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Abstract

Let ¢ be an analytic self-map of the unit disk D and v € H(ID), the space of analytic functions on . The
weighted composition operator, denoted by uCy, is defined by (uCy, f)(z) = u(z) f(¢(2)), f € H(D), z € D.
In this paper, we give three different estimates for the essential norm of the operator uC, from H into the
Zygmund space, denoted by Z. In particular, we show that ||uC,||¢,r~—z ~ limsup,,_ |[ue™|z. ©2016
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1. Introduction and preliminaries

Let D be the open unit disk in the complex plane C and H (D) be the space of analytic functions on D.
Let H*® denote the bounded analytic function space, i.e.,

H = {f € HD) :s1p|f()| < o0},

The Bloch space, denoted by B, is the space of all functions f € H(ID) such that

1flls = 1£(0)] + igg(l — 2)If'(2)] < 0.

For more details of the Bloch space we refer the reader to [21].
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Let Z denote the set of all functions f € H(D) N C(D) such that

% ) i(0—h)\ _ %
171 = sup HEO) SO 211y

where the supremum is taken over all § € R and h > 0. By Theorem 5.3 of [3], we see that f € Z if and
only if sup,cp(1 — |2]?)|f"(2)] < 0o . Z, called the Zygmund space, a Banach space with the norm defined
by

< 00,

£z = 1£(0)] + [£/(0)] + 225(1 = l2)1f"(2)]-

See [1I, B, 6] for more details on the space Z.
Let ¢ be an analytic self-map of ID. The composition operator C, is defined by

(Cof)(z) = fle(2)), feHD).
Let u € H(D). The weighted composition operator, denoted by uCl,, is defined by

(uCof)(2) = u(2) f(p(2)), feHD), zeD.

Let X,Y be Banach spaces and || - || x—y denotes the operator norm. Recall that the essential norm of

a bounded linear operator T': X — Y is its distance to the set of compact operators K mapping X into Y,
that is,

I

It is well-known that ||T||¢,xy = 0 if and only if 7': X — Y is compact.

The composition operator C,, : B — B is bounded for any ¢ by the Schwarz-Pick Lemma. Madigan and
Matheson studied the compactness of the operator Cy, : B — B in [11]. Montes-Rodrieguez [12] studied the
essential norm of the operator C,, : B — B and got the exact value for it, i.e.,

: (1= 12")¢'(2)]
|Colle.8—B = lim sup .
v - —1 lp(2)|>s 1- |SO(Z)|2

le.x—y = Inf{||T— K| x>y : K is a compact operator}.

a—z
1-az"
Wulan et al. [17] proved that Cy, : B — B is compact if and only if lim;_, [|¢’ ||z = 0. In [20], Zhao obtained
that

Tjani [16] proved that C, : B — B is compact if and only if lim|q_; [|[Cypoalls = 0, where o,(2) =

e,
1Clle.55 = 5 limsup [|" |-

n—oo
The boundedness and compactness of the operator uCy, : B — B were studied in [I3]. The essential norm
of the operator uCy, : B — B was studied in [5], [10].

The composition operators, weighted composition operators and related operators on the Zygmund space
were studied in [, 2} 4} [6-9, 14, 15, 18| 19]. In [2], the authors studied the operator uCy, : H>* — Z. Among
others, they showed that uC, : H* — Z is compact if and only if lim,_,« [[u¢™||z = 0. In fact, from the
proof of Theorem 2 in [2], or [14] [19], we find that they obtained the following result.

Theorem 1.1 ([2, 14, 19]). Let u € H(D) and ¢ be an analytic self-map of D such that the operator
uCy : H*® — Z is bounded. Then the following statements are equivalent:

(a) The operator uCy, : H® — Z is compact.
(b) limy 00 lue™|z = 0.

(c)
limsup [[uCy fow)llz = limsup [[uCyg,w)llz = limsup [[uCphuw)llz =0,
lo(w)|—1 lp(w)|—1 lp(w)|—=1

where
~1—|af? ~ (1—lal?)? (1= la?)?
fa(Z) - ) ga(Z) - (1 —62)2 Y a(z) - (1 —62)3 9

e D.
1—az ¢
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(d)

(L= 2 lu(2)ll¢' (=)

lim (1 —|z]?)[u"(2)] = lim

lo(z)| =1 lio(z)| -1 (1= le(2)[?)?
o A |2[%) |20/ (2) ' (2) + u(2) " (2)] _ 0.
()| =1 1 —Jp(2)?

Motivated by the above result, in this paper, we completely characterize the essential norm of the
operator uCy, from H to the Zygmund space.

Throughout this paper, we say that A < B if there exists a constant C' such that A < CB. The symbol
A ~ B means that A < B < A.

2. Main results and proofs

In this section, we give some estimates of the essential norm for the operator uCy, : H* — Z. For this
purpose, we need to state a lemma.

Lemma 2.1 ([16]). Let X,Y be two Banach spaces of analytic functions on D. Suppose that

(1) the point evaluation functionals on'Y are continuous,

(2) the closed unit ball of X is a compact subset of X in the topology of uniform convergence on compact
sets,

(3) T : X =Y is continuous when X and Y are given the topology of uniform convergence on compact
sets.

Then, T is a compact operator if and only if given a bounded sequence {f,,} in X such that f, — 0 uniformly
on compact sets, then the sequence {T f,} converges to zero in the norm of Y.

Theorem 2.2. Let u € H(D) and ¢ be an analytic self-map of D such that uCy, : H*® — Z is bounded.

Then
[uCy|le,ro—z ~ max {A, B,C} ~ max {E, F,G},
where
A:=limsup [[uCyfallz, B :=limsup [[uCugallz, C :=limsup [[uCuha| 5,
la]—1 la|—1 la|—1
1— 2 2/ / "
B iy L EPIREE) H0E O e
lo(2)|—1 1 —[p(2)] lo(2)|—1
and

— limsup L 12%)[u(2)]|¢' (2)]?
¢= |1g0(z)|—3 (1—=le(z)»?

Proof. First, we prove that max {A, B, C} S |uCylle,reo—z- Let a € D. It is easy to see that fo, ga, ha € H™
and fq, ga, he converge to 0 uniformly on compact subsets of ID. Thus, for any compact operator K : H>* —
Z, by Lemma [2.1] we have

lim |Kfullz =0, lim ||[Kgslz=0, lim ||[Khyl|z=0.
al—1 al—1 la]—1

Hence

|uCy — K||go—z 2 limsup [[(uCy, — K) fu] 2

la]—1
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> limsup ||uC, ful|z — limsup | K fu||z = A,

la]—1 la]—1

|uCy — K|l ooz 2 limsup [|(uCyp — K)gallz

la]—1

> limsup |[uCyugq|lz — limsup || Kg.||z = B,

la|]—1 la]—1
and

JuCy — K[z 2 limsup [ (uCyy — K )hal|z

la]—1

> limsup [|[uC,hg||z — limsup || Khy|z = C.

la]—1 la]—1
Therefore, we obtain
|uCylle, ooz = i?{f [uCy — K||g=—z 2 max {A,B,C}.

Next, we will prove that [|uCy|le, gz 2 max {E,F,G}. Let {z;};en be a sequence in D such that
lo(2)| = 1 as j — oo. Define

and

()= 12 () (=l (1= le(z)l*)°
i(2) = .
1 —w(z)2) A=w(z)2)? (1-9(z)2)?
It is easy to see that all k;,p; and g; belong to H* and converge to 0 uniformly on compact subsets of D.
Moreover,

ki(e(2)) =0, k:;»/(so(zj)) =0, [Kj(e(z))|= :1))(1 lﬁfj@bpy
Pi(ele) =0, i(ele) =0, Ips(elzp)] = 5

i | ) 2Llz)?
4i(p(z)) = 0, qj(gp(z])) =0, |qJ (p(2))l 1- |<p(2’j)|2)2

Then for any compact operator K : H* — Z, by Lemma [2.1| we obtain

[uCp — K|z 2 limsup [[uCy (k;)||z — limsup || K (k)| =

j—o0 J—00

(L — Iz 120/ () ' (2) + ulz)#" (2) 10 (25)]

2 limsup

j—r00 1— lp(z)? ’
[uCyp — K|~z 2 limsup [[uCly(p;s)|lz — limsup || K(p;)||z
j—o0 Jj—o0

2 limsup(1 — |2[*)[u" (25)],
J—00

and

|[uCy — K|lgeo—z Z limsup [[uCy(g;)||z — limsup || K(g;)| =

j—o0 j—o0
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< tmsup (L= PGP ) L) P
S (T=Te(z)PP

From the definition of the essential norm, we obtain

”UC<p e,H®—Z = l%f Huctp - KHHOO%Z
N € 1 7 o o e e o ]
T o 1= lo(z)[?
1 — 122 / / "
 map (L EPIZICIE) a0 _
lo(2)|—1 1 —[p(2)]
|uClp|le, ooz = i%f [uCyp — K||g=—z Z limsup(1 — |2)2)[u” (25)]

J—00

= limsup(1 — |2})|u”(2)| = F,

le(2)|—1
and
[uCylle, ooz = i?(f [uCyp — K| g2
< tmsup L= P ) Ple)
™ i (L= 1lp(2)%)?
1— 2 / 2
imsup U EPRGILEP
lo(2)|—1 (1= le(2)]?)

Hence,

|uCylle,r~—z 2 max {E, F,G}.
Finally, we prove that
[uCplle,r>—z Smax{A,B,C} and |[uCyller=—z S max{E,F,G}.
For r € [0,1), set K, : H(D) — H(D) by
(K f)(2) = fr(2) = f(rz), fe HD).

It is obvious that f, — f uniformly on compact subsets of D as r — 1. Moreover, the operator K, is
compact on H> and || Ky||ge— g~ < 1. Let {r;} C (0,1) be a sequence such that r; — 1 as j — co. Then
for all positive integers j, the operator uC, K, : H* — Z is compact. By the definition of the essential
norm, we get

[uCoplle, ooz < limsup [[uCyp — uC, Ky | g 2. (2.1)
J—00

Therefore, we only need to prove that

limsup [|[uCy, — uCLK,, || gz < max {A, B,C}

Jj—00
and

limsup [[uCy, — uC, Ky, |z S max {E, F,G}.

Jj—o0
For any f € H* such that ||f|lcc < 1, consider

[(uCyp — uCo Kr)) fl| 2 = [u(0) £ ((0)) = u(0) f (rje(0)] + [lu(f = fr;) © @l
+ W (0)(f = fr,)(2(0)) + u(0)(f = fr,) (£(0)¢'(0)].

(2.2)
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Here [|g||«x = sup,ep(1 — |2%)|g”(2)]. It is obvious that

Jim Ju(0)£((0) — u(0)f(rj(0))] =0 (2.3)
and
Jim [ (0)(f = fr,)((0)) + w(0)(f — i)' (2(0))¢'(0)] = 0. (2.4)
Now, we consider
limsup [lu- (f — fr;) 0 pllex < Q1+ Q2+ Q3+ Qu + Q5 + Qs, (2.5)

j—o0

where

Qi =limsup sup (1— 22)[(f — fr, )/ (0(2))][20(2)¢'(2) + u(2)"(2),

J=oo p(z)|<rn

Q2 :=limsup sup (1 —[2[*)[(f — fr,)' (9(2))]120/ (2)¢ (2) + u(2)¢" (2)],

J=oo e(2)>rn

Q3= limsup sup (1 [2[*)|(f — fr,)(p(2))][u"(2)],

J=oo e(2)|<rn

Qq=limsup sup (1= [zP)|(f = fr,)((2))l[u"(2)],

J=oo e(2)|>rn

Qs =limsup sup (1 - [2/})(f — )" (9()Il¢' (2) Plu(2)],

J=oo e(2)|<rn

Qs =limsup sup (1~ |2*)|(f = fr,)" (I’ () Plu(2)],

J=oo e(2)|>rn

and N € N is large enough such that r; > % for all j > N. Since uCy, : H*® — Z is bounded, from the proof
of Theorem 1 in [2], we see that u € Z,

Ji = ilelg(l — |21%)|20/ (2)¢' (2) + u(2)¢"(2)| < 00

and -
Jo = sug(l - \Zfz)"P/(z)‘Qlu(Z)’ < 00.
zE

Since r; f;j — f, as well as 7,]2 f;; — f” uniformly on compact subsets of D as j — co, we have

Q1 < Jilimsup sup |f'(w) — rif'(rjw)] =0, (2.6)

Jj—oo  |w|<ry

Qs < Jylimsup sup |f”(w) — r]zf"(rjw)\ =0, (2.7)

Jj—oo  |w|<ry

and

@3 < ||ul|zlimsup sup |f(w) — f(rjw)| = 0. (2.8)

j—oo  |w|<ry

Next, we consider Q2. We have Q2 < limsup;_, (51 + S2), where

Si= s (LRI IRV )+ u()e )
p(z)|>rN

and

S2 = o (1= 21)rslf (rjp(2)124 (2)¢' (2) + u(2)¢” (2)].
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First we estimate Sy. Using the fact that || f|jc < 1, we have
31— le()P)  |e(2)]
Sy=sup  (1—[2P)[f (e(2)l12v/ (2)¢ () + u(2)¢" ()|
lo(2) [>T lp(2)] 3(1—e(2)[?)
< £l sup (1= [2P) |20/ (2)¢ (2) + u(2)¢" (2)ll(2)]
~oryn lp(2)|>rN 3(1 - |§0(z)|2)
1— 2 2w’ / "
< sy (ZEPRVEE) i Cllpte) 29)
lp(z)|>rN |al>rN 3(1 - |SO(Z)‘ )
9 2
S sup [[uCy(fa — 590+ Zha)lz
lal>r 373

5 2
S sup Huap (fa)Hz'i‘ 3 sup HuC@ (Qa)Hz + 3 sup ”UCLP (ha)Hz-

la|>rN la|>rN la|>rN

Here we used the fact that sup,cp(1 — |w|?)|f/(w)] < ||f]leo for any f € H®, since H* C B and | f|z <

I fllco- Taking limit as N — oo we obtain
limsup S1 < limsup |[uCy, (fa)|| z + limsup [[uCy (ga) ||z + limsup ||uCy (ha)l| 5
Jj—o0 la|—1 la|—1 la|—1
=A+B+C.
Similarly, we have limsup;_,,, S2 S A+ B + C, i.e., we get that
Q< A+B+C gmax{A,B,C}.

From (2.9, we see that

=F.

1— 2 9 ! / "
limsup Sy < limsup( |2[%) |20/ (2) ¢ (z);u@@ (2)]
J=o0 o (2)| -1 1 — (2]

Similarly, we have limsup,_,, S2 S E. Therefore,

Q23S E.

~

Also for Q4, we have Q4 < limsup,_, (53 + Si), where

Szi=sup (1—[2)|f(e(2)|lu"(z)], Sa:= sup (1= |z[*)|f(rje()|lu"(2)].
le(2)[>rN le(2)|>rn

After a calculation, we have

Ss=sup (1 |zP)|f(e(2)lu"(2)]
le(2)[>rn

1
SIfllee sup o (1= [2*)|u"(2)]
lp(2)[>rN

1
S sw o sw (1 P))
lp(2)|>rn [al>rn

1
S sup [[uCy (fo)llz + sup [[uCy (ga)Herg sup |[uCly (ha)ll 2
la[>rn la|>rn la]>rN

S sup ||UC<p (fa)Hz‘i‘ sup ”UCLP (ga)Hz‘i‘ sup ||UC<p (ha)Hz-

la|>rn la|>rNn la|>rn

(2.10)

(2.11)

(2.12)
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Taking limit as N — oo we obtain

limsup S3 < limsup [[uCy, (fa)|l z + limsup [[uCy (ga) ||z + limsup |[uCy (ha)l| 2

j—ro0 la]—1 la]—1 la]—1

=A+B+C.
Similarly, we have limsup;_,,, 54 S A+ B + C, i.e., we get that
Qi1 S A+ B+ C Smax{A, B,C}. (2.13)
From , we see that

limsup S3 < limsup(1 — |2[*)|u”(2)| = F.

J—roo lp(2)|—1

Similarly, we have that limsup,_, ., Sa < F. Therefore,
Qs S F. (2.14)
Also, for Qg, we have Qg < limsup;_, (S5 + S6), where
Ss:= sup (1= [2P)f (e)I¥' @lu), Ss:= sup (1= |23 (re(2)l¢' ()] |u(z)]-
le(2)[>rN le(2)[>rN
After a calculation, we have

su . 22 (5 2u P M
S35l sup (1= P P =y

su — 2P)|¢ (2) P |u(z —2|<p(z)|2
Slw(z”gm(l 2191 (2) 7 )\(1_|(p(z),2)2 (215)

S sup Huap (fa — 294 + ha)”z

la|>rNn

< swp (uCy (f)llz + IuCy (90) 17 + uCy (ha) ).

lal>rN
Taking limit as N — oo we obtain

limsup S5 < limsup [[uCy, (fa)|l z + limsup [[uCy (ga) ||z + limsup |[uCy, (ha)l| 2

j—ro0 la]—1 la]—1 la]—1

=A+B+C.
Similarly, we get limsup;_,,, S¢ < A+ B + C, i.e., we have
Qs S A+ B+ C Smax{A, B,C}. (2.16)
From , we obtain

: : (1 = [2)l¢' (2)*u(z)]
lim sup S5 < lim sup =G.
j—00 lp(z)|—1 (1 - ‘90(2>‘2>2

Similarly, we obtain limsup,_,, S¢ < G. Therefore,
Qs < G. (2.17)
Hence, by (2.2)-(2.8), (2.10)), (2.13)) and (2.16]) we get

limsup [[uCy — uCyp Ky, ||z = limsup sup |
J—roo g0 || fllee<1

—limsup sup [u-(f — fr,) 0 pllur S max {4, B,C}.
J=o0 | flle<1

(uCy —uC, Ky ) fl2
(2.18)
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Similarly, by 22)-238), @11). @1 and @17) we get

limsup [[uCy, — uC, Ky, |z S max {E, F,G}. (2.19)

Jj—o0

Therefore, by (2.1)), (2.18]) and (2.19)), we obtain

HUCSO”&HOO*)ZSH].&X{A,B,C} and |[uCylle,po—z SmaX{E,F,G}.

This completes the proof of Theorem O

Theorem 2.3. Let u € H(D) and ¢ be an analytic self-map of D such that uCy, : H* — Z is bounded.
Then

|uCyle, ooz = lim sup |Jue"”|| z.
n—oo

Proof. First, we prove that
[uCoplle,re—z = limsup [lup”| z.
n—oo

Let n be any positive integer and f,(z) = 2™ Then ||f,|lcc = 1 and f,, uniformly converges to zero on
compact subsets of . By Lemma we have lim,, o || K fn||z = 0. Hence,

|uC, — K|| > limsup ||(uCyp — K) frl|lz > limsup [|[uCy fr] 2.
n—oo n—oo
Therefore, by the definition of essential norm we get

|uCylle,ro—z > limsup [|[uCy fr ||z = limsup ||Jup”| z. (2.20)

Next, we prove that

[uColle oz S limsup [lup™|| 2.
n—oo

Since uC,, : H* — Z is bounded, by Theorem 1 of [2] we see that

P :=sup |lug”|| z < .
£>0
Consider the Maclaurin expansion of f,, where
oo
fa(z2) = (1 —a*)) ¥z
k=0

For any fix positive integer n > 2, it follows from the linearity of uC, and the triangle inequality that

o0

[uCp fallz < (1= 1a?) > |al*|lue®||z
k=0
n—1 [e's)
= (1 =1a*)>_ lal*lue®llz + (1= [a*) Y lal*|lug”]| =
k=0 k=n
< Pn(1 - |af?) —lal?) Z!a\ lue®|| 2

< Pn(1 — |a|*) + 2sup [Jug” Hz-
k>n
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Letting |a| — 1 in the above inequality leads to

limsup [|uCy, fol|z < 2sup [lug”|| 2
la|—1 kzn

for any positive integer n > 2. Thus,

limsup ||uCy, fo|| z < limsup lup®| 2.
la]—1 k=00

Similarly, we can prove that

Hence,

limsup ||[uCyga|lz S limsup [|Jup™||z, limsup||[uCyh.|z < limsup ||ue”||z.
la]—1 =00 la]—1 n—o00

max {4, B, C} $ limsup [lug" | 2.

Therefore, by Theorem 2.2 we obtain

[uCylle,ro—z Smax {A,B,C} < lim_)sup lue™| 2. (2.21)
n—oo

By (2.20) and (2.21]), we get the desired result. The proof is completed. O
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