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Abstract

In this paper, we investigate on the finite soft intersection property of a family of soft sets that is indexed
by another soft set, so that such family is represented by a soft set-valued map. We show that the finite
soft intersection property is characterized by some appropriate conditions on such maps. c©2016 all rights
reserved.
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1. Introduction

A soft set, as introduced by Molodtsov [13], is an important and effective device in rigorous studies of
uncertainty and ambiguity. The theory of soft set has been improved and developed from the very successful
concept of fuzzy sets [19].

Always, a fuzzy set is characterized by a real function whose values fall within the closed interval [0, 1].
This function explains the degree of belonging of a certain point to the imposed set. An advantage of a fuzzy
set to a soft set is that it is quantitative so that the algebraic calculation is valid. It is, however, narrower
applicable compared to a soft set. This can be seen explicitly as Molodtsov has mentioned in his paper [13]
that a fuzzy set is indeed a special case of a soft set.

Numerous improvements and investigations have been introduced to confirm the basis of soft set theory,
for examples, on basic notions and properties of soft sets [11, 18], on the soft set operations and relations
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[6, 14, 20], on the interconnections to other mathematical approaches to uncertainty [9, 17], on the generalized
soft sets [2, 4, 5, 7], and on the algebraic structures with soft sets [1, 3]. One of the most important concepts
we would like to emphasize on, and would mention separately is the very successful introduction of the soft
topology, which was announced independently in [8] and [15]. They were later improved to the present
version in [10, 12]. These soft topological results enable us to adopt soft topological notions in parallel to
the study of classical topological spaces.

Let us turn to another important and powerful ingredient in topology – the finite intersection property
(F.I.P.). A collection of sets is said to have the F.I.P. whenever each of its finite subcollection has a nonempty
intersection. It is known that, together with some additional hypothesis and under the right setting, the
F.I.P. could be very useful in showing the existence of an object of interests.

In soft set theory, an empty soft set (or a null soft set) is, imprecisely, a soft set that soft contains
only soft empty elements. In the same manner as of ordinary topological spaces, we may develop the finite
soft intersection property (F.S.I.P.) for a collection of soft sets, i.e., a collection of soft sets whose the soft
intersection of any of its finite subcollection soft contains at least one nonempty soft element, i.e., the soft
intersection is nonempty.

Practically, when one is working with a large group of individuals and with a wide standard of interpre-
tations, the soft intersection and finite soft intersection could be very useful to give satisfactory to the group.
We shall now illustrate a simple and general situation, as an example.

Example 1.1. Suppose that N := {1, 2, · · · , n} is the set of individuals, and they are sharing their money to
buy exactly one product listed in the set C of commodities. Assume that each individual i ∈ N has criteria,
collected in the set Ki, on his preference over commodities. We thus can summarize the preferences relative
to the criteria of each individual i ∈ N with a map Pi : Ki → 2C . Here, we can consider C as the universe
and K :=

⋃
i∈N Ki as the parameter set, so that (Pi,Ki) is a soft set. The soft intersection

⋂̃
i∈NPi gives

some valuable information on the non-conflict choice of commodities.

Motivated by the above importance of soft intersection, we consider F.S.I.P. for a family indexed by
another soft set. Here, soft set-valued map characterization is taken into account. We show that such
characterized family has F.S.I.P. if and only if it is a KKM map. Moreover, we also provide further extensions
where the soft intersection over the whole index is not a null soft set.

2. Preliminaries

In this section, we recollect, as concise as possible, some background materials which will be used and
mentioned in the sequel.

2.1. Soft sets and basic soft operations
Let U be an initial universe and E be a set of parameters. A pair (F,A) is called a soft set over U if

A ⊂ E is nonempty and F : A→ 2U is a set-valued map. Unless otherwise specified, always assume that soft
sets appearing in this present paper are defined over U and E.

Without loss of generality, we can consider a soft set (F,A) as a soft set (F ∗,E) such that F ∗(ε) = F (ε)
for all ε ∈ A and F ∗(ε) = ∅ for all ε 6∈ A. Thus, it should not be confused if we neglect the importance of
the parameter set A and write F in place of (F,A).

In particular, the absolute soft set (resp., null soft set), written Ũ (resp., ∅̃), is the soft set (U,E) such
that U(ε) = U (resp., U(ε) = ∅) for all ε ∈ E.

Given two soft sets (F,A) and (G,B), the soft union of (F,A) and (G,B), denoted by F ∪̃G, is the soft
set (H,C) with C = A ∪B and

H(ε) =


F (ε) if ε ∈ A \B,

G(ε) if ε ∈ B \A,

F (ε) ∪G(ε) if ε ∈ A ∩B.
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Similarly, the soft intersection of (F,A) and (G,B), written as F ∩̃G, is the soft set (H,C) given by C = A∩B
and H(ε) = F (ε) ∩ G(ε) for each ε ∈ C. Moreover, if A ⊂ B and F (ε) ⊂ G(ε) for all ε ∈ A, we say that
(F,A) is a soft subset of (G,B), which is denoted by F ⊂̃G. If F ⊂̃G and G ⊂̃F , then we say that they are
soft equal.

The soft difference of two soft sets (F,E) and (G,E), written as F \̃G, is the soft set (H,E) given by
H(ε) = F (ε) \G(ε) for each ε ∈ E. In particular, for a soft set F , the soft difference Ũ \̃F , denoted by F {̃ ,
is called the soft relative complement (or shortly, soft complement) of F .

2.2. Soft elements
Very recently, Wardowski [16] introduced a promising concept of soft elements. This concept produces

some natural properties which made the understanding of soft sets simpler. A pair (ε, I), where ε ∈ E and
I is a set containing at most one element, is said to be a soft element of a soft set (F,A), expressed with
(ε, I) ∈̃ (F,A), if ε ∈ A and I ⊂ F (ε). Certainly, we also say that (F,A) soft contains the soft element (ε, I).
In case I = ∅, we say that (ε, I) is an empty soft element. The following basic properties are essential.

Proposition 2.1 ([16]). Suppose that F, F1, F2 are three soft sets over the same universe with suitable
parameters. Assume that α is a soft element. Then, the following statements are true:

(i) every soft set soft contains an empty soft element;

(ii) α ∈̃F if and only if {α} ⊂̃F ;

(iii) F =
⋃̃
α ∈̃F {α};

(iv) F1 ⊂̃F2 if and only if soft elements of F1 are soft contained in F2;

(v) α ∈̃F1 ∪̃F2 if and only if either α ∈̃F1 or α ∈̃F2;

(vi) α ∈̃F1 ∩̃F2 if and only if both α ∈̃F1 and α ∈̃F2;

(vii) α ∈̃F1 \̃F2 if and only if α ∈̃F1 but α ˜6∈F2.

2.3. Soft Cartesian products and soft maps
There are various concepts of soft maps in the literature of soft set theory. However, we will stick to the

one in [16]. Recall as well that a soft product between two soft sets (F,A) and (G,B), denoted by F ×̃G, is
the soft set (H,C), where C = A×B and H(a, b) = F (a)×G(b), for each (a, b) ∈ C.

A soft map T [16] from (F,A) into (G,B), notated by T : F →̃G, is a soft subset of F ×̃G such that
to each nonempty soft element α ∈̃F , there corresponds a unique nonempty soft element β ∈̃G such that
{α} ×̃ {β} ∈̃T . In this case, we shall write T (α) to represent β. To be simple, we always assume that T (α)
if and only if α is an empty soft element.

For the aspect of this paper, we consider the soft set-valued maps instead. A soft set-valued map T from
(F,A) into (G,B), written by T : F ⇒̃G, is a soft subset of F ×̃G such that to each nonempty soft element
α ∈̃F , there corresponds a unique soft subset ∅̃ 6= Λ ⊂̃G such that {α} ×̃Λ ⊂̃T . Again, we write T (α) to
represent Λ. The image of a soft set X ⊂̃F under T is defined to be the soft set T (X) =

⋃̃
x ∈̃XT (x).

2.4. Soft topological spaces
Now, we have arrived at the pioneering concept of a soft topology. Some definitions and related properties

are collected and presented in the following.

Definition 2.2 ([8, 15]). A soft topology on a soft set Ũ is a collection τ of soft subsets (with parameters in
E) over U satisfying

(i) both ∅̃ and Ũ belong to τ ,
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(ii) soft union of members of τ belongs to τ ,

(iii) soft intersection of finitely many members of τ belongs to τ .

We call U and E together with a soft topology τ a soft topological space, denoted by (Ũ, τ,E). Members of
τ are said to be soft open, and a soft complement of an open soft set is said to be soft closed.

In particular, we say that τ is soft Hausdorff if for any two distinct points x, y ∈̃X, we can find two
disjoint soft open sets U, V such that U ⊃̃x and V ⊃̃ y. In this case, we call (X, τ,E) a soft Hausdorff space.

Let X ⊂̃ Ũ, we may adopt a topology τ |X on X from Ũ, called the subspace topology defined by

τ |X = {U ∩̃X, U ∈ τ}.

If U ∈ τ |X , we say that U is soft open in X.
One may see that the ordinary topological spaces are included in the class of soft topological spaces.

Take a nonempty set X, Y ⊂ X, and 1 = {p} an appropriate singleton parameter set of E. Denoted by
Ỹ1 = (Ỹ ,1), the soft set Ỹ (p) = Y . In particular, U ⊂ V if and only if Ũ1 ⊂̃ Ṽ1. By letting τ be a topology
on X, we may define a soft topology τ1 on X̃1 by

τ1 = {Ũ1 ⊂̃ X̃1, U ∈ τ}.

Clearly, Ũ1 ∈ τ1 if and only if U ∈ τ . Also, D̃1 ⊂̃ X̃1 is soft compact if and only if D is compact.
A soft map (single-valued) T from a soft topological space X into another soft topological space Y is said

to be soft continuous if T−1(V ) := {α ∈̃X, T (α) ∈̃V } is soft open (or soft closed, resp.) in X for each soft
open (or soft closed, resp.) subset V ⊂̃Y . If K ⊂̃X is compact, then its image T (K) is also compact (in Y ).

3. Soft KKM maps

We give in this section a version of KKM maps in the setting of soft topological space. Always assume
throughout this section that (X,E) is a nonempty soft set and (Y, τ, F ) is a soft topological space.

Definition 3.1. A soft set-valued map T : X ⇒̃Y is said to be a soft KKM map if for any finite soft subset
{x0, x1, · · · , xn} ⊂̃X, there exists a soft continuous map ϕ : (∆̃n)1 →̃Y such that ϕ(z) is a nonempty element
if z is a nonempty element of (∆̃n)1, and

ϕ((∆̃k)1) ⊂̃
⋃̃

k
j=0T (xij )

for every {ei0 , ei1 , · · · , eik} ⊂ {e0, e1, · · · , en}, where ∆k = co{ei0 , ei1 , · · · , eik}. The corresponding map ϕ
here will be referred to as a controller of {x0, x1, · · · , xn}.

We next associate the F.S.I.P. to the KKM map by showing that if {T (x), x ∈̃X} has the F.S.I.P., then
T is a KKM map. The next theorem actually shows that the F.S.I.P. cannot be extended beyond this soft
KKM map.

Theorem 3.2. Suppose that T : X ⇒̃Y is a soft set-valued map such that the family {T (x), x ∈̃X} has the
F.S.I.P. Then, T is a soft KKM map.

Proof. Let {x0, x1, · · · , xn} ⊂̃X be an arbitrary finite soft subset. Thus, by the hypothesis, the soft inter-
section

⋂̃
n
i=0T (xi) contains a nonempty soft element β. Now, we consider the map ϕ : (∆̃n)1 →̃Y such

that ϕ(α) is an empty soft element whenever α is an empty element and ϕ(α) = β whenever α ∈̃ (∆̃n)1 is a
nonempty. The map ϕ constructed by this way is soft continuous. Moreover, we may obtain the following
inclusions:

ϕ((∆̃k)1) = {β} ⊂̃
⋂̃

n
i=0T (xi) ⊂̃

⋃̃
k
j=0T (xij )

for every {i0, i1, · · · , ik} ⊂ {1, 2, · · · , n} with ∆k = co{ei0 , ei1 , · · · , eik}. Hence, T is soft KKM.
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The converse holds as a consequence of the following stronger result, provided that T produces soft open
values.

Theorem 3.3. Suppose that T : X ⇒̃Y is a soft KKM map with soft open values. Then, the soft inter-
section ϕ((∆̃n)1) ∩̃ (

⋂̃
n
i=1T (xi)) is nonempty for each finite soft subset {x0, x1, · · · , xn} ⊂̃X, where ϕ is the

corresponding controller.

Proof. Suppose to the contrary, that there is a finite soft subset {x0, x1, · · · , xn} ⊂̃X such that ϕ((∆̃n)1) ∩̃
(
⋂̃
n
i=1T (xi)) contains no nonempty elements, where ϕ is the corresponding controller. Thus, we may see

that

ϕ((∆̃n)1) = ϕ((∆̃n)1) \̃
(⋂̃

n
i=1

(
ϕ((∆̃n)1) ∩̃T (xi)

))
=
⋃̃

n
i=0

[
ϕ((∆̃n)1) \̃

(
ϕ((∆̃n)1) ∩̃T (xi)

)]
.

For each nonempty element z̃ ∈̃ (∆̃n)1, we define

I(z̃) = {i ∈ {0, 1, · · · , n}, ϕ(z̃) ˜6∈T (xi)}.

We may see that I(z̃) is nonempty for each nonempty element z̃ ∈̃ (∆̃n)1, otherwise ϕ(z̃) ∈̃
⋂̃
n
i=0T (xi), which

contradicts our supposition. Let U ⊂ ∆n be a set such that

Ũ1 = (∆̃n)1 \̃ϕ−1

(⋃̃
i 6∈I(z̃)

[
ϕ((∆̃n)1) \̃

(
ϕ((∆̃n)1) ∩̃T (xi)

)])
.

Wemay see that Ũ1 is soft open, so that U is open. Let ζ ∈ U , notice that we have ϕ((p, {ζ})) ∈
⋂̃
i 6∈I(z̃)T (xi).

Thus, I((p, {ζ})) ⊂ I(z̃) for every ζ ∈ U . Moreover, for some z̄ ∈ U , it must be the case that z̃ = (p, {z̄}).
This implies that U is an open neighborhood of z̄. By defining Γ : ∆n ⇒ ∆n with

Γ(z) = co{ei, i ∈ I(p, {z})} ∀z ∈ ∆n,

we can simply declare that Γ is u.s.c., by applying the above property of the set U . Furthermore, Γ has the
compact convex values. Thus, by applying the Kakutani’s fixed point theorem, we may see that ζ0 ∈ Γ(ζ0),
for some ζ0 ∈ ∆n. Equivalently, we can say that (p, {ζ0}) ∈̃Γ(ζ0)1. Since T is a soft KKM map, we may
obtain the following inclusion:

ϕ((p, {ζ0})) ∈̃ϕ(Γ(ζ0)1) ⊂̃
⋃̃

i∈I((p,{ζ0}))T (xi),

which contradicts the definition of I(·). Therefore, the soft intersection

ϕ((∆̃n)1) ∩̃ (
⋂̃

n
i=1T (xi))

is nonempty, as desired.

Thus, we have the converse of Theorem 3.2 holds true if the soft map T has soft open values, as is
summarized in the next corollary.

Corollary 3.4. Suppose that T : X ⇒̃Y is a soft KKM map with soft open values. Then, the soft intersection⋂̃
n
i=1T (xi) is nonempty for each finite soft subset {x0, x1, · · · , xn} ⊂̃X.

Next, we impose a condition on the soft map T guaranteeing that {T (x), x ∈̃X} has a nonempty soft
intersection. To do this, we need an auxiliary result.

Lemma 3.5. Suppose that (K, τ,E) is a soft topological space. Then, the following statements are equivalent:
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(C1) K is soft compact.

(C2) Every collection of soft closed soft subsets of K with the F.S.I.P. has a nonempty soft intersection.

Proof. (Sufficiency) Suppose that K is soft compact and {Fα}α∈Λ be a collection of soft closed soft subsets
of K with the F.S.I.P.. Let us assume to the contrary that the soft intersection

⋂̃
α∈ΛFα is empty. By this,

we obtain that
K = K \̃

⋂̃
α∈ΛFα =

⋃̃
α∈Λ(K \̃Fα).

This means Γ := {K \̃Fα}α∈Λ is a soft open cover of K. By the soft compactness of K, we have

K =
⋃̃

N
i=0(K \̃Fαi) = K \̃

⋂̃
N
i=0Fαi

for some finite subsets {α1, α2, · · · , αN} ⊂ Λ. Thus,
⋂̃
N
i=0Fαi must contain only empty soft element, this

contradicts the F.S.I.P.. Therefore, {Fα}α∈Λ has a nonempty soft intersection.
(Necessity) Suppose that K is not soft compact. Then, we can find a soft open cover {Uα}α∈Λ such

that each of its finite collection does not cover K. Therefore, we can see that K \̃
⋃̃
α∈ΛUα is empty, while

K \̃
⋃̃
i∈IUi is nonempty for each nonempty finite subset I ⊂ Λ. By defining

Fα := K \̃Uα, ∀α ∈ Λ,

we conclude that {Fα}α∈Λ is a family of soft closed soft subset of K in which 3.5 fails to hold.

With Theorem 3.3 (or Corollary 3.4) and Lemma 3.5, we may now conclude the behavior of the whole
soft intersection.

Corollary 3.6. Let T : X ⇒̃Y be a soft KKM map with soft open values. Assume that at some x0 ∈̃X,
the soft set T (x0) is relatively soft compact, i.e., T (x0) is soft contained in some soft compact set K ⊂̃Y .
Then, the soft intersection

⋂̃
x ∈̃X c̃lY T (x) is nonempty, where c̃lY (·) is defined for each A ⊂̃Y by c̃lY A :=⋂̃

{C ⊂̃Y, C is soft closed and C ⊃̃A}.

Proof. By Corollary 3.4, we know that {T (x), x ∈̃X} has the F.S.I.P., and hence the family {c̃lY T (x), x ∈̃X}
also does. Moreover, we may see that for each x ∈̃X, the soft set K ∩̃ c̃lY T (x) is nonempty and soft closed
in K. Since {K ∩̃ c̃lY T (x), x ∈̃X} has the F.S.I.P., Lemma 3.5 is then applied to obtain that the soft
intersection

⋂̃
x ∈̃X c̃lY T (x) is nonempty.

Next, we would like to deduce the soft intersection property for open valued maps, with an additional
assumption.

Definition 3.7. A soft map T : X ⇒̃Y is said to transfer soft closed value at x ∈ X if for each y ∈̃Y \̃T (x),
there exists a point x′ ∈̃X such that V ∩̃T (x′) is soft empty for some soft open subset V ⊂̃Y with V 3̃ y.
If T transfers soft closed value at every x ∈̃X, we simply say that T transfers soft closed values.

Lemma 3.8. Suppose that T : X ⇒̃Y . Then,
⋂̃
x ∈̃XT (x) =

⋂̃
x ∈̃X c̃lY T (x) if and only if T transfers soft

closed values.

Proof. (Sufficiency) Suppose that y ˜6∈
⋂̃
x ∈̃XT (x). Then, we have y ˜6∈T (z) at some z ∈̃X. Since T transfers

soft closed values, we can find some z′∈̃X such that y ˜6∈ c̃lY T (x′). Consequently, we have y ˜6∈
⋂̃
x ∈̃X c̃lY T (x),

and hence ⋂̃
x ∈̃X c̃lY T (x) ⊂̃

⋂̃
x ∈̃XT (x).

Since the reverse is clear, we have thus proved the sufficiency.
(Necessity) Let x ∈̃X and y ∈̃Y be two soft elements with y ˜6∈T (x), so that y ˜6∈

⋂̃
z ∈̃XT (z) =

⋂̃
z ∈̃X c̃lY

T (z). Therefore, there exists a soft element x′ ∈̃X satisfying y ∈̃ [Y \̃ c̃lY T (x′)]. As Y \̃ c̃lY T (x′) is soft open,
we can find a soft open set Y ⊃̃V 3̃ y in which V ∩̃ c̃lY T (x′) is soft empty. Hence, V ∩̃T (x′) is also soft
empty, showing that T transfers soft closed values.
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Corollary 3.9. Suppose that T : X ⇒̃Y is a soft KKM map with soft open values, and T (x0) is relatively
soft compact at some x0 ∈̃X. If T transfers soft closed values, then the soft intersection

⋂̃
x ∈̃XT (x) is

nonempty.

Proof. By Corollary 3.6 and Lemma 3.8 we have immediately that
⋂̃
x ∈̃XT (x) =

⋂̃
x ∈̃X c̃lY T (x) is

nonempty.

Conclusion

As we have already mentioned about the importance of soft intersection, we investigated in this paper
some soft intersection property. We adopted the notion of soft KKM maps and showed that this notion is
actually equivalent to the finite soft intersection property for a family of soft open sets. We also studied
the duality results for a family of soft closed sets. Some extensions to arbitrary soft intersections are also
examined.
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