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Abstract

Let ϕ be an analytic self-map of the unit disk D and u ∈ H(D), the space of analytic functions on D. The
weighted composition operator, denoted by uCϕ, is defined by (uCϕf)(z) = u(z)f(ϕ(z)), f ∈ H(D), z ∈ D.
In this paper, we give three different estimates for the essential norm of the operator uCϕ from H∞ into the
Zygmund space, denoted by Z. In particular, we show that ‖uCϕ‖e,H∞→Z ≈ lim supn→∞ ‖uϕn‖Z . c©2016
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1. Introduction and preliminaries

Let D be the open unit disk in the complex plane C and H(D) be the space of analytic functions on D.
Let H∞ denote the bounded analytic function space, i.e.,

H∞ = {f ∈ H(D) : sup
z∈D
|f(z)| <∞}.

The Bloch space, denoted by B, is the space of all functions f ∈ H(D) such that

‖f‖B = |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)| <∞.

For more details of the Bloch space we refer the reader to [21].
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Let Z denote the set of all functions f ∈ H(D) ∩ C(D) such that

‖f‖ = sup
|f(ei(θ+h)) + f(ei(θ−h))− 2f(eiθ)|

h
<∞,

where the supremum is taken over all θ ∈ R and h > 0. By Theorem 5.3 of [3], we see that f ∈ Z if and
only if supz∈D(1− |z|2)|f ′′(z)| <∞ . Z, called the Zygmund space, a Banach space with the norm defined
by

‖f‖Z = |f(0)|+ |f ′(0)|+ sup
z∈D

(1− |z|2)|f ′′(z)|.

See [1, 3, 6] for more details on the space Z.
Let ϕ be an analytic self-map of D. The composition operator Cϕ is defined by

(Cϕf)(z) = f(ϕ(z)), f ∈ H(D).

Let u ∈ H(D). The weighted composition operator, denoted by uCϕ, is defined by

(uCϕf)(z) = u(z)f(ϕ(z)), f ∈ H(D), z ∈ D.

Let X,Y be Banach spaces and ‖ · ‖X→Y denotes the operator norm. Recall that the essential norm of
a bounded linear operator T : X → Y is its distance to the set of compact operators K mapping X into Y ,
that is,

‖T‖e,X→Y = inf{‖T −K‖X→Y : K is a compact operator}.
It is well-known that ‖T‖e,X→Y = 0 if and only if T : X → Y is compact.

The composition operator Cϕ : B → B is bounded for any ϕ by the Schwarz-Pick Lemma. Madigan and
Matheson studied the compactness of the operator Cϕ : B → B in [11]. Montes-Rodrieguez [12] studied the
essential norm of the operator Cϕ : B → B and got the exact value for it, i.e.,

‖Cϕ‖e,B→B = lim
s→1

sup
|ϕ(z)|>s

(1− |z|2)|ϕ′(z)|
1− |ϕ(z)|2

.

Tjani [16] proved that Cϕ : B → B is compact if and only if lim|a|→1 ‖Cϕσa‖B = 0, where σa(z) = a−z
1−āz .

Wulan et al. [17] proved that Cϕ : B → B is compact if and only if limj→∞ ‖ϕj‖B = 0. In [20], Zhao obtained
that

‖Cϕ‖e,B→B =
e

2
lim sup
n→∞

‖ϕn‖B.

The boundedness and compactness of the operator uCϕ : B → B were studied in [13]. The essential norm
of the operator uCϕ : B → B was studied in [5, 10].

The composition operators, weighted composition operators and related operators on the Zygmund space
were studied in [1, 2, 4, 6–9, 14, 15, 18, 19]. In [2], the authors studied the operator uCϕ : H∞ → Z. Among
others, they showed that uCϕ : H∞ → Z is compact if and only if limn→∞ ‖uϕn‖Z = 0. In fact, from the
proof of Theorem 2 in [2], or [14, 19], we find that they obtained the following result.

Theorem 1.1 ([2, 14, 19]). Let u ∈ H(D) and ϕ be an analytic self-map of D such that the operator
uCϕ : H∞ → Z is bounded. Then the following statements are equivalent:

(a) The operator uCϕ : H∞ → Z is compact.

(b) limn→∞ ‖uϕn‖Z = 0.

(c)
lim sup
|ϕ(w)|→1

‖uCϕfϕ(w)‖Z = lim sup
|ϕ(w)|→1

‖uCϕgϕ(w)‖Z = lim sup
|ϕ(w)|→1

‖uCϕhϕ(w)‖Z = 0,

where

fa(z) =
1− |a|2

1− az
, ga(z) =

(1− |a|2)2

(1− az)2
, ha(z) =

(1− |a|2)3

(1− az)3
, a ∈ D.
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(d)

lim
|ϕ(z)|→1

(1− |z|2)|u′′(z)| = lim
|ϕ(z)|→1

(1− |z|2)|u(z)||ϕ′(z)|2

(1− |ϕ(z)|2)2

= lim
|ϕ(z)|→1

(1− |z|2)|2u′(z)ϕ′(z) + u(z)ϕ′′(z)|
1− |ϕ(z)|2

= 0.

Motivated by the above result, in this paper, we completely characterize the essential norm of the
operator uCϕ from H∞ to the Zygmund space.

Throughout this paper, we say that A . B if there exists a constant C such that A ≤ CB. The symbol
A ≈ B means that A . B . A.

2. Main results and proofs

In this section, we give some estimates of the essential norm for the operator uCϕ : H∞ → Z. For this
purpose, we need to state a lemma.

Lemma 2.1 ([16]). Let X,Y be two Banach spaces of analytic functions on D. Suppose that

(1) the point evaluation functionals on Y are continuous,

(2) the closed unit ball of X is a compact subset of X in the topology of uniform convergence on compact
sets,

(3) T : X → Y is continuous when X and Y are given the topology of uniform convergence on compact
sets.

Then, T is a compact operator if and only if given a bounded sequence {fn} in X such that fn → 0 uniformly
on compact sets, then the sequence {Tfn} converges to zero in the norm of Y .

Theorem 2.2. Let u ∈ H(D) and ϕ be an analytic self-map of D such that uCϕ : H∞ → Z is bounded.
Then

‖uCϕ‖e,H∞→Z ≈ max
{
A,B,C

}
≈ max

{
E,F,G

}
,

where
A := lim sup

|a|→1
‖uCϕfa‖Z , B := lim sup

|a|→1
‖uCϕga‖Z , C := lim sup

|a|→1
‖uCϕha‖Z ,

E := lim sup
|ϕ(z)|→1

(1− |z|2)|2u′(z)ϕ′(z) + u(z)ϕ′′(z)|
1− |ϕ(z)|2

, F := lim sup
|ϕ(z)|→1

(1− |z|2)|u′′(z)|,

and

G := lim sup
|ϕ(z)|→1

(1− |z|2)|u(z)||ϕ′(z)|2

(1− |ϕ(z)|2)2
.

Proof. First, we prove that max
{
A,B,C

}
. ‖uCϕ‖e,H∞→Z . Let a ∈ D. It is easy to see that fa, ga, ha ∈ H∞

and fa, ga, ha converge to 0 uniformly on compact subsets of D. Thus, for any compact operator K : H∞ →
Z, by Lemma 2.1 we have

lim
|a|→1

‖Kfa‖Z = 0, lim
|a|→1

‖Kga‖Z = 0, lim
|a|→1

‖Kha‖Z = 0.

Hence

‖uCϕ −K‖H∞→Z & lim sup
|a|→1

‖(uCϕ −K)fa‖Z
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≥ lim sup
|a|→1

‖uCϕfa‖Z − lim sup
|a|→1

‖Kfa‖Z = A,

‖uCϕ −K‖H∞→Z & lim sup
|a|→1

‖(uCϕ −K)ga‖Z

≥ lim sup
|a|→1

‖uCϕga‖Z − lim sup
|a|→1

‖Kga‖Z = B,

and

‖uCϕ −K‖H∞→Z & lim sup
|a|→1

‖(uCϕ −K)ha‖Z

≥ lim sup
|a|→1

‖uCϕha‖Z − lim sup
|a|→1

‖Kha‖Z = C.

Therefore, we obtain

‖uCϕ‖e,H∞→Z = inf
K
‖uCϕ −K‖H∞→Z & max

{
A,B,C

}
.

Next, we will prove that ‖uCϕ‖e,H∞→Z & max
{
E,F,G

}
. Let {zj}j∈N be a sequence in D such that

|ϕ(zj)| → 1 as j →∞. Define

kj(z) =
1− |ϕ(zj)|2

(1− ϕ(zj)z)
− 5

3

(1− |ϕ(zj)|2)2

(1− ϕ(zj)z)2
+

2

3

(1− |ϕ(zj)|2)3

(1− ϕ(zj)z)3
,

pj(z) =
1− |ϕ(zj)|2

(1− ϕ(zj)z)
− (1− |ϕ(zj)|2)2

(1− ϕ(zj)z)2
+

1

3

(1− |ϕ(zj)|2)3

(1− ϕ(zj)z)3
,

and

qj(z) =
1− |ϕ(zj)|2

(1− ϕ(zj)z)
− 2

(1− |ϕ(zj)|2)2

(1− ϕ(zj)z)2
+

(1− |ϕ(zj)|2)3

(1− ϕ(zj)z)3
.

It is easy to see that all kj , pj and qj belong to H∞ and converge to 0 uniformly on compact subsets of D.
Moreover,

kj(ϕ(zj)) = 0, k
′′
j (ϕ(zj)) = 0, |k′j(ϕ(zj))| =

1

3

|ϕ(zj)|
(1− |ϕ(zj)|2)

,

p′j(ϕ(zj)) = 0, p′′j (ϕ(zj)) = 0, |pj(ϕ(zj))| =
1

3
,

qj(ϕ(zj)) = 0, q′j(ϕ(zj)) = 0, |q′′j (ϕ(zj))| =
2|ϕ(zj)|2

(1− |ϕ(zj)|2)2
.

Then for any compact operator K : H∞ → Z, by Lemma 2.1 we obtain

‖uCϕ −K‖H∞→Z & lim sup
j→∞

‖uCϕ(kj)‖Z − lim sup
j→∞

‖K(kj)‖Z

& lim sup
j→∞

(1− |zj |2)|2u′(zj)ϕ′(zj) + u(zj)ϕ
′′(zj)||ϕ(zj)|

1− |ϕ(zj)|2
,

‖uCϕ −K‖H∞→Z & lim sup
j→∞

‖uCϕ(pj)‖Z − lim sup
j→∞

‖K(pj)‖Z

& lim sup
j→∞

(1− |zj |2)|u′′(zj)|,

and

‖uCϕ −K‖H∞→Z & lim sup
j→∞

‖uCϕ(qj)‖Z − lim sup
j→∞

‖K(qj)‖Z
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& lim sup
j→∞

(1− |zj |2)|u(zj)||ϕ′(zj)|2|ϕ(zj)|2

(1− |ϕ(zj)|2)2
.

From the definition of the essential norm, we obtain

‖uCϕ‖e,H∞→Z = inf
K
‖uCϕ −K‖H∞→Z

& lim sup
j→∞

(1− |zj |2)|2u′(zj)ϕ′(zj) + u(zj)ϕ
′′(zj)||ϕ(zj)|

1− |ϕ(zj)|2

= lim sup
|ϕ(z)|→1

(1− |z|2)|2u′(z)ϕ′(z) + u(z)ϕ′′(z)|
1− |ϕ(z)|2

= E,

‖uCϕ‖e,H∞→Z = inf
K
‖uCϕ −K‖H∞→Z & lim sup

j→∞
(1− |zj |2)|u′′(zj)|

= lim sup
|ϕ(z)|→1

(1− |z|2)|u′′(z)| = F,

and

‖uCϕ‖e,H∞→Z = inf
K
‖uCϕ −K‖H∞→Z

& lim sup
j→∞

(1− |zj |2)|u(zj)||ϕ′(zj)|2|ϕ(zj)|2

(1− |ϕ(zj)|2)2

= lim sup
|ϕ(z)|→1

(1− |z|2)|u(z)||ϕ′(z)|2

(1− |ϕ(z)|2)2
= G.

Hence,
‖uCϕ‖e,H∞→Z & max

{
E,F,G

}
.

Finally, we prove that

‖uCϕ‖e,H∞→Z . max
{
A,B,C

}
and ‖uCϕ‖e,H∞→Z . max

{
E,F,G

}
.

For r ∈ [0, 1), set Kr : H(D)→ H(D) by

(Krf)(z) = fr(z) = f(rz), f ∈ H(D).

It is obvious that fr → f uniformly on compact subsets of D as r → 1. Moreover, the operator Kr is
compact on H∞ and ‖Kr‖H∞→H∞ ≤ 1. Let {rj} ⊂ (0, 1) be a sequence such that rj → 1 as j →∞. Then
for all positive integers j, the operator uCϕKrj : H∞ → Z is compact. By the definition of the essential
norm, we get

‖uCϕ‖e,H∞→Z ≤ lim sup
j→∞

‖uCϕ − uCϕKrj‖H∞→Z . (2.1)

Therefore, we only need to prove that

lim sup
j→∞

‖uCϕ − uCϕKrj‖H∞→Z . max
{
A,B,C

}
and

lim sup
j→∞

‖uCϕ − uCϕKrj‖H∞→Z . max
{
E,F,G

}
.

For any f ∈ H∞ such that ‖f‖∞ ≤ 1, consider

‖(uCϕ − uCϕKrj )f‖Z = |u(0)f(ϕ(0))− u(0)f(rjϕ(0))|+ ‖u(f − frj ) ◦ ϕ‖∗∗
+ |u′(0)(f − frj )(ϕ(0)) + u(0)(f − frj )′(ϕ(0))ϕ′(0)|.

(2.2)
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Here ‖g‖∗∗ = supz∈D(1− |z|2)|g′′(z)|. It is obvious that

lim
j→∞

|u(0)f(ϕ(0))− u(0)f(rjϕ(0))| = 0 (2.3)

and

lim
j→∞

|u′(0)(f − frj )(ϕ(0)) + u(0)(f − frj )′(ϕ(0))ϕ′(0)| = 0. (2.4)

Now, we consider

lim sup
j→∞

‖u · (f − frj ) ◦ ϕ‖∗∗ ≤ Q1 +Q2 +Q3 +Q4 +Q5 +Q6, (2.5)

where

Q1 := lim sup
j→∞

sup
|ϕ(z)|≤rN

(1− |z|2)|(f − frj )′(ϕ(z))||2u′(z)ϕ′(z) + u(z)ϕ′′(z)|,

Q2 := lim sup
j→∞

sup
|ϕ(z)|>rN

(1− |z|2)|(f − frj )′(ϕ(z))||2u′(z)ϕ′(z) + u(z)ϕ′′(z)|,

Q3 := lim sup
j→∞

sup
|ϕ(z)|≤rN

(1− |z|2)|(f − frj )(ϕ(z))||u′′(z)|,

Q4 := lim sup
j→∞

sup
|ϕ(z)|>rN

(1− |z|2)|(f − frj )(ϕ(z))||u′′(z)|,

Q5 := lim sup
j→∞

sup
|ϕ(z)|≤rN

(1− |z|2)|(f − frj )′′(ϕ(z))||ϕ′(z)|2|u(z)|,

Q6 := lim sup
j→∞

sup
|ϕ(z)|>rN

(1− |z|2)|(f − frj )′′(ϕ(z))||ϕ′(z)|2|u(z)|,

and N ∈ N is large enough such that rj ≥ 1
2 for all j ≥ N . Since uCϕ : H∞ → Z is bounded, from the proof

of Theorem 1 in [2], we see that u ∈ Z,

J̃1 := sup
z∈D

(1− |z|2)|2u′(z)ϕ′(z) + u(z)ϕ′′(z)| <∞

and
J̃2 := sup

z∈D
(1− |z|2)|ϕ′(z)|2|u(z)| <∞.

Since rjf
′
rj → f ′, as well as r2

j f
′′
rj → f ′′ uniformly on compact subsets of D as j →∞, we have

Q1 ≤ J̃1 lim sup
j→∞

sup
|w|≤rN

|f ′(w)− rjf ′(rjw)| = 0, (2.6)

Q5 ≤ J̃2 lim sup
j→∞

sup
|w|≤rN

|f ′′(w)− r2
j f
′′(rjw)| = 0, (2.7)

and

Q3 ≤ ‖u‖Z lim sup
j→∞

sup
|w|≤rN

|f(w)− f(rjw)| = 0. (2.8)

Next, we consider Q2. We have Q2 ≤ lim supj→∞(S1 + S2), where

S1 := sup
|ϕ(z)|>rN

(1− |z|2)|f ′(ϕ(z))||2u′(z)ϕ′(z) + u(z)ϕ′′(z)|

and

S2 := sup
|ϕ(z)|>rN

(1− |z|2)rj |f ′(rjϕ(z))||2u′(z)ϕ′(z) + u(z)ϕ′′(z)|.
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First we estimate S1. Using the fact that ‖f‖∞ ≤ 1, we have

S1 = sup
|ϕ(z)|>rN

(1− |z|2)|f ′(ϕ(z))||2u′(z)ϕ′(z) + u(z)ϕ′′(z)|3(1− |ϕ(z)|2)

|ϕ(z)|
|ϕ(z)|

3(1− |ϕ(z)|2)

.
‖f‖∞
rN

sup
|ϕ(z)|>rN

(1− |z|2)|2u′(z)ϕ′(z) + u(z)ϕ′′(z)||ϕ(z)|
3(1− |ϕ(z)|2)

. sup
|ϕ(z)|>rN

sup
|a|>rN

(1− |z|2)|2u′(z)ϕ′(z) + u(z)ϕ′′(z)||ϕ(z)|
3(1− |ϕ(z)|2)

. sup
|a|>rN

‖uCϕ(fa −
5

3
ga +

2

3
ha)‖Z

. sup
|a|>rN

‖uCϕ (fa)‖Z +
5

3
sup
|a|>rN

‖uCϕ (ga)‖Z +
2

3
sup
|a|>rN

‖uCϕ (ha)‖Z .

(2.9)

Here we used the fact that supw∈D(1 − |w|2)|f ′(w)| . ‖f‖∞ for any f ∈ H∞, since H∞ ⊂ B and ‖f‖B ≤
‖f‖∞. Taking limit as N →∞ we obtain

lim sup
j→∞

S1 . lim sup
|a|→1

‖uCϕ (fa)‖Z + lim sup
|a|→1

‖uCϕ (ga)‖Z + lim sup
|a|→1

‖uCϕ (ha)‖Z

= A+B + C.

Similarly, we have lim supj→∞ S2 . A+B + C, i.e., we get that

Q2 . A+B + C . max
{
A,B,C

}
. (2.10)

From (2.9), we see that

lim sup
j→∞

S1 . lim sup
|ϕ(z)|→1

(1− |z|2)|2u′(z)ϕ′(z) + u(z)ϕ′′(z)|
1− |ϕ(z)|2

= E.

Similarly, we have lim supj→∞ S2 . E. Therefore,

Q2 . E. (2.11)

Also for Q4, we have Q4 ≤ lim supj→∞(S3 + S4), where

S3 := sup
|ϕ(z)|>rN

(1− |z|2)|f(ϕ(z))||u′′(z)|, S4 := sup
|ϕ(z)|>rN

(1− |z|2)|f(rjϕ(z))||u′′(z)|.

After a calculation, we have

S3 = sup
|ϕ(z)|>rN

(1− |z|2)|f(ϕ(z))||u′′(z)|

. ‖f‖∞ sup
|ϕ(z)|>rN

1

3
(1− |z|2)|u′′(z)|

. sup
|ϕ(z)|>rN

sup
|a|>rN

1

3
(1− |z|2)|u′′(z)|

. sup
|a|>rN

‖uCϕ (fa)‖Z + sup
|a|>rN

‖uCϕ (ga)‖Z +
1

3
sup
|a|>rN

‖uCϕ (ha)‖Z

. sup
|a|>rN

‖uCϕ (fa)‖Z + sup
|a|>rN

‖uCϕ (ga)‖Z + sup
|a|>rN

‖uCϕ (ha)‖Z .

(2.12)
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Taking limit as N →∞ we obtain

lim sup
j→∞

S3 . lim sup
|a|→1

‖uCϕ (fa)‖Z + lim sup
|a|→1

‖uCϕ (ga)‖Z + lim sup
|a|→1

‖uCϕ (ha)‖Z

= A+B + C.

Similarly, we have lim supj→∞ S4 . A+B + C, i.e., we get that

Q4 . A+B + C . max
{
A,B,C

}
. (2.13)

From (2.12), we see that
lim sup
j→∞

S3 . lim sup
|ϕ(z)|→1

(1− |z|2)|u′′(z)| = F.

Similarly, we have that lim supj→∞ S4 . F . Therefore,

Q4 . F. (2.14)

Also, for Q6, we have Q6 ≤ lim supj→∞(S5 + S6), where

S5 := sup
|ϕ(z)|>rN

(1− |z|2)|f ′′(ϕ(z))||ϕ′(z)|2|u(z)|, S6 := sup
|ϕ(z)|>rN

(1− |z|2)r2
j |f
′′
(rjϕ(z))||ϕ′(z)|2|u(z)|.

After a calculation, we have

S5 . ‖f‖∞ sup
|ϕ(z)|>rN

(1− |z|2)|ϕ′(z)|2|u(z)| 2|ϕ(z)|2

(1− |ϕ(z)|2)2

. sup
|ϕ(z)|>rN

(1− |z|2)|ϕ′(z)|2|u(z)| 2|ϕ(z)|2

(1− |ϕ(z)|2)2

. sup
|a|>rN

‖uCϕ (fa − 2ga + ha)‖Z

. sup
|a|>rN

(
‖uCϕ (fa)‖Z + ‖uCϕ (ga)‖Z + ‖uCϕ (ha)‖Z

)
.

(2.15)

Taking limit as N →∞ we obtain

lim sup
j→∞

S5 . lim sup
|a|→1

‖uCϕ (fa)‖Z + lim sup
|a|→1

‖uCϕ (ga)‖Z + lim sup
|a|→1

‖uCϕ (ha)‖Z

= A+B + C.

Similarly, we get lim supj→∞ S6 . A+B + C, i.e., we have

Q6 . A+B + C . max
{
A,B,C

}
. (2.16)

From (2.15), we obtain

lim sup
j→∞

S5 . lim sup
|ϕ(z)|→1

(1− |z|2)|ϕ′(z)|2|u(z)|
(1− |ϕ(z)|2)2

= G.

Similarly, we obtain lim supj→∞ S6 . G. Therefore,

Q6 . G. (2.17)

Hence, by (2.2)-(2.8), (2.10), (2.13) and (2.16) we get

lim sup
j→∞

‖uCϕ − uCϕKrj‖H∞→Z = lim sup
j→∞

sup
‖f‖∞≤1

‖(uCϕ − uCϕKrj )f‖Z

= lim sup
j→∞

sup
‖f‖∞≤1

‖u · (f − frj ) ◦ ϕ‖∗∗ . max
{
A,B,C

}
.

(2.18)
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Similarly, by (2.2)-(2.8), (2.11), (2.14) and (2.17) we get

lim sup
j→∞

‖uCϕ − uCϕKrj‖H∞→Z . max
{
E,F,G

}
. (2.19)

Therefore, by (2.1), (2.18) and (2.19), we obtain

‖uCϕ‖e,H∞→Z . max
{
A,B,C

}
and ‖uCϕ‖e,H∞→Z . max

{
E,F,G

}
.

This completes the proof of Theorem 2.2.

Theorem 2.3. Let u ∈ H(D) and ϕ be an analytic self-map of D such that uCϕ : H∞ → Z is bounded.
Then

‖uCϕ‖e,H∞→Z ≈ lim sup
n→∞

‖uϕn‖Z .

Proof. First, we prove that
‖uCϕ‖e,H∞→Z ≥ lim sup

n→∞
‖uϕn‖Z .

Let n be any positive integer and fn(z) = zn. Then ‖fn‖∞ = 1 and fn uniformly converges to zero on
compact subsets of D. By Lemma 2.1, we have limn→∞ ‖Kfn‖Z = 0. Hence,

‖uCϕ −K‖ ≥ lim sup
n→∞

‖(uCϕ −K)fn‖Z ≥ lim sup
n→∞

‖uCϕfn‖Z .

Therefore, by the definition of essential norm we get

‖uCϕ‖e,H∞→Z ≥ lim sup
n→∞

‖uCϕfn‖Z = lim sup
n→∞

‖uϕn‖Z . (2.20)

Next, we prove that
‖uCϕ‖e,H∞→Z . lim sup

n→∞
‖uϕn‖Z .

Since uCϕ : H∞ → Z is bounded, by Theorem 1 of [2] we see that

P := sup
k≥0
‖uϕk‖Z <∞.

Consider the Maclaurin expansion of fa, where

fa(z) = (1− |a|2)
∞∑
k=0

ākzk.

For any fix positive integer n ≥ 2, it follows from the linearity of uCϕ and the triangle inequality that

‖uCϕfa‖Z ≤ (1− |a|2)

∞∑
k=0

|a|k‖uϕk‖Z

= (1− |a|2)

n−1∑
k=0

|a|k‖uϕk‖Z + (1− |a|2)

∞∑
k=n

|a|k‖uϕk‖Z

≤ Pn(1− |a|2) + (1− |a|2)

∞∑
k=n

|a|k‖uϕk‖Z

≤ Pn(1− |a|2) + 2 sup
k≥n
‖uϕk‖Z .
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Letting |a| → 1 in the above inequality leads to

lim sup
|a|→1

‖uCϕfa‖Z ≤ 2 sup
k≥n
‖uϕk‖Z

for any positive integer n ≥ 2. Thus,

lim sup
|a|→1

‖uCϕfa‖Z . lim sup
k→∞

‖uϕk‖Z .

Similarly, we can prove that

lim sup
|a|→1

‖uCϕga‖Z . lim sup
n→∞

‖uϕn‖Z , lim sup
|a|→1

‖uCϕha‖Z . lim sup
n→∞

‖uϕn‖Z .

Hence,
max

{
A,B,C

}
. lim sup

n→∞
‖uϕn‖Z .

Therefore, by Theorem 2.2 we obtain

‖uCϕ‖e,H∞→Z . max
{
A,B,C

}
. lim sup

n→∞
‖uϕn‖Z . (2.21)

By (2.20) and (2.21), we get the desired result. The proof is completed.
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