−1) (3.5)

− λβn(un − un−1)− λ(βn − βn−1)un−1‖
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≤ ‖(I − λ(∇g + βnI))(un − un−1)‖+ λ|βn − βn−1| · ‖un−1‖
≤ (1− λβn)‖un − un−1‖+ λ|βn − βn−1| · ‖un−1‖.

From un+1 = Qrn+1xn+1, and un = Qrnxn, we note that

ϕ(un+1, y) +
1

rn+1
〈y − un+1, un+1 − xn+1〉 ≥ 0, ∀y ∈ C, (3.6)

and

ϕ(un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C. (3.7)

By putting y = un in (3.6) and y = un+1 in (3.7), we have

ϕ(un+1, un) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0, ∀y ∈ C,

and

ϕ(un, un+1) +
1

rn
〈un+1 − un, un − xn〉 ≥ 0, ∀y ∈ C.

So, from (A2), we have

〈un+1 − un,
un − xn
rn

− un+1 − xn+1

rn+1
〉 ≥ 0,

and hence
〈un+1 − un, un − un+1 + un+1 − xn −

rn
rn+1

(un+1 − xn+1)〉 ≥ 0.

Since limn→∞ rn > 0, without loss of generality, let us assume that there exists a real number a, such
that rn > a > 0 for all n ∈ N. Thus, we have

‖un+1 − un‖2 ≤ 〈un+1 − un, xn+1 − xn + (1− rn
rn+1

)(un+1 − xn+1)〉

≤ ‖un+1 − un‖{‖xn+1 − xn‖+ |1− rn
rn+1

| · ‖un+1 − xn+1‖},

thus

‖un+1 − un‖ ≤ ‖xn+1 − xn‖+
1

a
|rn+1 − rn|M1, (3.8)

where M1 = sup{‖un − xn‖ : n ∈ N}. From (3.5) and (3.8), we obtain

‖xn+1 − xn‖ ≤ (1− λβn)(‖xn − xn−1‖+
1

a
|rn − rn−1|M1) + λ|βn − βn−1| · ‖un−1‖

≤ (1− λβn)‖xn − xn−1‖+ (|rn − rn−1|+ |βn − βn−1|)M2,

where M2 = max{λ‖un−1‖, (1− λβn)M1
a }. Hence, by Lemma 2.10, we have

lim
n→∞

‖xn+1 − xn‖ = 0.

For any p ∈ U ∩ EP (ϕ), as in the proof of Theorem 3.1, we have

‖un − p‖2 ≤ ‖xn − p‖2 − ‖un − xn‖2. (3.9)

Then from (3.9), we derive that

‖xn+1 − p‖2 = ‖PC(I − λ(∇g + βnI))un − PC(I − λ∇g)p‖2

= ‖PC(I − λ(∇g + βnI))un − PC(I − λ(∇g + βnI))p
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+ PC(I − λ(∇g + βnI))p− PC(I − λ∇g)p‖2

≤ ‖PC(I − λ(∇g + βnI))un − PC(I − λ(∇g + βnI))p‖2

+ 2〈PC(I − λ(∇g + βnI))p− PC(I − λ∇g)p, xn+1 − p〉
≤ (1− λβn)2‖un − p‖2 + 2λβn‖p‖ · ‖xn+1 − p‖
≤ ‖un − p‖2 + 2λβn‖p‖ · ‖xn+1 − p‖
≤ ‖xn − p‖2 − ‖un − xn‖2 + 2λβn‖p‖ · ‖xn+1 − p‖.

Then, we have that

‖un − xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2λβn‖p‖ · ‖xn+1 − p‖
≤ (‖xn − p‖+ ‖xn+1 − p‖)‖xn+1 − xn‖+ 2λβn‖p‖ · ‖xn+1 − p‖
= ‖xn+1 − xn‖ ·M3 + 2λβn‖p‖ · ‖xn+1 − p‖,

where M3 = sup{‖xn − p‖+ ‖xn+1 − p‖ : n ∈ N}. Since βn → 0 and ‖xn+1 − xn‖ → 0, we have

lim
n→∞

‖xn − un‖ = 0.

Then, we derive that

‖xn+1 − un‖ = ‖xn+1 − xn + xn − un‖ ≤ ‖xn+1 − xn‖+ ‖xn − un‖.

So,
lim
n→∞

‖xn+1 − un‖ = 0.

It follows that
‖PC(I − λ(∇g + βnI))un − un‖ → 0.

Then, we can know that

‖PC(I − λ∇g)un − un‖ = ‖PC(I − λ∇g)un − PC(I − λ(∇g + βnI))un‖
+ ‖PC(I − λ(∇g + βnI))un − un‖
≤ λβn‖un‖+ ‖xn+1 − un‖,

since βn → 0, and ‖xn+1 − un‖ → 0, as n→∞, we obtain that

‖PC(I − λ∇g)un − un‖ → 0, as n→∞.

Now, we show that
lim sup
n→∞

〈−q, xn − q〉 ≤ 0,

where q = PU∩EP (ϕ)(0) is a unique solution of the variational inequality (3.1). Indeed, take a subsequence
{xnj} of {xn} such that

lim sup
n→∞

〈−q, xn − q〉 = lim
j→∞
〈−q, xnj − q〉.

Since {xn} is bounded, without loss of generality, we may assume that xnj ⇀ z. By the same argument
as in the proof of Theorem 3.1, we have z ∈ U ∩ EP (ϕ). Since q = PU∩EP (ϕ)(0), it follows that

lim sup
n→∞

〈−q, xn − q〉 = lim
j→∞
〈−q, xnj − q〉 = 〈−q, z − q〉 ≤ 0.

From

xn+1 − q = PC(I − λ(∇g + βnI))un − q
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= PC(I − λ(∇g + βnI))Qrnxn − PC(I − λ∇g)Qrnq,

we have

‖xn+1 − q‖2 = ‖PC(I − λ(∇g + βnI))Qrnxn − PC(I − λ∇g)Qrnq‖2

≤ 〈(I − λ(∇g + βnI))Qrnxn − (I − λ∇g)Qrnq, xn+1 − q〉
≤ 〈(I − λ(∇g + βnI))xn − (I − λ(∇g + βnI))q, xn+1 − q〉

+ λβn〈−q, xn+1 − q〉
≤ (1− λβn)‖xn − q‖ · ‖xn+1 − q‖+ λβn〈−q, xn+1 − q〉

≤ 1− λβn
2

‖xn − q‖2 +
1

2
‖xn+1 − q‖2 + λβn〈−q, xn+1 − q〉.

It follows that

‖xn+1 − q‖2 ≤ (1− λβn)‖xn − q‖2 + 2λβn〈−q, xn+1 − q〉
= (1− λβn)‖xn − q‖2 + 2λβnδn,

where δn = 〈−q, xn+1 − q〉.
It is easy to see that lim

n→∞
λβn = 0,

∑∞
n=1 λβn = ∞, and lim sup

n→∞
δn ≤ 0. Hence, by Lemma 2.10, the

sequence {xn} converges strongly to q, where q = PU∩EPϕ)(0). This completes the proof.

Remark 3.3.

(i) Ordinarily, the regularization parameters βn is positive in (1.4), but in Theorem 3.1 and Theorem 3.2,
0 < βn < 1.

(ii) 0 < λ < 2
2+L , it is an important condition in Theorem 3.1 and Theorem 3.2.

4. Application

In this part, we will illustrate the practical value of our algorithm in the split feasibility problem and
the constrained convex minimization problem.

In 1994, Censor and Elfving [8] come up with the split feasibility problem. Many authors obtained some
results on the split feasibility problem [29]. In this article, the SFP can be mathematically formulated as
finding a point x satisfying the following property:

x ∈ C and Ax ∈ Q, (4.1)

where C and Q are nonempty closed and convex subset of real Hilbert spaces H1 and H2, respectively and
A : H1 → H2 is bounded linear operator.

x∗ is a solution of SFP if x∗ ∈ C and Ax∗ − PQAx∗ = 0. So, in order to find the solution of SFP, we
should consider the constrained convex minimization problem:

min
x∈C

g(x) = min
x∈C

1

2
‖Ax− PQAx‖2. (4.2)

It is clear that if x∗ is the solution of SFP (4.1), that is, x∗ solves the minimization problem (4.2) and
the minimum of (4.2) is 0, then, the gradient of g is ∇g, where ∇g = A∗(I − PQ)A. We can calculate that
∇g is 1

‖A‖2 -ism. So, by applying Theorem 3.2, we can obtain the following theorem.

Theorem 4.1. Assume that the SFP (4.1) is consistent. Let C be a nonempty closed convex subset of a
real Hilbert space H and ϕ be a bifunction C × C into R satisfying (A1)-(A4). Let g : C → R be real-
valued convex function and assume that the gradient ∇g is 1

‖A‖2 -ism, where A : H1 → H2 is bounded linear
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operator. Assume that W ∩ EP (ϕ) 6= ∅, where W denotes the solution set of SFP (4.1). Let {xn} be a
sequence generated by x1 ∈ C and{

ϕ(un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = PC(I − λ(A∗(I − PQ)A+ βnI))un, ∀n ∈ N, (4.3)

where un = Qrnxn, 0 < λ < 2
2+L . Let {rn} and {βn} satisfy the following conditions:

(i) {rn} ⊂ (0,∞), lim inf
n→∞

rn > 0,
∑∞

n=1 |rn+1 − rn| <∞;

(ii) {βn} ⊂ (0, 1), lim
n→∞

βn = 0,
∑∞

n=1 βn =∞,
∑∞

n=1 |βn+1 − βn| <∞.

Then {xn} strongly converges to a point q ∈W ∩ EP (ϕ), where q = PW∩EP (ϕ)(0).

Proof. In this part, we only need to show that ∇g is 1
‖A‖2 -ism, then the Theorem 4.1 can be obtained by

Theorem 3.2.
∇g = A∗(I − PQ)A.

Since PQ is firmly nonexpansive, so PQ is 1
2 -averaged mapping, then I − PQ is 1-ism, for any x, y ∈ C,

we derive that

〈∇g(x)−∇g(y), x− y〉 = 〈A∗(I − PQ)Ax−A∗(I − PQ)Ay, x− y〉
= 〈(I − PQ)Ax− (I − PQ)Ay,Ax−Ay〉
≥ ‖(I − PQ)Ax− (I − PQ)Ay‖2

=
1

‖A‖2
· ‖A∗((I − PQ)Ax− (I − PQ)Ay)‖2

=
1

‖A‖2
· ‖∇g(x)−∇g(y)‖2.

So, ∇g is 1
‖A‖2 -ism.

5. Numerical results

In this part, we use the algorithms in Theorem 4.1 and Theorem 3.2 to solve a system of linear equations
and a constrained convex minimization problem.

First, we use the algorithm in Theorem 4.1 to calculate the 4× 4 system of linear equations.

Example 5.1. Let H1 = H2 = R4. Take

A =


2 1 −5 1
1 −3 0 −6
0 2 −1 2
1 4 −7 6

 ,

b =


8
9
−5
0

 .

Then the SFP can be formulated as the problem of finding a point x∗ with the property

x∗ ∈ C and Ax∗ ∈ Q,
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where C = R4, Q = {b}. That is, x∗ is the solution of the system of linear equations Ax = b, and

x∗ =


3
−4
−1
1

 .

Let ϕ(z, y) = 0, for all y ∈ C. Take PC = I, where I denotes the 4 × 4 identity matrix. Consider the
parameters βn = 1

n+1 for n ≥ 0, λ = 1
100 . Then by Theorem 4.1 and Lemma 2.10, the sequence {xn} is

generated by

xn+1 = xn −
1

100
A∗Axn +

1

100
A∗b− 1

100(n+ 1)
xn.

As n→∞, we have {xn} → x∗ = (3,−4,−1, 1)T .

n x1n x2n x3n x4n En
0 1.0000 1.0000 1.0000 1.0000 5.74E+00

100 2.3080 -1.7560 -0.9960 -0.3584 2.71E+00
500 2.7484 -3.8529 -1.0611 0.8762 2.95E-01
1000 2.9637 -3.9930 -1.0123 0.9888 4.05E-02
5000 2.9982 -3.9988 -1.0005 0.9990 2.50E-03
10000 2.9991 -3.9994 -1.0002 0.9995 1.20E-03

Table 1: Numerical results as regards Example 5.1.

From Table 1, we can easily see that with iterative number increasing xn approaches to the exact solution
x∗ and the errors gradually approach to zero.

Second, we use the algorithm in Theorem 3.2 to solve the constrained convex minimization problem.

n xn En
0 0.5000 5.00E-01
10 0.7377 2.62E-01
50 0.9407 5.93E-02
500 0.9945 5.50E-03
1000 0.9973 2.700E-03
5000 0.9995 5.44E-04

Table 2: Numerical results as regards Example 5.2.

Example 5.2. Let H = R and C = [0, 2]. Consider the problem (1.2) and take function

g(x) =
−x
ex
, ∀x ∈ C.

The problem (1.2) can be written as

min
x∈[0,2]

−x
ex
.

It can be seen that ∇g = x−1
ex , we can calculate that ∇g is 1

2 -ism, so, L = 2, and g(x) reaches the
minimum at x∗, and x∗ = 1. Let ϕ(z, y) = 0, for all y ∈ C. Take PC = I, where I denotes the unit function.
Given the parameters βn = 1

n+1 , for every n ≥ 0, λ = 1
4 .

Then by Theorem 3.2 and Lemma 2.10, the sequence {xn} is generated by

xn+1 = xn −
1

4
(
xn
exn
− 1

exn
+

xn
n+ 1

).
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As n→∞, we have {xn} → x∗.
From Table 2, we easily know that by using the regularization method with iterative number increasing,

xn approaches to x∗ and the errors gradually approach to zero.

From the two examples as above, we clearly can know about the practical value of our algorithms in
application.
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