On best proximity points for various α-proximal contractions on metric-like spaces

Hassen Aydia, ${ }^{\mathrm{a}, *}$, Abdelbasset Felhi ${ }^{\text {c }}$
${ }^{a}$ University of Dammam, Department of Mathematics, College of Education of Jubail, P. O. 12020, Industrial Jubail 31961, Saudi Arabia.
${ }^{b}$ Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
${ }^{\text {c King Faisal University, Department of Mathematics, College of Sciences, Al-Hassa, Saudi Arabia. }}$

Communicated by R. Saadati

Abstract

We establish some best proximity points for various α-proximal contractive non-self-mappings in the class of metric-like spaces. We provide concrete examples. We also present some best proximity point theorems in metric (metric-like) spaces endowed with a graph and in partially ordered metric spaces. © 2016 All rights reserved.

Keywords: Metric-like, best proximity point, fixed point, controlled proximal contraction. 2010 MSC: 47H10, 54H25.

1. Introduction and preliminaries

The notion of a metric-like (or a dislocated metric) was rediscovered by Harandi [1]. In the last years, many (common) fixed point results by using the concept of metric-like have been proved, see for example [2] 6 .

Definition 1.1. Let X be a nonempty set. A function $\sigma: X \times X \rightarrow \mathbb{R}^{+}$is said to be a b-metric-like (or a dislocated b-metric) on X if for any $x, y, z \in X$, the following conditions hold:

$$
\begin{aligned}
& \left(\sigma_{1}\right) \sigma(x, y)=0 \Longrightarrow x=y \\
& \left(\sigma_{2}\right) \sigma(x, y)=\sigma(y, x)
\end{aligned}
$$

[^0]$\left(\sigma_{3}\right) \sigma(x, z) \leq \sigma(x, y)+\sigma(y, z)$.
Then the pair (X, σ) is called a metric-like space.

Example 1.2. Let $X=[0, \infty)$. Consider the mapping $\sigma: X \times X \rightarrow[0, \infty)$ defined by $\sigma(x, y)=(x+y)$ for all $x, y \in X$. Then (X, σ) is a metric-like space.

Mention that each metric-like on X generates a T_{0} topology τ_{σ} on X which has a base the family of open σ-balls $\left\{B_{\sigma}(x, \varepsilon): x \in X, \varepsilon>0\right\}$, where $B_{\sigma}(x, \varepsilon)=\{y \in X:|\sigma(x, y)-\sigma(x, x)|<\varepsilon\}$, for all $x \in X$ and $\varepsilon>0$.

Definition 1.3. Let (X, σ) be a metric-like space, $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$. The sequence $\left\{x_{n}\right\}$ converges to x if and only if

$$
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x\right)=\sigma(x, x)
$$

In a metric-like space, the limit for a convergent sequence is not unique in general.
Definition 1.4. Let (X, σ) be a metric-like space and $\left\{x_{n}\right\}$ be a sequence in X. We say that $\left\{x_{n}\right\}$ is Cauchy if and only if $\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)$ exists and is finite.

Definition 1.5. Let (X, σ) be a metric-like space. We say that (X, σ) is complete if and only if each Cauchy sequence in X is convergent.

In what follows, we recall some notations and definitions which will be needed in the sequel. For A and B two nonempty subsets of a metric-like space (X, σ), define

$$
\begin{aligned}
\sigma(A, B) & =\inf \{\sigma(a, b): a \in A, b \in B\} \\
A_{0} & =\inf \{a \in A: \sigma(a, b)=\sigma(A, B), \text { for some } b \in B\} \\
B_{0} & =\inf \{b \in B: \sigma(a, b)=\sigma(A, B), \text { for some } a \in A\}
\end{aligned}
$$

The concept of (P)-property was introduced by Raj and Veeramani [14]. This concept was weakened later by Zhang et al. [18] where the concept of weak P-property was introduced. In the class of metric-like spaces, we have the following.

Definition 1.6. Let A and B be nonempty subsets of a metric-like space (X, σ) with $A_{0} \neq \emptyset$. The pair (A, B) is said to have the weak (P)-property if and only if

$$
\left\{\begin{array}{l}
\sigma\left(x_{1}, y_{1}\right)=\sigma(A, B), \\
\sigma\left(x_{2}, y_{2}\right)=\sigma(A, B)
\end{array} \quad \Rightarrow \sigma\left(x_{1}, x_{2}\right) \leq \sigma\left(y_{1}, y_{2}\right)\right.
$$

where $x_{1}, x_{2} \in A$ and $y_{1}, y_{2} \in B$.
Example 1.7. Let $X=\{(1,2),(0,1),(1,3),(3,1)\}$ endowed with the metric-like $\sigma\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=$ $x_{1}+x_{2}+y_{1}+y_{2}$ for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in X$. Let $A=\{(1,2),(0,1)\}$ and $B=\{(1,3),(3,1)\}$. We have

$$
\sigma((0,1),(1,3))=5=\sigma(A, B) \quad \text { and } \quad \sigma((0,1),(3,1))=\sigma(A, B)
$$

Moreover,

$$
\sigma((0,1),(0,1))=2<8=\sigma((1,3),(3,1))
$$

Also, $A_{0} \neq \emptyset$. Hence, the pair (A, B) satisfies the weak (P)-property.
As in [8], we introduce in the setting of metric-like spaces the following.

Definition 1.8. Let A and B be nonempty subsets of a metric-like space (X, σ) and $\alpha: X \times X \rightarrow[0, \infty)$. A mapping $T: A \rightarrow B$ is named α-proximal admissible if

$$
\left\{\begin{array}{l}
\alpha\left(x_{1}, x_{2}\right) \geq 1 \\
\sigma\left(u_{1}, T x_{1}\right)=\sigma(A, B), \quad \Rightarrow \alpha\left(u_{1}, u_{2}\right) \geq 1 \\
\sigma\left(u_{2}, T x_{2}\right)=\sigma(A, B)
\end{array}\right.
$$

for all $x_{1}, x_{2}, u_{1}, u_{2} \in A$.
If $\sigma(A, B)=0$, mention that T is α-proximal admissible implies that T is α-admissible [17].
We introduce the following notions.
Definition 1.9. Let A and B be nonempty subsets of a metric-like space (X, σ) and $\alpha: X \times X \rightarrow[0, \infty)$. A mapping $T: A \rightarrow B$ is named triangular α-proximal admissible if
(T_{1}) T is α-proximal admissible;
$\left(\mathrm{T}_{2}\right) \alpha(x, y) \geq 1$ and $\alpha(y, z) \geq 1 \Rightarrow \alpha(x, z) \geq 1, x, y, z \in A$.

Now, let Ψ be the set of functions $\psi:[0, \infty) \rightarrow[0, \infty)$ satisfying:
$\left(\psi_{1}\right) \quad \psi$ is nondecreasing;
$\left(\psi_{2}\right) \sum_{n=1}^{\infty} \psi^{n}(t)<\infty$ for each $t \in \mathbb{R}^{+}$, where ψ^{n} is the nth iterate of ψ.
Consider also Φ as the set of functions $\phi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ satisfying:
$\left(\phi_{1}\right) \phi$ is continuous;
$\left(\phi_{2}\right) \phi(x, y)=0$ if and only if $x=y=0$.
In the following, we give some generalized α-proximal contractions.
Definition 1.10. Let A and B be two nonempty subsets of a metric-like space (X, σ). Consider a non-selfmapping $T: A \rightarrow B$ and a given function $\alpha: X \times X \rightarrow[0, \infty)$.
(i) T is called an α-proximal contraction if

$$
\begin{equation*}
\alpha(x, y) \sigma(T x, T y) \leq \psi(\sigma(x, y)) \tag{1.1}
\end{equation*}
$$

for all $x, y \in A$, where $\psi \in \Psi$.
(ii) T is called an α-proximal C-contraction if

$$
\begin{equation*}
\alpha(x, y) \sigma(T x, T y) \leq \frac{\sigma(x, T y)+\sigma(y, T x)-2 \sigma(A, B)}{2}-\phi(\sigma(x, T y)-\sigma(A, B), \sigma(y, T x)-\sigma(A, B)) \tag{1.2}
\end{equation*}
$$

for all $x, y \in A$, where $\phi \in \Phi$.

On the other hand, the definition of a best proximity point is as follows.
Definition 1.11. Let (X, σ) be a metric-like space. Consider A and B as the two nonempty subsets of X. An element $a \in X$ is said to be a best proximity point of $T: A \rightarrow B$ if

$$
\sigma(a, T a)=\sigma(A, B)
$$

Note that a fixed point coincides with a best proximity point in the case of $\sigma(A, B)=0$. For some results on above concept, see for example [7, 9-13, 15, 16 .

In this paper, we establish some existence results on best proximity points for various α-proximal contractions in the setting of metric-like spaces. We will support the obtained theorems by some concrete examples. Some nice consequences are also provided.

2. Main results

The first main result is:
Theorem 2.1. Let A and B be nonempty closed subsets of a complete metric-like space (X, σ) such that $A_{0} \neq \emptyset$. Let $T: A \rightarrow B$ be a given non-self-mapping. Suppose that
(i) $T\left(A_{0}\right) \subseteq B_{0}$ and (A, B) satisfies the weak (P)-property;
(ii) T is α-proximal admissible;
(iii) there exist elements x_{0} and x_{1} in A_{0} such that

$$
\sigma\left(x_{1}, T x_{0}\right)=\sigma(A, B), \quad \text { and } \quad \alpha\left(x_{0}, x_{1}\right) \geq 1
$$

(iv) T is a continuous α-proximal contraction.

Then, there exists $u \in A$ such that $\sigma(u, u)=0$. Assume in addition that
(v) $\alpha(z, z) \geq 1$ for each $z \in A_{0}$ such that $\sigma(z, z)=0$.

Then, such u is a best proximity point of T, that is,

$$
\sigma(u, T u)=\sigma(A, B)
$$

Proof. By assumption (iii), there exist x_{0} and $x_{1} \in A_{0}$ such that

$$
\begin{equation*}
\sigma\left(x_{1}, T x_{0}\right)=\sigma(A, B), \quad \text { and } \quad \alpha\left(x_{0}, x_{1}\right) \geq 1 \tag{2.1}
\end{equation*}
$$

From condition (i), we have $T\left(A_{0}\right) \subseteq B_{0}$, so there exists $x_{2} \in A_{0}$ such that

$$
\begin{equation*}
\sigma\left(x_{2}, T x_{1}\right)=\sigma(A, B) \tag{2.2}
\end{equation*}
$$

By (2.1), 2.2) and the fact that T is α-proximal admissible, we have

$$
\alpha\left(x_{1}, x_{2}\right) \geq 1
$$

By repeating the above strategy, by the induction, we arrive to construct a sequence $\left\{x_{n}\right\}$ in A_{0} such that

$$
\begin{equation*}
\sigma\left(x_{n+1}, T x_{n}\right)=\sigma(A, B), \quad \text { and } \quad \alpha\left(x_{n}, x_{n+1}\right) \geq 1, \quad \text { for all } n \geq 0 \tag{2.3}
\end{equation*}
$$

From condition (i), the pair (A, B) satisfies the weak (P)-property, so

$$
\begin{equation*}
\sigma\left(x_{n}, x_{n+1}\right) \leq \sigma\left(T x_{n-1}, T x_{n}\right), \quad \text { for all } n \geq 1 \tag{2.4}
\end{equation*}
$$

The non-self-mapping T is an α-proximal contraction, so for all $n \geq 1$, by using (2.3) and (2.4)

$$
\begin{aligned}
\sigma\left(x_{n}, x_{n+1}\right) & \leq \sigma\left(T x_{n-1}, T x_{n}\right) \\
& \leq \alpha\left(x_{n-1}, x_{n}\right) \sigma\left(T x_{n-1}, T x_{n}\right) \\
& \leq \psi\left(\sigma\left(x_{n-1}, x_{n}\right)\right) \\
& \leq \psi^{n}\left(\sigma\left(x_{0}, x_{1}\right)\right) .
\end{aligned}
$$

Since $\psi \in \Psi$, so the right-hand side of above inequality tends to 0 as $n \rightarrow \infty$, that is,

$$
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x_{n+1}\right)=0
$$

For all $k \in \mathbb{N}$, we have

$$
\sigma\left(x_{n}, x_{n+k}\right) \leq \sum_{m=n}^{n+k-1} \sigma\left(x_{m}, x_{m+1}\right) \leq \sum_{m=n}^{n+k-1} \psi^{m}\left(\sigma\left(x_{0}, x_{1}\right)\right)
$$

$$
\leq \sum_{m=n}^{\infty} \psi^{m}\left(\sigma\left(x_{0}, x_{1}\right)\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

It follows that $\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x_{n+k}\right)=0$ for all $k \in \mathbb{N}$, that is, $\left\{x_{n}\right\}$ is a Cauchy sequence in A. Since A is a closed subset of the complete metric-like space (X, σ), then there exists $u \in A$ such that $x_{n} \rightarrow u$ as $n \rightarrow \infty$, that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, u\right)=\sigma(u, u)=\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)=0 \tag{2.5}
\end{equation*}
$$

We have obtained $\sigma(u, u)=0$. Thus, by condition (v), $\alpha(u, u) \geq 1$. Consequently, from condition (iv),

$$
\sigma(T u, T u) \leq \alpha(u, u) \sigma(T u, T u) \leq \psi(\sigma(u, u))=\psi(0)=0
$$

which implies that $\sigma(T u, T u)=0$. The mapping T is continuous at u, so

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(T x_{n}, T u\right)=\sigma(T u, T u)=0 \tag{2.6}
\end{equation*}
$$

On the other hand, by triangular inequality and by using 2.3),

$$
\begin{aligned}
\sigma(A, B) & \leq \sigma(u, T u) \\
& \leq \sigma\left(u, x_{n+1}\right)+\sigma\left(x_{n+1}, T x_{n}\right)+\sigma\left(T x_{n}, T u\right) \\
& =\sigma\left(u, x_{n+1}\right)+\sigma(A, B)+\sigma\left(T x_{n}, T u\right)
\end{aligned}
$$

By letting $n \rightarrow \infty$ in above inequalities, by 2.5 and 2.6),

$$
\sigma(A, B) \leq \sigma(u, T u) \leq \sigma(A, B)
$$

that is, $\sigma(A, B)=\sigma(u, T u)$, i.e., u is a best proximity point of T.
In the next result, we replace the continuity hypothesis by the following condition in A :
(H) if $\left\{x_{n}\right\}$ is a sequence in A such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all n and $x_{n} \rightarrow x \in A$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, x\right) \geq 1$, for all k.

Theorem 2.2. Let A and B be nonempty closed subsets of a complete metric-like space (X, σ) such that $A_{0} \neq \emptyset$. Let $T: A \rightarrow B$ be a given non-self-mapping. Suppose that
(i) $T\left(A_{0}\right) \subseteq B_{0}$ and (A, B) satisfies the weak (P)-property;
(ii) T is α-proximal admissible;
(iii) there exist elements x_{0} and x_{1} in A_{0} such that

$$
\sigma\left(x_{1}, T x_{0}\right)=\sigma(A, B) \quad \text { and } \quad \alpha\left(x_{0}, x_{1}\right) \geq 1
$$

(iv) T is an α-proximal contraction;
(iv) (H) holds.

Then, there exists $u \in A$ such that

$$
\sigma(u, T u)=\sigma(A, B) \quad \text { and } \quad \sigma(u, u)=0
$$

Proof. By following the proof of Theorem 2.1, there exists a sequence $\left\{x_{n}\right\}$ in A_{0} such that 2.3 holds. Also, $\left\{x_{n}\right\}$ is Cauchy in the subset A, which is closed in the complete metric-like space (X, σ), then there exists $u \in A$ such that $x_{n} \rightarrow u$ as $n \rightarrow \infty$. By hypothesis (H), there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, u\right) \geq 1$ for all k. Now, from condition (iv), we have

$$
\sigma\left(T x_{n(k)}, T u\right) \leq \alpha\left(x_{n(k)}, u\right) \sigma\left(T x_{n(k)}, T u\right) \leq \psi\left(\sigma\left(x_{n(k)}, u\right)\right)
$$

On the other hand, we have

$$
\begin{aligned}
\sigma(A, B) & \leq \sigma(u, T u) \\
& \leq \sigma\left(u, x_{n(k)+1}\right)+\sigma\left(x_{n(k)+1}, T x_{n(k)}\right)+\sigma\left(T x_{n(k)}, T u\right) \\
& =\sigma\left(u, x_{n(k)+1}\right)+\sigma(A, B)+\sigma\left(T x_{n(k)}, T u\right) .
\end{aligned}
$$

Therefore,

$$
\sigma(A, B) \leq \sigma(u, T u) \leq \sigma\left(u, x_{n(k)+1}\right)+\sigma(A, B)+\psi\left(\sigma\left(x_{n(k)}, u\right)\right)
$$

By (2.5) and a property of ψ, as $n \rightarrow \infty$, we get

$$
\sigma(A, B) \leq \sigma(u, T u) \leq \sigma(A, B)
$$

that is, $\sigma(A, B)=\sigma(u, T u)$, i.e., u is a best proximity point of T.
Now, we prove the uniqueness of such best proximity point. For this, we need the following additional condition.
(U) For all $x, y \in B(T)$, we have $\alpha(x, y) \geq 1$, where $B(T)$, denotes the set of best proximity points of T.

Theorem 2.3. By adding condition (U) to the hypotheses of Theorem 2.1 (resp. Theorem 2.2), we obtain that u is the unique best proximity point of T.

Proof. We argue by contradiction, that is, there exist $u, v \in A$ such that $\sigma(A, B)=\sigma(u, T u)=\sigma(v, T v)$ with $u \neq v$. By assumption (U), we have $\alpha(u, v) \geq 1$. So, as the pair (A, B) satisfies the weak (P)-property, then by (1.1), we have

$$
0<\sigma(u, v) \leq \sigma(T u, T v) \leq \alpha(u, v) \sigma(T u, T v) \leq \psi(\sigma(u, v))<\sigma(u, v)
$$

which is a contradiction. Hence, $u=v$.

We provide the following example.
Example 2.4. Let $X=\{0,1,2,3\}$ endowed with the metric-like σ given as

$$
\begin{gathered}
\sigma(0,0)=\frac{3}{2}, \quad \sigma(1,1)=\sigma(3,3)=0, \quad \sigma(2,2)=2 \\
\sigma(0,1)=\sigma(1,0)=2, \quad \sigma(0,2)=\sigma(2,0)=\sigma(3,1)=\sigma(1,3)=\frac{3}{2} \\
\sigma(0,3)=\sigma(2,3)=\frac{5}{2}, \quad \text { and } \quad \sigma(1,2)=\sigma(2,1)=3
\end{gathered}
$$

Take $A=\{1,2\}$ and $B=\{2,3\}$. Consider the mapping $T: A \rightarrow B$ defined by

$$
T 2=2, \quad \text { and } \quad T 1=3
$$

Remark that $\sigma(A, B)=\sigma(1,3)=\frac{3}{2}$. Also, $A_{0}=\{1\}$ and $B_{0}=\{3\}$. Note that $T\left(A_{0}\right) \subseteq B_{0}$. Now, let $x_{1}, x_{2} \in A$ and $y_{1}, y_{2} \in B$ such that

$$
\left\{\begin{array}{l}
\sigma\left(x_{1}, y_{1}\right)=\sigma(A, B)=\frac{3}{2} \\
\sigma\left(x_{2}, y_{2}\right)=\sigma(A, B)=\frac{3}{2}
\end{array}\right.
$$

Then, we have $\left(x_{1}=1, y_{1}=3\right)$ and $\left(x_{2}=1, y_{2}=3\right)$. In this case,

$$
\sigma\left(x_{1}, x_{2}\right)=0=\sigma\left(y_{1}, y_{2}\right)
$$

that is, the pair (A, B) has the weak (P)-property.
Take $\psi(t)=\frac{11}{12} t$, for all $t \geq 0$. Define $\alpha: X \times X \rightarrow[0, \infty)$ as follows

$$
\begin{cases}\alpha(x, y)=1, & \text { if } \quad(x, y) \in\{(1,2),(2,1),(1,1)\} \\ \alpha(x, y)=0, & \text { if not }\end{cases}
$$

Let x_{1}, x_{2}, u_{1} and u_{2} in $A=\{1,2\}$ such that

$$
\left\{\begin{array}{l}
\alpha\left(x_{1}, x_{2}\right) \geq 1 \\
\sigma\left(u_{1}, T x_{1}\right)=\sigma(A, B)=\frac{3}{2} \\
\sigma\left(u_{2}, T x_{2}\right)=\sigma(A, B)=\frac{3}{2}
\end{array}\right.
$$

Then, necessarily, we have $\left(x_{1}=x_{2}=u_{1}=u_{2}=1\right)$. So

$$
\alpha\left(u_{1}, u_{2}\right) \geq 1
$$

that is, T is α-proximal admissible. By the symmetry of α and σ, it suffices to study the cases $(x=1, y=2)$ and $(x=y=1)$.

If $(x=1, y=2)$, we have

$$
\alpha(x, y) \sigma(T x, T y)=\sigma(3,2)=\frac{5}{2} \leq \psi(3)=\psi(\sigma(1,2)=\psi(\sigma(x, y))
$$

If $(x=y=1)$, we have

$$
\alpha(x, y) \sigma(T x, T y)=\sigma(3,3)=0=\psi(0)=\psi(\sigma(1,1)=\psi(\sigma(x, y))
$$

Thus, (1.1) is satisfied for all $x, y \in A$. Moreover, the conditions (H) and (iii) with $x_{0}=x_{1}=1$ in Theorem 2.2 are verified. So T has a best proximity point which is $u=1$. It is also unique and verifies $\sigma(u, u)=0$.

Theorem 2.5. Let A and B be nonempty closed subsets of a complete metric-like space (X, σ) such that $A_{0} \neq \emptyset$. Let $T: A \rightarrow B$ be a given non-self-mapping. Suppose that
(i) $T\left(A_{0}\right) \subseteq B_{0}$ and (A, B) satisfies the weak (P)-property;
(ii) T is triangular α-proximal admissible;
(iii) there exist elements x_{0} and x_{1} in A_{0} such that

$$
\sigma\left(x_{1}, T x_{0}\right)=\sigma(A, B), \quad \text { and } \quad \alpha\left(x_{0}, x_{1}\right) \geq 1
$$

(iv) T is a continuous α-proximal C-contraction.

Then, there exists $u \in A$ such that $\sigma(u, u)=0$. Assume in addition that
(v) $\alpha(z, z) \geq 1$ for each $z \in A$ such that $\sigma(z, z)=0$.

Then, such u is a best proximity point of T, that is,

$$
\sigma(u, T u)=\sigma(A, B)
$$

Proof. By following the proof of Theorem 2.1. we construct a sequence $\left\{x_{n}\right\}$ in A_{0} such that (2.3) holds, that is,

$$
\sigma\left(x_{n+1}, T x_{n}\right)=\sigma(A, B), \quad \text { and } \quad \alpha\left(x_{n}, x_{n+1}\right) \geq 1, \quad \text { for all } n \geq 0
$$

Since T is triangular α-proximal admissible, then

$$
\alpha\left(x_{n}, x_{n+1}\right) \geq 1, \text { and } \alpha\left(x_{n+1}, x_{n+2}\right) \geq 1 \Rightarrow \alpha\left(x_{n}, x_{n+2}\right) \geq 1 .
$$

Thus by the induction, we get

$$
\alpha\left(x_{n}, x_{m}\right) \geq 1, \quad \text { for all } m>n \geq 0
$$

Again, (2.4) is satisfied, that is,

$$
\sigma\left(x_{n}, x_{n+1}\right) \leq \sigma\left(T x_{n-1}, T x_{n}\right), \quad \text { for all } n \geq 1
$$

By condition (iv), T is an α-proximal C-contraction, so

$$
\begin{aligned}
\sigma\left(x_{n}, x_{n+1}\right) \leq & \sigma\left(T x_{n-1}, T x_{n}\right) \\
\leq & \alpha\left(x_{n-1}, x_{n}\right) \sigma\left(T x_{n-1}, T x_{n}\right) \\
\leq & \frac{\sigma\left(x_{n-1}, T x_{n}\right)+\sigma\left(x_{n}, T x_{n-1}\right)-2 \sigma(A, B)}{2} \\
& -\phi\left(\sigma\left(x_{n-1}, T x_{n}\right)-\sigma(A, B), \sigma\left(x_{n}, T x_{n-1}\right)-\sigma(A, B)\right) \\
= & \frac{\sigma\left(x_{n-1}, T x_{n}\right)-\sigma(A, B)}{2}-\phi\left(\sigma\left(x_{n-1}, T x_{n}\right)-\sigma(A, B), 0\right) \\
\leq & \frac{\sigma\left(x_{n-1}, T x_{n}\right)-\sigma(A, B)}{2} \\
\leq & \frac{\sigma\left(x_{n-1}, x_{n}\right)+\sigma\left(x_{n}, x_{n+1}\right)+\sigma\left(x_{n+1}, T x_{n}\right)-\sigma(A, B)}{2} \\
= & \frac{\sigma\left(x_{n-1}, x_{n}\right)+\sigma\left(x_{n}, x_{n+1}\right)}{2} .
\end{aligned}
$$

One can write

$$
\sigma\left(x_{n}, x_{n+1}\right) \leq \sigma\left(x_{n-1}, x_{n}\right), \quad \text { for all } n \geq 1,
$$

which allows to say that $\left\{\sigma\left(x_{n}, x_{n+1}\right)\right\}$ is an nonincreasing sequence in $[0, \infty)$. Then, there exists $t \geq 0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x_{n+1}\right)=t \tag{2.7}
\end{equation*}
$$

We obtained

$$
\sigma\left(x_{n}, x_{n+1}\right) \leq \frac{\sigma\left(x_{n-1}, T x_{n}\right)-\sigma(A, B)}{2} \leq \frac{\sigma\left(x_{n-1}, x_{n}\right)+\sigma\left(x_{n}, x_{n+1}\right)}{2} .
$$

By (2.7), we have

$$
\lim _{n \rightarrow \infty} \sigma\left(x_{n-1}, T x_{n}\right)-\sigma(A, B)=2 t .
$$

Moreover, we have

$$
\sigma\left(x_{n}, x_{n+1}\right) \leq \frac{\sigma\left(x_{n-1}, x_{n}\right)+\sigma\left(x_{n}, x_{n+1}\right)}{2}-\phi\left(\sigma\left(x_{n-1}, T x_{n}\right)-\sigma(A, B), 0\right) .
$$

By letting $n \rightarrow \infty$, we get

$$
t \leq t-\phi(2 t, 0)
$$

which holds unless $\phi(2 t, 0)=0$, so by a property of $\phi, t=0$, i.e.,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x_{n+1}\right)=0 \tag{2.8}
\end{equation*}
$$

Now, we shall prove that

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)=0 \tag{2.9}
\end{equation*}
$$

Suppose to the contrary that there exists $\varepsilon>0$ for which we can find subsequences $\left\{x_{m(k)}\right\}$ and $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ with $m(k)>n(k)>k$ such that for every k

$$
\begin{equation*}
\sigma\left(x_{n(k)}, x_{m(k)}\right) \geq \varepsilon \tag{2.10}
\end{equation*}
$$

Moreover, corresponding to $n(k)$ we can choose $m(k)$ in such a way that it is the smallest integer with $m(k)>n(k)$ and satisfying 2.10). Then

$$
\begin{equation*}
\sigma\left(x_{n(k)}, x_{m(k)-1}\right)<\varepsilon \tag{2.11}
\end{equation*}
$$

By using 2.10, 2.11) and the triangular inequality, we get

$$
\begin{aligned}
\varepsilon & \leq \sigma\left(x_{n(k)}, x_{m(k)}\right) \leq \sigma\left(x_{n(k)}, x_{m(k)-1}\right)+\sigma\left(x_{m(k)-1}, x_{m(k)}\right) \\
& <\sigma\left(x_{m(k)-1}, x_{m(k)}\right)+\varepsilon
\end{aligned}
$$

By letting $k \rightarrow \infty$ in the above inequality and using (2.8), we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sigma\left(x_{n(k)}, x_{m(k)}\right)=\lim _{k \rightarrow \infty} \sigma\left(x_{n(k)}, x_{m(k)-1}\right)=\varepsilon \tag{2.12}
\end{equation*}
$$

Also, by the triangular inequality, we have

$$
\begin{gathered}
\sigma\left(x_{n(k)}, x_{m(k)-1}\right)-\sigma\left(x_{n(k)}, x_{n(k)-1}\right)-\sigma\left(x_{m(k)}, x_{m(k)-1}\right) \leq \sigma\left(x_{n(k)-1}, x_{m(k)}\right) \\
\sigma\left(x_{n(k)-1}, x_{m(k)}\right) \leq \sigma\left(x_{n(k)-1}, x_{n(k)}\right)+\sigma\left(x_{n(k)}, x_{m(k)}\right)
\end{gathered}
$$

By letting $k \rightarrow \infty$ in the above inequalities and by using 2.8 and 2.12 , we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sigma\left(x_{n(k)-1}, x_{m(k)}\right)=\varepsilon \tag{2.13}
\end{equation*}
$$

On the other hand, we have

$$
\sigma\left(x_{n(k)}, T x_{n(k)-1}\right)=\sigma(A, B), \quad \text { and } \sigma\left(x_{m(k)}, T x_{m(k)-1}\right)=\sigma(A, B), \quad \text { for all } k \geq 1
$$

Since the pair (A, B) satisfies the (P)-property, it follows that

$$
\sigma\left(x_{n(k)}, x_{m(k)}\right) \leq \sigma\left(T x_{n(k)-1}, T x_{m(k)-1}\right), \quad \text { for all } k \geq 1
$$

Consider

$$
a_{k}:=\sigma\left(x_{n(k)-1}, T x_{m(k)-1}\right)-\sigma(A, B), \quad \text { and } \quad b_{k}:=\sigma\left(x_{m(k)-1}, T x_{n(k)-1}\right)-\sigma(A, B)
$$

By (1.2) and as $\alpha\left(x_{n(k)-1}, x_{m(k)}-1\right) \geq 1$ for all $k \geq 1$, we get

$$
\begin{aligned}
\sigma\left(x_{n(k)}, x_{m(k)}\right) \leq & \sigma\left(T x_{n(k)-1}, T x_{m(k)-1}\right) \leq \alpha\left(x_{n(k)-1}, x_{m(k)}-1\right) \sigma\left(T x_{n(k)-1}, T x_{m(k)-1}\right) \\
\leq & 2^{-1}\left[\sigma\left(x_{n(k)-1}, T x_{m(k)-1}\right)+\sigma\left(x_{m(k)-1}, T x_{n(k)-1}\right)-2 \sigma(A, B)\right] \\
& -\phi\left(\sigma\left(x_{n(k)-1}, T x_{m(k)-1}\right)-\sigma(A, B), \sigma\left(x_{m(k)-1}, T x_{n(k)-1}\right)-\sigma(A, B)\right) \\
\leq & 2^{-1}\left[\sigma\left(x_{n(k)-1}, x_{m(k)}\right)+\sigma\left(x_{m(k)}, T x_{m(k)-1}\right)\right. \\
& \left.+\sigma\left(x_{m(k)-1}, x_{n(k)}\right)+\sigma\left(x_{n(k)}, T x_{n(k)-1}\right)-2 \sigma(A, B)\right]-\phi\left(a_{k}, b_{k}\right) \\
= & 2^{-1}\left[\sigma\left(x_{n(k)-1}, x_{m(k)}\right)+\sigma\left(x_{m(k)-1}, x_{n(k)}\right)\right]-\phi\left(a_{k}, b_{k}\right) \\
\leq & 2^{-1}\left[\sigma\left(x_{n(k)-1}, x_{m(k)}\right)+\sigma\left(x_{m(k)-1}, x_{n(k)}\right)\right] .
\end{aligned}
$$

By letting $k \rightarrow \infty$ and taking into account 2.12 and 2.13 , we get

$$
\varepsilon \leq 2^{-1}[\varepsilon+\varepsilon]-\lim _{k \rightarrow \infty} \phi\left(a_{k}, b_{k}\right) \leq \varepsilon
$$

Thus,

$$
\lim _{k \rightarrow \infty} \phi\left(a_{k}, b_{k}\right)=0
$$

Also

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(a_{k}+b_{k}\right)=2 \varepsilon \tag{2.14}
\end{equation*}
$$

By (2.14), $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ are bounded in $[0, \infty)$. Then, $\left\{\left(a_{k}, b_{k}\right)\right\}$ is bounded in $[0, \infty) \times[0, \infty)$. Consequently, there exists a subsequence of $\left\{\left(a_{k}, b_{k}\right)\right\}$ denoted by $\left\{\left(a_{n_{k}}, b_{n_{k}}\right)\right\}$ and to be convergent. It follows that $\left\{a_{n_{k}}\right\}$ and $\left\{b_{n_{k}}\right\}$ are convergent. Again, by 2.14 , we have

$$
\lim _{k \rightarrow \infty} \phi\left(a_{n_{k}}, b_{n_{k}}\right)=\lim _{k \rightarrow \infty} \phi\left(a_{k}, b_{k}\right)=0
$$

Since ϕ is continuous, then

$$
\phi\left(\lim _{k \rightarrow \infty} a_{n_{k}}, \lim _{k \rightarrow \infty} b_{n_{k}}\right)=0
$$

From the fact that $\phi(x, y)=0$ if and only if $x=y=0$, we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} a_{n_{k}}=\lim _{k \rightarrow \infty} b_{n_{k}}=0 \tag{2.15}
\end{equation*}
$$

By (2.14) and 2.15,

$$
2 \varepsilon=\lim _{k \rightarrow \infty}\left(a_{k}+b_{k}\right)=\lim _{k \rightarrow \infty}\left(a_{n_{k}}+b_{n_{k}}\right)=0
$$

This yields $\varepsilon=0$, which is a contradiction. This completes the proof of 2.9. It follows that $\left\{x_{n}\right\}$ is a Cauchy sequence in A. Since A is a closed subset of the complete metric-like space (X, σ), then there exists $u \in A$ such that $x_{n} \rightarrow u$ as $n \rightarrow \infty$, that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, u\right)=\sigma(u, u)=\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)=0 \tag{2.16}
\end{equation*}
$$

We have obtained $\sigma(u, u)=0$. Thus, by condition (v), $\alpha(u, u) \geq 1$. Consequently, from condition (iv),

$$
\sigma(T u, T u) \leq \alpha(u, u) \sigma(T u, T u) \leq \sigma(u, T u)-\sigma(A, B)-\phi(\sigma(u, T u)-\sigma(A, B), \sigma(u, T u)-\sigma(A, B))
$$

The mapping T is continuous at u, so

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(T x_{n}, T u\right)=\sigma(T u, T u) \tag{2.17}
\end{equation*}
$$

On the other hand, by triangular inequality,

$$
\begin{aligned}
\sigma(u, T u) & \leq \sigma\left(u, x_{n+1}\right)+\sigma\left(x_{n+1}, T x_{n}\right)+\sigma\left(T x_{n}, T u\right) \\
& =\sigma\left(u, x_{n+1}\right)+\sigma(A, B)+\sigma\left(T x_{n}, T u\right)
\end{aligned}
$$

By letting $n \rightarrow \infty$ in above inequalities, by (2.16) and 2.17,

$$
\sigma(u, T u) \leq \sigma(A, B)+\sigma(T u, T u)
$$

Then

$$
\begin{aligned}
\sigma(u, T u)-\sigma(A, B) \leq & \sigma(T u, T u) \leq \sigma(u, T u)-\sigma(A, B) \\
& -\phi(\sigma(u, T u)-\sigma(A, B), \sigma(u, T u)-\sigma(A, B)) \\
\leq & \sigma(u, T u)-\sigma(A, B)
\end{aligned}
$$

We deduce that $\phi(\sigma(u, T u)-\sigma(A, B), \sigma(u, T u)-\sigma(A, B))=0$. Again from the fact that $\phi(x, y)=0$ if and only if $x=y=0$, we obtain $\sigma(u, T u)-\sigma(A, B)=0$, that is, $\sigma(A, B)=\sigma(u, T u)$, i.e., u is a best proximity point of T.

Theorem 2.6. Let A and B be nonempty closed subsets of a complete metric-like space (X, σ) such that $A_{0} \neq \emptyset$. Let $T: A \rightarrow B$ be a given non-self-mapping. Suppose that
(i) $T\left(A_{0}\right) \subseteq B_{0}$ and (A, B) satisfies the weak (P)-property;
(ii) T is triangular α-proximal admissible;
(iii) there exist elements x_{0} and x_{1} in A_{0} such that

$$
\sigma\left(x_{1}, T x_{0}\right)=\sigma(A, B), \quad \text { and } \quad \alpha\left(x_{0}, x_{1}\right) \geq 1
$$

(iv) T is an α-proximal C-contraction;
(v) (H) holds.

Then, there exists $u \in A$ such that u is a best proximity point of T and $\sigma(u, u)=0$.
Proof. By following the proof of Theorem 2.5, there exists a sequence $\left\{x_{n}\right\}$ in A_{0} such that

$$
\sigma\left(x_{n+1}, T x_{n}\right)=\sigma(A, B), \quad \text { and } \quad \alpha\left(x_{n}, x_{m}\right) \geq 1, \quad \text { for all } m>n \geq 0
$$

Also, $\left\{x_{n}\right\}$ is Cauchy in the subset A, which is closed in the complete metric-like space (X, σ), then there exists $u \in A$ such that $x_{n} \rightarrow u$ as $n \rightarrow \infty$. By hypothesis (H), there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, u\right) \geq 1$ for all k. Now, from condition (iv), we have

$$
\begin{aligned}
\sigma\left(T x_{n(k)}, T u\right) \leq & \alpha\left(x_{n(k)}, u\right) \sigma\left(T x_{n(k)}, T u\right) \\
\leq & 2^{-1}\left[\sigma\left(x_{n(k)}, T u\right)+\sigma\left(u, T x_{n(k)}\right)-2 \sigma(A, B)\right] \\
& -\phi\left(\sigma\left(x_{n(k)}, T u\right)-\sigma(A, B), \sigma\left(u, T x_{n(k)}\right)-\sigma(A, B)\right) \\
\leq & 2^{-1}\left[\sigma\left(x_{n(k)}, u\right)+\sigma(u, T u)+\sigma\left(u, x_{n(k)+1}\right)-\sigma(A, B)\right]
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\sigma(A, B) \leq \sigma(u, T u) & \leq \sigma\left(u, x_{n(k)+1}\right)+\sigma\left(x_{n(k)+1}, T x_{n(k)}\right)+\sigma\left(T x_{n(k)}, T u\right) \\
& =\sigma\left(u, x_{n(k)+1}\right)+\sigma(A, B)+\sigma\left(T x_{n(k)}, T u\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sigma(A, B) \leq \sigma(u, T u) \leq & \sigma\left(u, x_{n(k)+1}\right)+\sigma(A, B) \\
& +2^{-1}\left[\sigma\left(x_{n(k)}, u\right)+\sigma(u, T u)+\sigma\left(u, x_{n(k)+1}\right)-\sigma(A, B)\right]
\end{aligned}
$$

By (2.5), as $n \rightarrow \infty$, we get

$$
\sigma(A, B) \leq \sigma(u, T u) \leq \sigma(A, B)+2^{-1}[\sigma(u, T u)-\sigma(A, B)]=2^{-1}[\sigma(u, T u)+\sigma(A, B)]
$$

Hence

$$
\sigma(A, B) \leq \sigma(u, T u) \leq \sigma(A, B)
$$

that is, $\sigma(A, B)=\sigma(u, T u)$, i.e., u is a best proximity point of T.
Theorem 2.7. By adding condition (U) to the hypotheses of Theorem 2.5 (resp. Theorem 2.6), we obtain that u is the unique best proximity point of T.

Proof. Suppose that there exist $u, v \in A$ such that $\sigma(A, B)=\sigma(u, T u)=\sigma(v, T v)$. By assumption (U), we have $\alpha(u, v) \geq 1$. So, as the pair (A, B) satisfies the weak (P)-property, then by 1.2 , we have

$$
\begin{aligned}
\sigma(u, v) \leq \sigma(T u, T v) \leq & \alpha(u, v) \sigma(T u, T v) \leq 2^{-1}[\sigma(u, T v)+\sigma(T u, v)-2 \sigma(A, B)] \\
& -\phi(\sigma(u, T v)-\sigma(A, B), \sigma(v, T u)-\sigma(A, B)) \\
\leq & 2^{-1}[\sigma(u, v)+\sigma(v, T v)+\sigma(v, u)+\sigma(u, T u)-2 \sigma(A, B)] \\
& -\phi(\sigma(u, T v)-\sigma(A, B), \sigma(v, T u)-\sigma(A, B)) \\
= & \sigma(u, v)-\phi(\sigma(u, T v)-\sigma(A, B), \sigma(v, T u)-\sigma(A, B)) \\
\leq & \sigma(u, v)
\end{aligned}
$$

Therefore,

$$
\phi(\sigma(u, T v)-\sigma(A, B), \sigma(v, T u)-\sigma(A, B))=0
$$

From the fact that $\phi(x, y)=0$ iff $x=y=0$, we obtain $\sigma(u, T v)-\sigma(A, B)=0$ and $\sigma(v, T u)-\sigma(A, B)=0$. Then, we have $\sigma(u, T u)=\sigma(v, T u)=\sigma(A, B)$, and since the pair (A, B) satisfies the weak (P)-property, then

$$
\sigma(u, v) \leq \sigma(T u, T u)
$$

Also

$$
\left\{\begin{array}{l}
\alpha(u, v) \geq 1 \\
\sigma(u, T u)=\sigma(A, B) \\
\sigma(u, T v)=\sigma(A, B)
\end{array}\right.
$$

The mapping T is α-proximal admissible, then $\alpha(u, u) \geq 1$. It follows from 1.2 that

$$
\begin{aligned}
\sigma(u, v) \leq & \sigma(T u, T u) \leq \alpha(u, u) \sigma(T u, T u) \leq 2^{-1}[2 \sigma(u, T u)-2 \sigma(A, B)] \\
& -\phi(\sigma(u, T u)-\sigma(A, B), \sigma(u, T u)-\sigma(A, B)) \\
= & -\phi(0,0)=0
\end{aligned}
$$

This yields that $\sigma(u, v)=0$ and so, $u=v$.
The following example illustrates Theorem 2.6.
Example 2.8. Let $X=[0, \infty) \times[0, \infty)$ endowed with the metric-like $\sigma: X \times X \rightarrow[0, \infty)$ given as

$$
\sigma\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)= \begin{cases}\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|, & \text { if }\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in[0,1]^{2} \\ x_{1}+x_{2}+y_{1}+y_{2}, & \text { if not. }\end{cases}
$$

It is easy to prove that (X, σ) a complete metric-like space. Take $A=\{0\} \times[0, \infty)$ and $B=\{1\} \times[0, \infty)$. Remark that $\sigma(A, B)=\sigma((0,0),(1,0))=1$. Also, $A_{0}=\{0\} \times[0,1]$ and $B_{0}=\{1\} \times[0,1]$. Consider the mapping $T: A \rightarrow B$ defined by

$$
T(0, x)=\left(1, \frac{x}{4}\right), \quad \forall x \geq 0
$$

We have $T\left(A_{0}\right) \subseteq B_{0}$. Now, let $\left(0, x_{1}\right),\left(0, x_{2}\right) \in A$ and $\left(1, u_{1}\right),\left(1, u_{2}\right) \in B$ such that

$$
\left\{\begin{array}{l}
\sigma\left(\left(0, x_{1}\right),\left(1, u_{1}\right)\right)=\sigma(A, B)=1 \\
\sigma\left(\left(0, x_{2}\right),\left(1, u_{2}\right)\right)=\sigma(A, B)=1
\end{array}\right.
$$

Necessarily, $\left(x_{1}=u_{1} \in[0,1]\right)$ and $\left(x_{2}=u_{2} \in[0,1]\right)$. In this case,

$$
\sigma\left(\left(0, x_{1}\right),\left(0, x_{2}\right)\right)=\sigma\left(\left(1, u_{1}\right),\left(1, u_{2}\right)\right)
$$

that is, the pair (A, B) has the weak (P)-property.
Take $\phi(u, v)=\frac{1}{20}(u+v)$ for all $u, v \geq 0$. Define $\alpha: X \times X \rightarrow[0, \infty)$ as follows

$$
\begin{cases}\alpha((x, y),(s, t))=1, & \text { if } \quad(x, y),(s, t) \in[0,1] \times[0,1] \\ \alpha((x, y),(s, t))=0, & \text { if not. }\end{cases}
$$

Let $\left(0, x_{1}\right),\left(0, x_{2}\right),\left(0, u_{1}\right)$ and $\left(0, u_{2}\right)$ in A such that

$$
\left\{\begin{array}{l}
\alpha\left(\left(0, x_{1}\right),\left(0, x_{2}\right)\right) \geq 1 \\
\sigma\left(\left(0, u_{1}\right), T\left(0, x_{1}\right)\right)=\sigma(A, B)=1 \\
\sigma\left(\left(0, u_{2}\right), T\left(0, x_{2}\right)\right)=\sigma(A, B)=1
\end{array}\right.
$$

Then, necessarily, $\left(x_{1}, x_{2}\right) \in[0,1] \times[0,1]$. Also, we have $\left(u_{1}=\frac{x_{1}}{4}\right.$ and $\left.u_{2}=\frac{x_{2}}{4}\right)$. So

$$
\alpha\left(u_{1}, u_{2}\right) \geq 1
$$

that is, T is α-proximal admissible. Moreover, the condition $\left(\mathrm{T}_{2}\right)$ in Definition 1.9 is satisfied, so the mapping $T: A \rightarrow B$ is triangular α-proximal admissible.

Let $(0, x)$ and $(0, y) \in A$ such that $\alpha(x, y)=1$. Then, $x, y \in[0,1]$. In this case, we have

$$
\begin{aligned}
\alpha((0, x),(0, y)) \sigma(T(0, x), T(0, y)) & =\sigma(T(0, x), T(0, y)) \\
& =\sigma\left(\left(1, \frac{x}{4}\right),\left(1, \frac{y}{4}\right)\right. \\
& =\left|\frac{x}{4}-\frac{y}{4}\right|
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \frac{\sigma((0, x), T(0, y))+\sigma((0, y), T(0, x))-2 \sigma(A, B)}{2}-\phi(\sigma((0, x), T(0, y))-\sigma(A, B), \sigma((0, y), T(0, x))-\sigma(A, B)) \\
& \quad=\frac{\sigma\left((0, x),\left(1, \frac{y}{4}\right)\right)+\sigma\left((0, y),\left(1, \frac{x}{4}\right)\right)-2}{2}-\phi\left(\sigma\left((0, x),\left(1, \frac{y}{4}\right)\right)-1, \sigma\left((0, y),\left(1, \frac{x}{4}\right)\right)-1\right) \\
& \quad=\frac{1}{2}\left(1+\left|x-\frac{y}{4}\right|+1+\left|y-\frac{x}{4}\right|-2\right)-\phi\left(1+\left|x-\frac{y}{4}\right|-1,1+\left|y-\frac{x}{4}\right|-1\right) \\
& \quad=\frac{1}{2}\left(\left|x-\frac{y}{4}\right|+\left|y-\frac{x}{4}\right|\right)-\phi\left(\left|x-\frac{y}{4}\right|,\left|y-\frac{x}{4}\right|\right) .
\end{aligned}
$$

Without loss of generality, take $x \leq y$. We have the following cases:
Case 1: If $x \leq \frac{y}{4}$, we have

$$
\begin{aligned}
& \frac{\sigma((0, x), T(0, y))+\sigma((0, y), T(0, x))-2 \sigma(A, B)}{2}-\phi(\sigma((0, x), T(0, y))-\sigma(A, B), \sigma((0, y), T(0, x))-\sigma(A, B)) \\
& \quad=\frac{1}{2}\left(\frac{y}{4}-x+y-\frac{x}{4}\right)-\phi\left(\frac{y}{4}-x, y-\frac{x}{4}\right) \\
& \quad=\frac{5}{8} y-\frac{5}{8} x-\frac{1}{20}\left(\frac{5}{4} y-\frac{5}{4} x\right) \\
& \quad=\frac{9}{16}(y-x) .
\end{aligned}
$$

We deduce from above that (1.2) holds.
Case 2: If $x \geq \frac{y}{4}$, we have

$$
\begin{aligned}
& \frac{\sigma((0, x), T(0, y))+\sigma((0, y), T(0, x))-2 \sigma(A, B)}{2}-\phi(\sigma((0, x), T(0, y))-\sigma(A, B), \sigma((0, y), T(0, x))-\sigma(A, B)) \\
& \quad=\frac{1}{2}\left(x-\frac{y}{4}+y-\frac{x}{4}\right)-\phi\left(x-\frac{y}{4}, y-\frac{x}{4}\right) \\
& \quad=\frac{3}{8} x-\frac{3}{8} y-\frac{1}{20}\left(\frac{3}{4} x-\frac{3}{4} y\right) \\
& \quad=\frac{27}{80}(y-x) .
\end{aligned}
$$

Again, (1.2 holds.
We conclude that (1.2) is satisfied for all $x, y \in A$. Moreover, the conditions (H) and (iii) in Theorem 2.6 are verified. So, T has a best proximity point which is $u=(0,0)$. It is also unique and verifies $\sigma(u, u)=0$.

3. Consequences

In this paragraph, we present some consequences on our obtained results.

3.1. Some classical best proximity point results

We have the following results.
Corollary 3.1. Let A and B be nonempty closed subsets of a complete metric-like space (X, σ) such that $A_{0} \neq \emptyset$. Let $T: A \rightarrow B$ be a given non-self-mapping such that

$$
\sigma(T x, T y) \leq \psi(\sigma(x, y))
$$

for all $x, y \in A$, where $\psi \in \Psi$. Suppose that
(i) $T\left(A_{0}\right) \subseteq B_{0}$ and (A, B) satisfies the weak (P)-property;
(ii) there exist elements x_{0} and x_{1} in A_{0} such that

$$
\sigma\left(x_{1}, T x_{0}\right)=\sigma(A, B)
$$

(iv) T is continuous.

Then, there exists a unique $u \in A$ such that

$$
\sigma(u, T u)=\sigma(A, B), \quad \text { and } \quad \sigma(u, u)=0
$$

Proof. It suffices to take $\alpha(x, y)=1$ in Theorem 2.1. The uniqueness of u holds since (U) is satisfied.
Corollary 3.2. Let A and B be nonempty closed subsets of a complete metric-like space (X, σ) such that $A_{0} \neq \emptyset$. Let $T: A \rightarrow B$ be a given non-self-mapping such that

$$
\sigma(T x, T y) \leq \frac{\sigma(x, T y)+\sigma(y, T x)-2 \sigma(A, B)}{2}-\phi(\sigma(x, T y)-\sigma(A, B), \sigma(y, T x)-\sigma(A, B))
$$

for all $x, y \in A$, where $\phi \in \Phi$. Suppose that
(i) $T\left(A_{0}\right) \subseteq B_{0}$ and (A, B) satisfies the weak (P)-property;
(ii) there exist elements x_{0} and x_{1} in A_{0} such that

$$
\sigma\left(x_{1}, T x_{0}\right)=\sigma(A, B)
$$

Then, there exists $u \in A$ such that

$$
\sigma(u, T u)=\sigma(A, B), \quad \text { and } \quad \sigma(u, u)=0
$$

Proof. It suffices to take $\alpha(x, y)=1$ in Theorem 2.6 .

3.2. Some best proximity results on a metric-like endowed with a partial order

Let (X, σ) be a metric-like space endowed with a partial order \leq. We introduce the following definition.
Definition 3.3. Let A and B be nonempty subsets of a metric-like space (X, σ) and \leq a partial order on $X, T: A \rightarrow B$ is named a proximal nondecreasing mapping if

$$
\left\{\begin{array}{l}
x_{1} \leq x_{2} \\
\sigma\left(u_{1}, T x_{1}\right)=\sigma(A, B), \quad \Rightarrow u_{1} \leq u_{2} \\
\sigma\left(u_{2}, T x_{2}\right)=\sigma(A, B)
\end{array}\right.
$$

for all $x_{1}, x_{2}, u_{1}, u_{2} \in A$.

Wa also need the following hypothesis.
$\left(\mathrm{H}_{1}\right)$ if $\left\{x_{n}\right\}$ is a sequence in A such that $x_{n} \leq x_{n+1}$ for all n and $x_{n} \rightarrow x \in A$, as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n(k)} \leq x$ for all k.

We state the following.
Corollary 3.4. Let A and B be nonempty closed subsets of a complete metric-like space (X, σ) such that $A_{0} \neq \emptyset$. Let $T: A \rightarrow B$ be a given non-self-mapping such that

$$
\sigma(T x, T y) \leq \psi(\sigma(x, y))
$$

for all $x, y \in A$ such that $x \leq y$, where $\psi \in \Psi$. Suppose that
(i) $T\left(A_{0}\right) \subseteq B_{0}$ and (A, B) satisfies the weak (P)-property;
(ii) T is a proximal nondecreasing mapping;
(iii) there exist elements x_{0} and x_{1} in A_{0} such that

$$
\sigma\left(x_{1}, T x_{0}\right)=\sigma(A, B), \quad \text { and } \quad x_{0} \leq x_{1}
$$

(iv) T is continuous or $\left(H_{1}\right)$ holds.

Then, there exists $u \in A$ such that

$$
\sigma(u, T u)=\sigma(A, B), \quad \text { and } \quad \sigma(u, u)=0
$$

Proof. It suffices to consider $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\alpha(x, y)= \begin{cases}1 & \text { if } \quad x \leq y \\ 0 & \text { if not }\end{cases}
$$

All hypotheses of Theorem 2.1 (resp. Theorem 2.2) are satisfied. This completes the proof.
Similar to Corollary 3.4 we may state:
Corollary 3.5. Let A and B be nonempty closed subsets of a complete metric-like space (X, σ) such that $A_{0} \neq \emptyset$. Let $T: A \rightarrow B$ be a given non-self-mapping such that

$$
\sigma(T x, T y) \leq \frac{\sigma(x, T y)+\sigma(y, T x)-2 \sigma(A, B)}{2}-\phi(\sigma(x, T y)-\sigma(A, B), \sigma(y, T x)-\sigma(A, B))
$$

for all $x, y \in A$ such that $x \leq y$, where $\phi \in \Phi$. Suppose that
(i) $T\left(A_{0}\right) \subseteq B_{0}$ and (A, B) satisfies the weak (P)-property;
(ii) T is a proximal nondecreasing mapping;
(ii) There exist elements x_{0} and x_{1} in A_{0} such that

$$
\sigma\left(x_{1}, T x_{0}\right)=\sigma(A, B), \quad \text { and } \quad x_{0} \leq x_{1}
$$

(iv) T is continuous or $\left(\mathrm{H}_{1}\right)$ holds.

Then, there exists $u \in A$

$$
\sigma(u, T u)=\sigma(A, B), \quad \text { and } \quad \sigma(u, u)=0
$$

3.3. Some best proximity results on a metric-like with a graph

Let (X, σ) be a metric-like space and let $G=(V(G), E(G))$ be a directed graph such that $V(G)=X$ and $E(G)$ contains all loops, i.e., $\Delta:=\{(x, x): x \in X\} \subset E(G)$. We need in the sequel the following hypothesis:
$\left(\mathrm{H}_{\mathrm{G}}\right)$ if $\left\{x_{n}\right\}$ is a sequence in A, such that $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all n and $x_{n} \rightarrow x \in A$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\left(x_{n(k)}, x\right) \in E(G)$ for all k.

Again, we introduce the following definition.
Definition 3.6. Let A and B be nonempty subsets of a metric-like space (X, σ) endowed with a graph G. $T: A \rightarrow B$ is named a G-proximal mapping if

$$
\left\{\begin{array}{l}
\left(x_{1}, x_{2}\right) \in E(G) \\
\sigma\left(u_{1}, T x_{1}\right)=\sigma(A, B), \\
\sigma\left(u_{2}, T x_{2}\right)=\sigma(A, B)
\end{array} \quad \Rightarrow\left(u_{1}, u_{2}\right) \in E(G),\right.
$$

for all $x_{1}, x_{2}, u_{1}, u_{2} \in A$.
We also introduce the following.
Definition 3.7. Let A and B be nonempty subsets of a metric-like space (X, σ) and $\alpha: X \times X \rightarrow[0, \infty)$. A mapping $T: A \rightarrow B$ is named triangular G-proximal admissible if
(T_{1}) T is G-proximal admissible;
$\left(\mathrm{T}_{2}\right)(x, y) \in E(G)$ and $(y, z) \in E(G) \Rightarrow(x, z) \in E(G), x, y, z \in A$.
We have the two following best proximity point results on a metric-like endowed with a graph.
Corollary 3.8. Let A and B be nonempty closed subsets of a complete metric-like space (X, σ) such that $A_{0} \neq \emptyset$. Let $T: A \rightarrow B$ be a given non-self-mapping such that

$$
\sigma(T x, T y) \leq \psi(\sigma(x, y))
$$

for all $x, y \in A$ such that $(x, y) \in E(G)$, where $\psi \in \Psi$. Suppose that
(i) $T\left(A_{0}\right) \subseteq B_{0}$ and (A, B) satisfies the weak (P)-property;
(ii) T is a G-proximal mapping;
(iii) there exist elements x_{0} and x_{1} in A_{0} such that

$$
\sigma\left(x_{1}, T x_{0}\right)=\sigma(A, B), \quad \text { and } \quad\left(x_{0}, x_{1}\right) \in E(G)
$$

(iv) T is continuous or $\left(H_{G}\right)$ holds.

Then, there exists $u \in A$ such that

$$
\sigma(u, T u)=\sigma(A, B) \quad \text { and } \quad \sigma(u, u)=0
$$

Proof. It suffices to consider $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\alpha(x, y)= \begin{cases}1 & \text { if } \quad(x, y) \in E(G) \\ 0 & \text { if not }\end{cases}
$$

All hypotheses of Theorem 2.1 (resp. Theorem 2.2) are satisfied. This completes the proof.

Similar to Corollary 3.8, we may state the following.
Corollary 3.9. Let A and B be nonempty closed subsets of a complete metric-like space (X, σ) such that $A_{0} \neq \emptyset$. Let $T: A \rightarrow B$ be a given non-self-mapping such that

$$
\sigma(T x, T y) \leq \frac{\sigma(x, T y)+\sigma(y, T x)-2 \sigma(A, B)}{2}-\phi(\sigma(x, T y)-\sigma(A, B), \sigma(y, T x)-\sigma(A, B))
$$

for all $x, y \in A$ such that $(x, y) \in E(G)$, where $\phi \in \Phi$. Suppose that
(i) $T\left(A_{0}\right) \subseteq B_{0}$ and (A, B) satisfies the weak (P)-property;
(ii) T is a triangular G-proximal mapping;
(ii) there exist elements x_{0} and x_{1} in A_{0} such that

$$
\sigma\left(x_{1}, T x_{0}\right)=\sigma(A, B), \quad \text { and } \quad\left(x_{0}, x_{1}\right) \in E(G)
$$

(iv) T is continuous or $\left(H_{G}\right)$ holds.

Then, there exists $u \in A$

$$
\sigma(u, T u)=\sigma(A, B), \quad \text { and } \quad \sigma(u, u)=0
$$

References

[1] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), 10 pages. 1
[2] H. Aydi, A. Felhi, E. Karapinar, S. Sahmim, Hausdorff metric-like, generalized Nadler's fixed point theorem on metric-like spaces and application, Micolc Math. Notes, (In press). 1
[3] H. Aydi, A. Felhi, S. Sahmim, Fixed points of multivalued nonself almost contractions in metric-like spaces, Math. Sci. (Springer), 9 (2015), 103-108.
[4] H. Aydi, E. Karapinar, Fixed point results for generalized $\alpha-\psi$-contractions in metric-like spaces and applications, Electron. J. Differential Equations, 2015 (2015), 15 pages.
[5] C. Chen, J. Dong, C. Zhu, Some fixed point theorems in b-metric-like spaces, Fixed Point Theory Appl., 2015 (2015), 10 pages.
[6] M. Cvetković, E. Karapınar, V. Rakocević, Some fixed point results on quasi-b-metric-like spaces, J. Inequal. Appl., 2015 (2015), 17 pages. 1
[7] A. Felhi, H. Aydi, Best proximity points and stability results for controlled proximal contractive set valued mappings, Fixed Point Theory Appl., 2016 (2016), 23 pages. 1
[8] M. Jleli, E. Karapınar, B. Samet, Best proximity points for generalized $\alpha-\psi$-proximal contractive type mappings, J. Appl. Math., 2013 (2013), 10 pages. 1
[9] S. Karpagam, S. Agrawal, Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal., 74 (2011), 1040-1046. 1
[10] W. K. Kim, S. Kum, K. H. Lee, On general best proximity pairs and equilibrium pairs in free abstract economies, Nonlinear Anal., 68 (2008), 2216-2227.
[11] W. A. Kirk, S. Reich, P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim., 24 (2003), 851-862.
[12] C. Mongkolkeha, P. Kumam, Best proximity point theorems for generalized cyclic contractions in ordered metric spaces, J. Optim. Theory Appl., 155 (2012), 215-226.
[13] H. K. Nashine, P. Kumam, C. Vetro, Best proximity point theorems for rational proximal contractions, Fixed Point Theory Appl., 2013 (2013), 11 pages. 1
[14] V. S. Raj, P. Veeramani, best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal., 74 (2011), 4804-4808. 1
[15] S. Sadiq Basha, P. Veeramani, Best proximity pairs and best approximations, Acta Sci. Math. (Szeged), 63 (1997), 289-300. 1
[16] S. Sadiq Basha, P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory, 103 (2000), 119-129. 1
[17] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha \psi$-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. 1
[18] J. Zhang, Y. Su, Q. Cheng, A note on 'A best proximity point theorem for Geraghty-contractions', Fixed Point Theory Appl., 2013 (2013), 4 pages. 1

[^0]: *Corresponding author
 Email addresses: hmaydi@uod.edu.sa (Hassen Aydi), afelhi@kfu.edu.sa (Abdelbasset Felhi)

