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Abstract

In this paper, we investigate a new class of mixed initial value problems of Hadamard and Riemann-
Liouville fractional integro-differential inclusions. The existence of solutions for convex valued (the upper
semicontinuous) case is established by means of Krasnoselskii’s fixed point theorem for multivalued maps
and nonlinear alternative criterion, while the existence result for non-convex valued maps (the Lipschitz
case) relies on a fixed point theorem due to Covitz and Nadler. Illustrative examples are also included.
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1. Introduction and preliminaries

Fractional calculus remained a theoretical field of research until the last three decades. Afterwards,
this branch of mathematics has found extensive applications in different fields of engineering and applied
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sciences such as electrical circuit [31], rotor-bearing system [10], finance system [29], biological system
[35], thermoelectric system [17], reaction-diffusion system [18], etc. The memory (hereditary) property of
fractional-order calculus provides a novel and better approach to model real-world phenomena than integer-
order one such as viscoelasticity and diffusion processes [34, 43]. Fractional order systems and controllers
have also drawn considerable attention [16] and the concept of designing controllers based on fractional-
order systems has been developed, for example, sliding mode control of fractional-order chaotic systems
[1, 2, 23, 39, 42]. Fractional order controllers contain some extra parameters for tuning, which can lead to
a better closed loop performance. In [32], two novel nonlinear fractional-order sliding mode controllers for
power angle response improvement of multi-machine power systems have been presented. Active disturbance
rejection control for nonlinear fractional-order systems has been discussed in [19].

Initial and boundary value problems of fractional differential equations have been extensively studied by
several researchers in recent years. A significant development in the theory and applications of fractional
order differential inclusions has also been observed. Differential inclusions are regarded as generalization
of differential equations and inequalities, and have very important and interesting applications in optimal
control theory and stochastic processes [28]. In fact, the tools of differential inclusions facilitate the in-
vestigation of dynamical systems having velocities not uniquely determined by the state of the system.
For details and examples of fractional order differential inclusions, we refer the reader to the works [3–
7, 12, 14, 20, 33, 37, 38, 40, 41] and the references cited therein.

In this paper, motivated by recent interest in fractional order differential inclusions, we study a new class
of mixed initial value inclusion problem involving Hadamard derivative and Riemann-Liouville fractional
integrals. Precisely, we consider the following problem:

Dα

(
x(t)−

m∑
i=1

Iβihi(t, x(t))

)
∈ F (t, x(t),Kx(t)), t ∈ J := [1, T ],

x(1) = 0,

(1.1)

where Dα denotes the Hadamard fractional derivative of order α, 0 < α ≤ 1, Iφ is the Riemann-Liouville
fractional integral of order φ > 0, φ ∈ {β1, β2, . . . , βm}, F : J × R2 → P(R), (P(R) is the family of all
nonempty subjects of R), hi ∈ C(J × R,R) with hi(1, 0) = 0, i = 1, 2, . . . ,m, and Kx(t) =

∫ t
1 ϕ(t, s)x(s)ds,

ϕ(t, s) ∈ C(J2,R).
The main objective of the present work is to obtain sufficient criteria for existence of solutions for convex

and non-convex multivalued maps involved in problem (1.1). Our main results are based on multivalued
version of Krasnoselskii’s fixed point theorem, nonlinear alternative criteria and a fixed point theorem for
contractive multivalued maps due to Covitz and Nadler. Our results are new and well-supported with
examples.

Before proceeding further, we quickly recall some basic definitions [26].
The Hadamard derivative of fractional order q for a function g : [1,∞) → R is defined as

Dqg(t) =
1

Γ(n− q)

(
t
d

dt

)n ∫ t

1

(
log

t

s

)n−q−1 g(s)

s
ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q and log(·) = loge(·).
The Hadamard fractional integral of order q for a function g is defined as

Iqg(t) =
1

Γ(q)

∫ t

1

(
log

t

s

)q−1 g(s)

s
ds, q > 0,

provided the integral exists.
The Riemann-Liouville fractional integral of order p > 0 of a continuous function f : (1,∞) → R is

defined by

Ipf(t) =
1

Γ(p)

∫ t

1
(t− s)p−1f(s)ds,
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provided the right-hand side is pointwise defined on (1,∞).
For further details of Hadamard fractional derivative and integral, we refer the reader to [8, 9, 22, 25].
In relation to problem (1.1), we need the following lemma [26].

Lemma 1.1. Let g : J → R and hi : J × R→ R be continuous functions, 0 < α ≤ 1, βi > 0, i = 1, . . . ,m.
Then the unique solution of the fractional initial value problem

Dα

(
x(t)−

m∑
i=1

Iβihi(t, x(t))

)
= g(t), t ∈ J,

x(1) = 0,

is given by

x(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

g(s)
ds

s
+

m∑
i=1

Iβihi(t, x(t)), t ∈ J.

Now we outline some basic concepts of multivalued analysis [15, 24].
For a normed space (A, ‖ · ‖), let Pcl(A) = {A1 ∈ P(A) : A1 is closed}, Pb(A) = {A1 ∈ P(A) :

A1 is bounded}, Pcp(A) = {A1 ∈ P(A) : A1 is compact}, and Pcp,c(A) = {A1 ∈ P(A) : A1 is compact and
convex}.

A multivalued map G : A → P(A) is convex (closed) valued if G(a) is convex (closed) for all a ∈ A.
The map G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in A for all B ∈ Pb(A) (i.e.,

supx∈B{sup{|y| : y ∈ G(x)}} <∞).
G is called upper semi-continuous (u.s.c.) on A if for each a0 ∈ A, the set G(a0) is a nonempty closed

subset of A, and if for each open set N of A containing G(a0), there exists an open neighborhood N0 of a0

such that G(N0) ⊆ N.
G is said to be completely continuous if G(B) is relatively compact for every B ∈ Pb(A).
If the multivalued map G is completely continuous with nonempty compact values, then G is u.s.c. if

and only if G has a closed graph, i.e., an → a∗, bn → b∗, bn ∈ G(an) imply b∗ ∈ G(a∗).
G has a fixed point if there is a ∈ A such that a ∈ G(a). The fixed point set of the multivalued operator

G will be denoted by Fix(G).
A multivalued map G : J → Pcl(R) is said to be measurable if for every b ∈ R, the function t 7−→

d(b,G(t)) = inf{|b− c| : c ∈ G(t)} is measurable.
We denote by C(J,R) the Banach space of continuous functions from J into R with the norm ‖x‖ =

supt∈J |x(t)|. Let L1(J,R) be the Banach space of measurable functions x : J → R which are Lebesgue

integrable and normed by ‖x‖L1 =
∫ T

1 |x(t)|dt.
For each y ∈ C(J,R), define the set of selections of F by

SF,x := {v ∈ L1(J,R) : v(t) ∈ F (t, x(t),Kx(t)) for a.e. t ∈ J}.

Definition 1.2. A multivalued map F : J × R2 → P(R) is said to be Carathéodory if

(i) t 7−→ F (t, x, y) is measurable for each x, y ∈ R;

(ii) x 7−→ F (t, x, y) is upper semicontinuous for almost all t ∈ J .

Further, a Carathéodory function F is called L1-Carathéodory if

(iii) for each ρ > 0, there exists ϕρ ∈ L1(J,R+) such that

‖F (t, x, y)‖ = sup{|v| : v ∈ F (t, x, y)} ≤ ϕρ(t),

for all |x|, |y| ≤ ρ and for a.e. t ∈ J.
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2. Existence results

Definition 2.1. A function x ∈ C1(J,R) is called a solution of problem (1.1) if there exists a function
v ∈ L1(J,R) with v(t) ∈ F (t, x(t),Kx(t)), for a.e. t ∈ J such that x(1) = 0 and

x(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

v(s)
ds

s
+

m∑
i=1

Iβihi(t, x(t)), t ∈ J.

2.1. Convex valued case

This subsection is devoted to the case when the multivalued map in problem (1.1) is convex valued.
We prove two existence results which rely on Krasnoselskii’s fixed point theorem and nonlinear alternative
criteria.

In the forthcoming analysis, we need the following known results.

Lemma 2.2 ([30]). Let X be a Banach space. Let F : J × X × X → Pcp,c(X) be an L1-Carathéodory
multivalued map and let Θ be a linear continuous mapping from L1(J,X) to C(J,X). Then the operator

Θ ◦ SF,x : C(J,X)→ Pcp,c(C(J,X)), x 7→ (Θ ◦ SF,x)(x) = Θ(SF,x)

is a closed graph operator in C(J,X)× C(J,X).

Lemma 2.3 ([36, Krasnoselskii’s fixed point theorem]). Let X be a Banach space, Y ∈ Pb,cl,c(X) and
A,B : Y → Pcp,c(X) two multivalued operators. If the following conditions are satisfied

(i) Ay +By ⊂ Y for all y ∈ Y ;

(ii) A is contraction;

(iii) B is u.s.c and compact,

then, there exists y ∈ Y such that y ∈ Ay +By.

Lemma 2.4 ([21, Nonlinear alternative for Kakutani maps]). Let E be a Banach space, C a closed convex
subset of E, U an open subset of C and 0 ∈ U. Suppose that F : U → Pcp,c(C) is a upper semicontinuous
compact map. Then either

(i) F has a fixed point in U, or

(ii) there is u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u).

Our first result is based on Krasnoselskii’s fixed point theorem for multivalued maps.

Theorem 2.5. Assume that

(A1) there exists a constant L0 > 0 such that

|hi(t, x(t))− hi(t, y(t))| ≤ L0|x(t)− y(t)|,

for t ∈ J and x, y ∈ R, i = 1, 2, . . . ,m;

(A2) there exist functions ν, µ ∈ C(J,R+) such that

‖F (t, x, y)‖ ≤ ν(t) + µ(t)|y|,

for all (t, x, y) ∈ J ×R2 with ϕ0‖µ‖
[

γ

Γ(α)
+

(log T )α

Γ(α+ 1)

]
< 1, where ϕ0 = sup{|ϕ(t, s)| ; (t, s) ∈ J ×J},

and

γ = T

∫ log T

0
uα−1e−udu;



B. Ahmad, S. K. Ntouyas, J. Tariboon, J. Nonlinear Sci. Appl. 9 (2016), 6333–6347 6337

(A3) there exist functions θi ∈ C(J,R+), i = 1, 2, . . . ,m, such that

|hi(t, x)| ≤ θi(t), ∀(t, x) ∈ J × R.

Then the problem (1.1) has at least one solution on J, provided that

L0

m∑
i=1

(T − 1)βi

Γ(βi + 1)
< 1.

Proof. Define an operator ΩF : C(J,R)→ P(C(J,R)) by

ΩF (x) =


h ∈ C(J,R) :

h(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

v(s)
ds

s
+

m∑
i=1

Iβihi(t, x(t)), v ∈ SF,x.

 (2.1)

We consider BR = {x ∈ C(J,R) : ‖x‖ ≤ R}, where

R ≥

(
m∑
i=1

(T − 1)βi

Γ(βi + 1)
‖θi‖+

(log T )α

Γ(α+ 1)
‖ν‖

)/(
1− ϕ0‖µ‖

[
γ

Γ(α)
+

(log T )α

Γ(α+ 1)

])
.

We define an operator Q : BR → C(J,R) by

Qx(t) =
m∑
i=1

1

Γ(βi)

∫ t

1
(t− s)βi−1hi(s, x(s))ds, t ∈ J,

and a multivalued operator T : BR → P(C(J,R)) by

T x(t) =

{
h ∈ C(J,R) : h(t) =

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

v(s)
ds

s
, v ∈ SF,x

}
.

In this way, the fractional differential inclusion (1.1) is equivalent to the inclusion problem u ∈ Qu + T u.
We show that the operators Q and T satisfy the conditions of Lemma 2.3 on BR.

First, we show that the operator T defines the multivalued operator T : BR → Pcp,c(C(J,R)). Note
that the operator T is equivalent to the composition L ◦ SF , where L is the continuous linear operator on
L1(J,R) into C(J,R), defined by

L(v)(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

v(s)
ds

s
.

Suppose that x ∈ BR is arbitrary and let {vn} be a sequence in SF,x. Then, by definition of SF,x, we
have vn(t) ∈ F (t, x(t),Kx(t)) for almost all t ∈ J . Since F (t, x(t),Kx(t)) is compact for all t ∈ J , there
is a convergent subsequence of {vn(t)} (we denote it by {vn(t)} again) that converges in measure to some
v(t) ∈ SF,x for almost all t ∈ J . On the other hand, L is continuous, so L(vn)(t)→ L(v)(t) is pointwise on
J .

In order to show that the convergence is uniform, we have to show that {L(vn)} is an equicontinuous
sequence. Let t1, t2 ∈ J with t1 < t2. Then we have

|L(vn)(t2)− L(vn)(t1)| =

∣∣∣∣∣ 1

Γ(α)

∫ t2

1

(
log

t2
s

)α−1

vn(s)
ds

s
− 1

Γ(α)

∫ t1

1

(
log

t1
s

)α−1

vn(s)
ds

s

∣∣∣∣∣
≤ 1

Γ(α)

∫ t1

1

[(
log

t2
s

)α−1

−
(

log
t1
s

)α−1
]
|vn(s)|ds

s
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+
1

Γ(α)

∫ t2

t1

(
log

t1
s

)α−1

|vn(s)|ds
s

≤ ‖ν‖+ ‖µ‖ϕ0R(T − 1)

Γ(α+ 1)
[(log t2)α − (log t1)α|+ 2(log(t2/t1))α].

We see that the right hand side of the above inequality tends to zero as t1 → t2 independent of vn. Thus,
the sequence {L(vn)} is equicontinuous and by using the Arzelá-Ascoli theorem, we get that there is a
uniformly convergent subsequence. So, there is a subsequence of {vn} (we denote it again by {vn}) such
that L(vn)→ L(v). Note that, L(v) ∈ L(SF,x). Hence, T (x) = L(SF,x) is compact for all x ∈ Br. So T (x)
is compact.

Now, we show that T (x) is convex for all x ∈ C(J,R). Let z1, z2 ∈ T (x). We select f1, f2 ∈ SF,x such
that

zi(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

fi(s)
ds

s
, i = 1, 2,

for almost all t ∈ J . Let 0 ≤ λ ≤ 1. Then, we have

[λz1 + (1− λ)z2](t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

[λf1(s) + (1− λ)f2(s)]
ds

s
.

Since F has convex values, so SF,x is convex and λf1(s) + (1− λ)f2(s) ∈ SF,x. Thus

λz1 + (1− λ)z2 ∈ T (x).

Consequently, T is convex-valued. Obviously, Q is compact and convex-valued.
Next, we show that Q(x)+T (x) ⊂ BR for all x ∈ BR. Suppose x ∈ BR and h ∈ Q are arbitrary elements.

Choose v ∈ SF,x such that

h(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

v(s)
ds

s
+

m∑
i=1

Iβihi(t, x(t))

for almost all t ∈ J. Hence we get

|h(t)| ≤
m∑
i=1

1

Γ(βi)

∫ t

1
(t− s)βi−1|hi(s, x(s))|ds+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

|v(s)|ds
s

≤
m∑
i=1

1

Γ(βi)

∫ t

1
(t− s)βi−1|θi(s)|ds+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

(|ν(s)|+ |µ(s)||Kx(s)|) ds
s

≤
m∑
i=1

(T − 1)βi

Γ(βi + 1)
‖θi‖+

(log T )α

Γ(α+ 1)
‖ν‖+ ϕ0‖µ‖R

[
γ

Γ(α)
+

(log T )α

Γ(α+ 1)

]
≤ R.

Hence ‖h‖ ≤ R, which means that Q(x) + T (x) ⊂ BR for all x ∈ BR.
The rest of the proof consists of several steps and claims.

Step 1: We show that Q is a contraction on C(J,R). This is a consequence of (A1). Indeed, for x, y ∈
C(J,R), we have

|Qx(t)−Qy(t)| ≤
m∑
i=1

1

Γ(βi)

∫ t

1
(t− s)βi−1|hi(s, x(s))− hi(s, y(s))|ds

≤ L0‖x− y‖
m∑
i=1

1

Γ(βi)

∫ t

1
(t− s)βi−1ds
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≤ L0‖x− y‖
m∑
i=1

(T − 1)βi

Γ(βi + 1)
.

Hence, by the given assumption, Q is a contraction mapping.
Step 2: T is compact and upper semicontinuous. This will be established in several claims.

Claim I: T maps bounded sets into bounded sets in C(J,R). For each h ∈ T (x), x ∈ BR, there exists
v ∈ SF,x such that

h(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

v(s)
ds

s
.

Then we have

‖h‖ ≤ (log T )α

Γ(α+ 1)
‖ν‖+ ‖µ‖ϕ0R

[
γ

Γ(α)
+

(log T )α

Γ(α+ 1)

]
and thus the operator T (BR) is uniformly bounded.

Claim II: T maps bounded sets into equicontinuous sets. Let τ1, τ2 ∈ J with τ1 < τ2 and x ∈ BR. Then we
have

|T x(τ2)− T x(τ1)| =

∣∣∣∣∣ 1

Γ(α)

∫ τ2

1

(
log

τ2

s

)α−1
v(s)

ds

s
− 1

Γ(α)

∫ τ1

1

(
log

τ1

s

)α−1
v(s)

ds

s

∣∣∣∣∣
≤ ‖ν‖+ ‖µ‖ϕ0R(T − 1)

Γ(α+ 1)
[(log τ2)α − (log τ1)α|+ 2(log(τ2/τ1))α],

which is independent of x and tends to zero as τ2 − τ1 → 0. Thus, T is equicontinuous. So T is relatively
compact on BR. Hence, by the Arzelá-Ascoli theorem, T is compact on BR.

Claim III: T has a closed graph. Let xn → x∗, hn ∈ T (xn) and hn → h∗. Then we need to show that
h∗ ∈ T (x∗). Associated with hn ∈ T (xn), there exists vn ∈ SF,xn such that for each t ∈ J,

hn(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

vn(s)
ds

s
.

Thus it suffices to show that there exists v∗ ∈ SF,x∗ such that for each t ∈ J,

h∗(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

v∗(s)
ds

s
.

Let us consider the linear operator Θ : L1(J,R)→ C(J,R) given by

f 7→ Θ(f)(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

v(s)
ds

s
.

Observe that

‖hn(t)− h∗(t)‖ =

∥∥∥∥∥ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

(vn(s)− v∗(s))
ds

s

∥∥∥∥∥→ 0,

as n → ∞. Thus, it follows by Lemma 2.2 that Θ ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ Θ(SF,xn). Since xn → x∗, therefore, we have

h∗(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

v∗(s)
ds

s
,

for some v∗ ∈ SF,x∗ . Hence T has a closed graph (and therefore has closed values). In consequence, the
operator T is upper semicontinuous.

Thus, the operators Q and T satisfy all the conditions of Lemma 2.3 and hence its conclusion implies
that x ∈ Q(x) + T (x) has a solution in BR. Therefore the boundary value problem (1.1) has a solution in
Br and the proof is completed.
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Example 2.6. Consider the following mixed Hadamard and Riemann-Liouville fractional integro-differential
equation 

D1/2

(
x(t)−

3∑
i=1

I(2i+1)/2hi(t, x(t))

)
∈ F (t, x(t),Kx(t)), t ∈ [1, e],

x(1) = 0,

(2.2)

where

h1(t, x) =
log t

4

|x|
1 + |x|

, h2(t, x) =
tan−1 |x|

5(1 + log t)
, h3(t, x) =

2e−t

3
sin |x|.

(i) Cosider the multivalued map F : [1, e]× R× R→ P(R) given by

x→ F (t, x,Kx) =

[
(t2 + 1)

|x|
3 + |x|

+
e−t

4

∫ t

1

cos2(t− s)
2

x(s)ds

,

(√
t+

1

2

)
e−x

2
+

1

2 + log t

∫ t

1

cos2(t− s)
2

x(s)ds

]
.

(2.3)

Here α = 1/2, β1 = 3/2, β2 = 5/2, β3 = 7/2, m = 3, T = e. With the given data, we find that ϕ0 = 1/2,
|hi(t, x) − hi(t, y)| ≤ (1/4)|x − y|, i = 1, 2, 3, which satisfies (A1) with L0 = 1/4. Since

∫ 1
0 u
−1/2e−udu =√

πerf(1), where erf(·) is the Gauss error function, we have γ = 4.06015694. For f ∈ F , we have

|f | ≤ max

(
(t2 + 1)

|x|
3 + |x|

+
e−t

4
K|x|,

(√
t+

1

2

)
e−x

2
+

1

2 + log t
K|x|

)
≤ t2 + 1 +

|Kx|
2 + log t

.

Thus

‖F (t, x, y)‖ ≤ t2 + 1 +
|y|

2 + log t
,

for all (t, x, y) ∈ [1, e]× R2 with ν(t) = t2 + 1, µ(t) = 1/(2 + log t). Then, we have

ϕ0‖µ‖
[

γ

Γ(α)
+

(log T )α

Γ(α+ 1)

]
= 0.8547693548 < 1.

Hence, (A2) is satisfied. It is easy to verify that |h1(t, x)| ≤ (log t)/4, |h2(t, x)| ≤ π/(10(1 + log t)) and
|h3(t, x)| ≤ 2e−t/3. In addition, we can show that

L0

3∑
i=1

(T − 1)βi

Γ(βi + 1)
= 0.8576592205 < 1.

Thus all conditions of Theorem 2.5 are satisfied. Therefore, by the conclusion of Theorem 2.5, the problem
(2.2) with the F (t, x,Kx) is given by (2.3) has at least one solution on [1, e].

Now we make use of nonlinear alternative theorem to show the existence of solutions for problem (1.1).

Theorem 2.7. Assume that:

(H0) F : J × R2 → P(R) is L1-Carathéodory and has nonempty compact and convex values;

(H1) there exist functions p1, p2 ∈ C(J,R+), and ψ : R+ → R+ nondecreasing such that

‖F (t, x, y)‖ ≤ p1(t)ψ(|x|) + p2(t)|y|,

for each (t, x, y) ∈ J × R2;
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(H2) there exist functions qi ∈ C(J,R+), and Ωi : R+ → R+ nondecreasing such that

|hi(t, x)| ≤ qi(t)Ωi(|x|) for each (t, x) ∈ J × R, i = 1, 2, . . . ,m;

(H3) there exists a number M0 > 0 such that(
1− ‖p2‖ϕ0

[
γ

Γ(α)
+

(log T )α

Γ(α+ 1)

])
M0

m∑
i=1

(T − 1)βi

Γ(βi + 1)
‖qi‖Ωi(M0) + ‖p1‖ψ(M0)

(log T )α

Γ(α+ 1)

> 1,

where γ = T

∫ log T

0
uα−1e−udu and ‖p2‖ϕ0

[
γ

Γ(α)
+

(log T )α

Γ(α+ 1)

]
< 1.

Then the boundary value problem (1.1) has at least one solution on J.

Proof. Consider the operator ΩF : C(J,R) → P(C(J,R)) defined by (2.1). We will show that ΩF satisfies
the assumptions of the nonlinear alternative of Leray-Schauder type. The proof consists of several steps.
As a first step, we show that ΩF is convex for each x ∈ C(J,R). This step is obvious since SF,x is convex
(F has convex values), and therefore we omit the proof.

In the second step, we show that ΩF maps bounded sets (balls) into bounded sets in C(J,R). For a
positive number r, let Br = {x ∈ C(J,R) : ‖x‖ ≤ r} be a bounded ball in C(J,R). Then, for each
h ∈ ΩF (x), x ∈ Br, there exists v ∈ SF,x such that

h(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

v(s)
ds

s
+

m∑
i=1

Iβihi(t, x(t)).

Then for t ∈ J we have

|h(t)| ≤
m∑
i=1

1

Γ(βi)

∫ t

1
(t− s)βi−1|hi(s, x(s))|ds+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

|v(s)|ds
s

≤
m∑
i=1

(T − 1)βi

Γ(βi + 1)
‖qi‖Ωi(‖x‖)

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1
[
p1(s)ψ(‖x‖) + p2(s)

∣∣∣∣∣
∫ s

1
φ(s, τ)x(τ)dτ

∣∣∣∣∣
]
ds

s

≤
m∑
i=1

(T − 1)βi

Γ(βi + 1)
‖qi‖Ωi(‖x‖) + ‖p1‖ψ(‖x‖) (log T )α

Γ(α+ 1)
+ ‖p2‖ϕ0‖x‖

[
γ

Γ(α)
+

(log T )α

Γ(α+ 1)

]
.

Thus,

‖h‖ ≤
m∑
i=1

(T − 1)βi

Γ(βi + 1)
‖qi‖Ωi(r) + ‖p1‖ψ(r)

(log T )α

Γ(α+ 1)
+ ‖p2‖ϕ0r

[
γ

Γ(α)
+

(log T )α

Γ(α+ 1)

]
.

Now we show that ΩF maps bounded sets into equicontinuous sets of C(J,R). Let t1, t2 ∈ J with t1 < t2
and x ∈ Br. For each h ∈ ΩF (x), we obtain

|h(t2)− h(t1)| ≤

∣∣∣∣∣
m∑
i=1

1

Γ(βi)

∫ t2

1
(t2 − s)β1−1hi(s, x(s))ds−

m∑
i=1

1

Γ(βi)

∫ t1

1
(t1 − s)βi−1hi(s, x(s))ds

∣∣∣∣∣
+

∣∣∣∣∣ 1

Γ(α)

∫ t2

1

(
log

t2
s

)α−1

v(s)
ds

s
− 1

Γ(α)

∫ t1

1

(
log

t1
s

)α−1

v(s)
ds

s

∣∣∣∣∣
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≤
m∑
i=1

‖qi‖Ωi(r)

Γ(βi)

{∫ t1

1
[(t2 − s)βi−1 − (t1 − s)βi−1]ds+

∫ t2

t1

(t2 − s)β−1ds

}

+
‖p1‖ψ(r) + ‖p2‖ϕ0r(T − 1)

Γ(α)

∣∣∣∣∣
∫ t1

1

[(
log

t2
s

)α−1

−
(

log
t1
s

)α−1
]

1

s
ds

+

∫ t2

t1

(
log

t2
s

)α−1 1

s
ds

∣∣∣∣∣.
Obviously the right hand side of the above inequality tends to zero independently of x ∈ Br as t2−t1 → 0.

As ΩF satisfies the above three assumptions, therefore it follows by the Ascoli-Arzelá theorem that ΩF :
C(J,R)→ P(C(J,R)) is completely continuous.

In our next step, we show that ΩF is upper semicontinuous. It is known [15, Proposition 1.2] that ΩF will
be upper semicontinuous if we prove that it has a closed graph, since ΩF is already shown to be completely
continuous. Thus we will prove that ΩF has a closed graph. The proof is similar to that of Claim III of
Theorem 2.5, and thus is omitted.

Finally, we show there exists an open set U ⊆ C(J,R) with x /∈ ΩF (x) for any λ ∈ (0, 1) and all x ∈ ∂U.
Let λ ∈ (0, 1) and x ∈ λΩF (x). Then there exists v ∈ L1(J,R) with v ∈ SF,x such that, for t ∈ J , we have

|x(t)| ≤
m∑
i=1

(T − 1)βi

Γ(βi + 1)
‖qi‖Ωi(‖x‖) + ‖p1‖ψ(‖x‖) (log T )α

Γ(α+ 1)
+ ‖p2‖ϕ0‖x‖

[
γ

Γ(α)
+

(log T )α

Γ(α+ 1)

]
.

Consequently, we get (
1− ‖p2‖ϕ0

[
γ

Γ(α)
+

(log T )α

Γ(α+ 1)

])
‖x‖

m∑
i=1

(T − 1)βi

Γ(βi + 1)
‖qi‖Ωi(‖x‖) + ‖p1‖ψ(‖x‖) (log T )α

Γ(α+ 1)

≤ 1.

In view of (H3), there exists M such that ‖x‖ 6= M . Let us set

U = {x ∈ C(J,R) : ‖x‖ < M}.

Note that the operator ΩF : U → P(C(J,R)) is upper semicontinuous and completely continuous. From the
choice of U , there is no x ∈ ∂U such that x ∈ λΩF (x) for some λ ∈ (0, 1). Consequently, by the nonlinear
alternative of Leray-Schauder type (Lemma 2.4), we deduce that ΩF has a fixed point x ∈ U which is a
solution of the problem (1.1). This completes the proof.

Example 2.8. Consider the following mixed Hadamard and Riemann-Liouville fractional integro-differential
equation 

D1/2

(
x(t)−

4∑
i=1

I(2i+1/2hi(t, x(t))

)
∈ F (t, x(t),Kx(t)), t ∈ [1, e],

x(1) = 0,

(2.4)

where

hi(t, x(t)) =

(
1

i+
√

3 log t

)(
x(t)

25 + i

)
.

(i) Consider the multi-valued map F : [1, e]× R× R→ P(R) given by

x→ F (t, x,Kx) =

[
1

5 + t2

(
x2

1 + |x|
+ 1

)
+

1 + cos2 t

4

∫ t

1

e1−st

5 + st
x(s)ds

,
1

8 + 3t4

(
x2

2 + 3|x|
+ 1

)
+

1

4 + 2e3t

∫ t

1

e1−st

5 + st
x(s)ds

]
.

(2.5)



B. Ahmad, S. K. Ntouyas, J. Tariboon, J. Nonlinear Sci. Appl. 9 (2016), 6333–6347 6343

Here α = 1/2, β1 = 3/2, β2 = 5/2, β3 = 7/2, β4 = 9/2, m = 4, T = e. With the given data, we
find that ϕ0 = 1/6, |hi(t, x)| ≤ (1/(i +

√
3 log t))(|x|/(25 + i)), i = 1, 2, 3, 4 which satisfies (H2) with

qi(t) = 1/(i +
√

3 log t) and Ωi(|x|) = |x|/(25 + i), i = 1, 2, 3, 4. Since
∫ 1

0 u
−1/2e−udu =

√
πerf(1), where

erf(·) is the Gauss error function, we have γ = 4.06015694. For f ∈ F , we have

|f | ≤ max

(
1

5 + t2

(
x2

1 + |x|
+ 1

)
+

1 + cos2 t

4
K|x|, 1

8 + 3t4

(
x2

2 + 3|x|
+ 1

)
+

1

4 + 2e3t
K|x|

)
≤ 1

5 + t2
(|x|+ 1) +

1 + cos2 t

4
|Kx|.

Thus

‖F (t, x, y)‖ ≤ 1

5 + t2
(|x|+ 1) +

1 + cos2 t

4
|y|,

for all (t, x, y) ∈ [1, e] × R2 with p1(t) = 1/(5 + t2), p2(t) = (1 + cos2 t)/4 and ψ(|x|) = |x| + 1. Thus, the
condition (H1) is satisfied. Also we have ‖p1‖ = 1/6, ‖p2‖ = 1/2, ‖qi‖ = 1/i, i = 1, 2, 3, 4. We can find that
there exists a positive M0 > 0.5527464752 satisfying (H3).

Thus all conditions of Theorem 2.7 are satisfied. Therefore, by the conclusion of Theorem 2.7, the
problem (2.4) with the F (t, x,Kx) is given by (2.5) has at least one solution on [1, e].

2.2. The Lipschitz case

Here we prove the existence of solutions for the problem (1.1) with a nonconvex valued right hand side
by applying a fixed point theorem for multivalued maps due to Covitz and Nadler.

Let (X, d) be a metric space induced from the normed space (X; ‖ · ‖). Consider Hd : P(X)× P(X)→
R ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pb,cl(X), Hd) is a metric space and
(Pcl(X), Hd) is a generalized metric space (see [27]).

Definition 2.9. A multivalued operator N : X → Pcl(X) is called:

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 2.10 ([13]). Let (X, d) be a complete metric space. If N : X → Pcl(X) is a contraction, then
Fix(N) 6= ∅.

Theorem 2.11. Assume that:

(B1) F : J × R2 → Pcp(R) is such that F (·, x, y) : J → Pcp(R) is measurable for each x, y ∈ R;

(B2) Hd(F (t, x, y), F (t, x̄, ȳ)) ≤ m(t)(|x − x̄| + |y − ȳ|) for almost all t ∈ J and x, x̄, y, ȳ ∈ R with m ∈
C(J,R+) and d(0, F (t, 0, 0)) ≤ m(t) for almost all t ∈ J .

Then the boundary value problem (1.1) has at least one solution on J if

‖m‖ (log T )α

Γ(α+ 1)
(1 + ϕ0(T − 1)) < 1.

Proof. Observe that the set SF,x is nonempty for each x ∈ C(J,R) by the assumption (B1), so F has
a measurable selection (see [11, Theorem III.6]). Now we show that the operator ΩF , defined by (2.1)
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satisfies the assumptions of Lemma 2.10. To show that ΩF (x) ∈ Pcl((CJ,R)) for each x ∈ C(J,R), let
{un}n≥0 ∈ ΩF (x) be such that un → u (n → ∞) in C(J,R). Then u ∈ C(J,R) and there exists vn ∈ SF,xn
such that, for each t ∈ J ,

un(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

vn(s)
ds

s
+

m∑
i=1

Iβihi(t, xn(t)).

As F has compact values, we pass to a subsequence (if necessary) to obtain that vn converges to v in
L1(J,R). Thus, v ∈ SF,x and for each t ∈ J , we have

vn(t)→ v(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

v(s)
ds

s
+

m∑
i=1

Iβihi(t, x(t)).

Hence, u ∈ Ω(x).

Next we show that there exists δ < 1 (δ := ‖m‖ (log T )α

Γ(α+1) (1 + ϕ0(T − 1))) such that

Hd(ΩF (x),ΩF (x̄)) ≤ δ‖x− x̄‖ for each x, x̄ ∈ C1(J,R).

Let x, x̄ ∈ C1(J,R) and h1 ∈ ΩF (x). Then there exists v1(t) ∈ F (t, x(t),Kx(t)) such that, for each t ∈ J ,

h1(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

v1(s)
ds

s
+

m∑
i=1

Iβihi(t, x(t)).

By (B2), we have

Hd(F (t, x,Kx), F (t, x̄,Kx̄)) ≤ m(t)(|x(t)− x̄(t)|+ |Kx(t)−Kx̄(t)|).

So, there exists w ∈ F (t, x̄(t)) such that

|v1(t)− w| ≤ m(t)(|x(t)− x̄(t)|+ |Kx(t)−Kx̄(t)|), t ∈ J.

Define V : J → P(R) by

V (t) = {w ∈ R : |v1(t)− w| ≤ m(t)(|x(t)− x̄(t)|+ |Kx(t)−Kx̄(t)|)}.

Since the multivalued operator V (t) ∩ F (t, x̄(t),Kx̄(t)) is measurable ([11, Proposition III.4]), there exists
a function v2(t) which is a measurable selection for V . So v2(t) ∈ F (t, x̄(t),Kx̄(t)) and for each t ∈ J , we
have |v1(t)− v2(t)| ≤ m(t)(|x(t)− x̄(t)|+ |Kx(t)−Kx̄(t)|).

For each t ∈ J , let us define

h2(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

v2(s)
ds

s
+

m∑
i=1

Iβihi(t, x(t)).

Thus,

|h1(t)− h2(t)| ≤ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

|v1(s)− v2(s)|ds
s

≤ ‖m‖ (log T )α

Γ(α+ 1)
(1 + ϕ0(T − 1))‖x− x̄‖.

Hence,

‖h1 − h2‖ ≤ ‖m‖
(log T )α

Γ(α+ 1)
(1 + ϕ0(T − 1))‖x− x̄‖.
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Analogously, interchanging the roles of x and x, we obtain

Hd(ΩF (x),ΩF (x̄)) ≤ δ‖x− x̄‖ ≤ ‖m‖ (log T )α

Γ(α+ 1)
(1 + ϕ0(T − 1))‖x− x̄‖.

Since ΩF is a contraction, it follows by Lemma 2.10 that ΩF has a fixed point x which is a solution of
(1.1). This completes the proof.

Example 2.12. Consider the following mixed Hadamard and Riemann-Liouville fractional integro-differen-
tial equation 

D1/2

(
x(t)−

3∑
i=1

I(2i+1)/2hi(t, x(t))

)
∈ F (t, x(t),Kx(t)), t ∈ [1, e],

x(1) = 0,

(2.6)

where

h1(t, x) =
log t

4

|x|
1 + |x|

, h2(t, x) =
tan−1 |x|

5(1 + log t)
, h3(t, x) =

2e−t

3
sin |x|.

Let F : [1, e]× R2 → P(R) be a multivalued map given by

x→ F (t, x,Kx) =

[
0,

|x|
(
√

2 + log t)2(3 + |x|)
+

1

(
√

2 + log t)2
sin

∣∣∣∣∫ t

0
e−
√
t−sx(s)ds

∣∣∣∣+
1

9

]
. (2.7)

Then we have

sup{|x| : x ∈ F (t, x,Kx)} ≤ 2

(
√

2 + log t)2
+

1

9
,

and

Hd(F (t, x,Kx), F (t, x̄,Kx̄)) ≤ 1

(
√

2 + log t)2
(|x− x̄|+ |Kx−Kx̄|) .

Let m(t) = 1/((
√

2+log t)2). Then we have Hd(F (t, x,Kx), F (t, x̄,Kx̄)) ≤ m(t)|x−x̄| with d(0, F (t, 0, 0)) =
1/9 ≤ m(t) and ‖m‖ = 1/2. Further

‖m‖ (log T )α

Γ(α+ 1)
(1 + ϕ0(T − 1)) = 0.8065487605 < 1.

Thus all the conditions of Theorem 2.11 are satisfied. Therefore, by the conclusion of Theorem 2.11, the
problem (2.6) with F (t, x,Kx) given by (2.7) has at least one solution on [1, e].
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