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Abstract

We establish some best proximity points for various α-proximal contractive non-self-mappings in the class
of metric-like spaces. We provide concrete examples. We also present some best proximity point theorems in
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1. Introduction and preliminaries

The notion of a metric-like (or a dislocated metric) was rediscovered by Harandi [1]. In the last years,
many (common) fixed point results by using the concept of metric-like have been proved, see for example
[2–6].

Definition 1.1. Let X be a nonempty set. A function σ : X ×X → R+ is said to be a b-metric-like (or a
dislocated b-metric) on X if for any x, y, z ∈ X, the following conditions hold:

(σ1) σ(x, y) = 0 =⇒ x = y;

(σ2) σ(x, y) = σ(y, x);
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(σ3) σ(x, z) ≤ σ(x, y) + σ(y, z).

Then the pair (X,σ) is called a metric-like space.

Example 1.2. Let X = [0,∞). Consider the mapping σ : X ×X → [0,∞) defined by σ(x, y) = (x+ y) for
all x, y ∈ X. Then (X,σ) is a metric-like space.

Mention that each metric-like on X generates a T0 topology τσ on X which has a base the family of
open σ-balls {Bσ(x, ε) : x ∈ X, ε > 0}, where Bσ(x, ε) = {y ∈ X : |σ(x, y)− σ(x, x)| < ε}, for all x ∈ X and
ε > 0.

Definition 1.3. Let (X,σ) be a metric-like space, {xn} be a sequence in X and x ∈ X. The sequence {xn}
converges to x if and only if

lim
n→∞

σ(xn, x) = σ(x, x).

In a metric-like space, the limit for a convergent sequence is not unique in general.

Definition 1.4. Let (X,σ) be a metric-like space and {xn} be a sequence in X. We say that {xn} is Cauchy
if and only if lim

n,m→∞
σ(xn, xm) exists and is finite.

Definition 1.5. Let (X,σ) be a metric-like space. We say that (X,σ) is complete if and only if each Cauchy
sequence in X is convergent.

In what follows, we recall some notations and definitions which will be needed in the sequel. For A and
B two nonempty subsets of a metric-like space (X,σ), define

σ(A,B) = inf{σ(a, b) : a ∈ A, b ∈ B},
A0 = inf{a ∈ A : σ(a, b) = σ(A,B), for some b ∈ B},
B0 = inf{b ∈ B : σ(a, b) = σ(A,B), for some a ∈ A}.

The concept of (P )-property was introduced by Raj and Veeramani [14]. This concept was weakened
later by Zhang et al. [18] where the concept of weak P -property was introduced. In the class of metric-like
spaces, we have the following.

Definition 1.6. Let A and B be nonempty subsets of a metric-like space (X,σ) with A0 6= ∅. The pair
(A,B) is said to have the weak (P )-property if and only if{

σ(x1, y1) = σ(A,B),

σ(x2, y2) = σ(A,B),
⇒ σ(x1, x2) ≤ σ(y1, y2),

where x1, x2 ∈ A and y1, y2 ∈ B.

Example 1.7. Let X = {(1, 2), (0, 1), (1, 3), (3, 1)} endowed with the metric-like σ((x1, x2), (y1, y2)) =
x1 + x2 + y1 + y2 for all (x1, x2), (y1, y2) ∈ X. Let A = {(1, 2), (0, 1)} and B = {(1, 3), (3, 1)}. We have

σ((0, 1), (1, 3)) = 5 = σ(A,B) and σ((0, 1), (3, 1)) = σ(A,B).

Moreover,
σ((0, 1), (0, 1)) = 2 < 8 = σ((1, 3), (3, 1)).

Also, A0 6= ∅. Hence, the pair (A,B) satisfies the weak (P )-property.

As in [8], we introduce in the setting of metric-like spaces the following.
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Definition 1.8. Let A and B be nonempty subsets of a metric-like space (X,σ) and α : X ×X → [0,∞).
A mapping T : A→ B is named α-proximal admissible if

α(x1, x2) ≥ 1,

σ(u1, Tx1) = σ(A,B),

σ(u2, Tx2) = σ(A,B),

⇒ α(u1, u2) ≥ 1,

for all x1, x2, u1, u2 ∈ A.

If σ(A,B) = 0, mention that T is α-proximal admissible implies that T is α-admissible [17].
We introduce the following notions.

Definition 1.9. Let A and B be nonempty subsets of a metric-like space (X,σ) and α : X ×X → [0,∞).
A mapping T : A→ B is named triangular α-proximal admissible if

(T1) T is α-proximal admissible;

(T2) α(x, y) ≥ 1 and α(y, z) ≥ 1⇒ α(x, z) ≥ 1, x, y, z ∈ A.

Now, let Ψ be the set of functions ψ : [0,∞)→ [0,∞) satisfying:

(ψ1) ψ is nondecreasing;

(ψ2)
∞∑
n=1

ψn(t) <∞ for each t ∈ R+, where ψn is the nth iterate of ψ.

Consider also Φ as the set of functions φ : [0,∞)× [0,∞)→ [0,∞) satisfying:

(φ1) φ is continuous;

(φ2) φ(x, y) = 0 if and only if x = y = 0.

In the following, we give some generalized α-proximal contractions.

Definition 1.10. Let A and B be two nonempty subsets of a metric-like space (X,σ). Consider a non-self-
mapping T : A→ B and a given function α : X ×X → [0,∞).

(i) T is called an α-proximal contraction if

α(x, y)σ(Tx, Ty) ≤ ψ(σ(x, y)) (1.1)

for all x, y ∈ A, where ψ ∈ Ψ.

(ii) T is called an α-proximal C-contraction if

α(x, y)σ(Tx, Ty) ≤ σ(x, Ty) + σ(y, Tx)− 2σ(A,B)

2
−φ(σ(x, Ty)−σ(A,B), σ(y, Tx)−σ(A,B)) (1.2)

for all x, y ∈ A, where φ ∈ Φ.

On the other hand, the definition of a best proximity point is as follows.

Definition 1.11. Let (X,σ) be a metric-like space. Consider A and B as the two nonempty subsets of X.
An element a ∈ X is said to be a best proximity point of T : A→ B if

σ(a, Ta) = σ(A,B).

Note that a fixed point coincides with a best proximity point in the case of σ(A,B) = 0. For some
results on above concept, see for example [7, 9–13, 15, 16].

In this paper, we establish some existence results on best proximity points for various α-proximal con-
tractions in the setting of metric-like spaces. We will support the obtained theorems by some concrete
examples. Some nice consequences are also provided.
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2. Main results

The first main result is:

Theorem 2.1. Let A and B be nonempty closed subsets of a complete metric-like space (X,σ) such that
A0 6= ∅. Let T : A→ B be a given non-self-mapping. Suppose that

(i) T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) T is α-proximal admissible;

(iii) there exist elements x0 and x1 in A0 such that

σ(x1, Tx0) = σ(A,B), and α(x0, x1) ≥ 1;

(iv) T is a continuous α-proximal contraction.

Then, there exists u ∈ A such that σ(u, u) = 0. Assume in addition that

(v) α(z, z) ≥ 1 for each z ∈ A0 such that σ(z, z) = 0.

Then, such u is a best proximity point of T , that is,

σ(u, Tu) = σ(A,B).

Proof. By assumption (iii), there exist x0 and x1 ∈ A0 such that

σ(x1, Tx0) = σ(A,B), and α(x0, x1) ≥ 1. (2.1)

From condition (i), we have T (A0) ⊆ B0, so there exists x2 ∈ A0 such that

σ(x2, Tx1) = σ(A,B). (2.2)

By (2.1), (2.2) and the fact that T is α-proximal admissible, we have

α(x1, x2) ≥ 1.

By repeating the above strategy, by the induction, we arrive to construct a sequence {xn} in A0 such
that

σ(xn+1, Txn) = σ(A,B), and α(xn, xn+1) ≥ 1, for all n ≥ 0. (2.3)

From condition (i), the pair (A,B) satisfies the weak (P )-property, so

σ(xn, xn+1) ≤ σ(Txn−1, Txn), for all n ≥ 1. (2.4)

The non-self-mapping T is an α-proximal contraction, so for all n ≥ 1, by using (2.3) and (2.4)

σ(xn, xn+1) ≤ σ(Txn−1, Txn)

≤ α(xn−1, xn)σ(Txn−1, Txn)

≤ ψ(σ(xn−1, xn))

≤ ψn(σ(x0, x1)).

Since ψ ∈ Ψ, so the right-hand side of above inequality tends to 0 as n→∞, that is,

lim
n→∞

σ(xn, xn+1) = 0.

For all k ∈ N, we have

σ(xn, xn+k) ≤
n+k−1∑
m=n

σ(xm, xm+1) ≤
n+k−1∑
m=n

ψm(σ(x0, x1))
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≤
∞∑
m=n

ψm(σ(x0, x1))→ 0, as n→∞.

It follows that lim
n→∞

σ(xn, xn+k) = 0 for all k ∈ N, that is, {xn} is a Cauchy sequence in A. Since A is a

closed subset of the complete metric-like space (X,σ), then there exists u ∈ A such that xn → u as n→∞,
that is,

lim
n→∞

σ(xn, u) = σ(u, u) = lim
n,m→∞

σ(xn, xm) = 0. (2.5)

We have obtained σ(u, u) = 0. Thus, by condition (v), α(u, u) ≥ 1. Consequently, from condition (iv),

σ(Tu, Tu) ≤ α(u, u)σ(Tu, Tu) ≤ ψ(σ(u, u)) = ψ(0) = 0,

which implies that σ(Tu, Tu) = 0. The mapping T is continuous at u, so

lim
n→∞

σ(Txn, Tu) = σ(Tu, Tu) = 0. (2.6)

On the other hand, by triangular inequality and by using (2.3),

σ(A,B) ≤σ(u, Tu)

≤σ(u, xn+1) + σ(xn+1, Txn) + σ(Txn, Tu)

=σ(u, xn+1) + σ(A,B) + σ(Txn, Tu).

By letting n→∞ in above inequalities, by (2.5) and (2.6),

σ(A,B) ≤ σ(u, Tu) ≤ σ(A,B),

that is, σ(A,B) = σ(u, Tu), i.e., u is a best proximity point of T .

In the next result, we replace the continuity hypothesis by the following condition in A:

(H) if {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ A as n → ∞, then there
exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1, for all k.

Theorem 2.2. Let A and B be nonempty closed subsets of a complete metric-like space (X,σ) such that
A0 6= ∅. Let T : A→ B be a given non-self-mapping. Suppose that

(i) T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) T is α-proximal admissible;

(iii) there exist elements x0 and x1 in A0 such that

σ(x1, Tx0) = σ(A,B) and α(x0, x1) ≥ 1;

(iv) T is an α-proximal contraction;

(iv) (H) holds.

Then, there exists u ∈ A such that

σ(u, Tu) = σ(A,B) and σ(u, u) = 0.

Proof. By following the proof of Theorem 2.1, there exists a sequence {xn} in A0 such that (2.3) holds.
Also, {xn} is Cauchy in the subset A, which is closed in the complete metric-like space (X,σ), then there
exists u ∈ A such that xn → u as n → ∞. By hypothesis (H), there exists a subsequence {xn(k)} of {xn}
such that α(xn(k), u) ≥ 1 for all k. Now, from condition (iv), we have

σ(Txn(k), Tu) ≤ α(xn(k), u)σ(Txn(k), Tu) ≤ ψ(σ(xn(k), u)).
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On the other hand, we have

σ(A,B) ≤σ(u, Tu)

≤σ(u, xn(k)+1) + σ(xn(k)+1, Txn(k)) + σ(Txn(k), Tu)

=σ(u, xn(k)+1) + σ(A,B) + σ(Txn(k), Tu).

Therefore,
σ(A,B) ≤ σ(u, Tu) ≤ σ(u, xn(k)+1) + σ(A,B) + ψ(σ(xn(k), u)).

By (2.5) and a property of ψ, as n→∞, we get

σ(A,B) ≤ σ(u, Tu) ≤ σ(A,B),

that is, σ(A,B) = σ(u, Tu), i.e., u is a best proximity point of T .

Now, we prove the uniqueness of such best proximity point. For this, we need the following additional
condition.

(U) For all x, y ∈ B(T ), we have α(x, y) ≥ 1, where B(T ), denotes the set of best proximity points of T.

Theorem 2.3. By adding condition (U) to the hypotheses of Theorem 2.1 (resp. Theorem 2.2), we obtain
that u is the unique best proximity point of T .

Proof. We argue by contradiction, that is, there exist u, v ∈ A such that σ(A,B) = σ(u, Tu) = σ(v, Tv)
with u 6= v. By assumption (U), we have α(u, v) ≥ 1. So, as the pair (A,B) satisfies the weak (P )-property,
then by (1.1), we have

0 < σ(u, v) ≤ σ(Tu, Tv) ≤ α(u, v)σ(Tu, Tv) ≤ ψ(σ(u, v)) < σ(u, v),

which is a contradiction. Hence, u = v.

We provide the following example.

Example 2.4. Let X = {0, 1, 2, 3} endowed with the metric-like σ given as

σ(0, 0) =
3

2
, σ(1, 1) = σ(3, 3) = 0, σ(2, 2) = 2,

σ(0, 1) = σ(1, 0) = 2, σ(0, 2) = σ(2, 0) = σ(3, 1) = σ(1, 3) =
3

2
,

σ(0, 3) = σ(2, 3) =
5

2
, and σ(1, 2) = σ(2, 1) = 3,

Take A = {1, 2} and B = {2, 3}. Consider the mapping T : A→ B defined by

T2 = 2, and T1 = 3.

Remark that σ(A,B) = σ(1, 3) = 3
2 . Also, A0 = {1} and B0 = {3}. Note that T (A0) ⊆ B0. Now, let

x1, x2 ∈ A and y1, y2 ∈ B such that {
σ(x1, y1) = σ(A,B) = 3

2 ,

σ(x2, y2) = σ(A,B) = 3
2 .

Then, we have (x1 = 1, y1 = 3) and (x2 = 1, y2 = 3). In this case,

σ(x1, x2) = 0 = σ(y1, y2),
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that is, the pair (A,B) has the weak (P )-property.
Take ψ(t) = 11

12 t, for all t ≥ 0. Define α : X ×X → [0,∞) as follows{
α(x, y) = 1, if (x, y) ∈ {(1, 2), (2, 1), (1, 1)},
α(x, y) = 0, if not.

Let x1, x2, u1 and u2 in A = {1, 2} such that
α(x1, x2) ≥ 1,

σ(u1, Tx1) = σ(A,B) = 3
2 ,

σ(u2, Tx2) = σ(A,B) = 3
2 .

Then, necessarily, we have (x1 = x2 = u1 = u2 = 1). So

α(u1, u2) ≥ 1,

that is, T is α-proximal admissible. By the symmetry of α and σ, it suffices to study the cases (x = 1, y = 2)
and (x = y = 1).

If (x = 1, y = 2), we have

α(x, y)σ(Tx, Ty) = σ(3, 2) =
5

2
≤ ψ(3) = ψ(σ(1, 2) = ψ(σ(x, y)).

If (x = y = 1), we have

α(x, y)σ(Tx, Ty) = σ(3, 3) = 0 = ψ(0) = ψ(σ(1, 1) = ψ(σ(x, y)).

Thus, (1.1) is satisfied for all x, y ∈ A. Moreover, the conditions (H) and (iii) with x0 = x1 = 1 in
Theorem 2.2 are verified. So T has a best proximity point which is u = 1. It is also unique and verifies
σ(u, u) = 0.

Theorem 2.5. Let A and B be nonempty closed subsets of a complete metric-like space (X,σ) such that
A0 6= ∅. Let T : A→ B be a given non-self-mapping. Suppose that

(i) T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) T is triangular α-proximal admissible;

(iii) there exist elements x0 and x1 in A0 such that

σ(x1, Tx0) = σ(A,B), and α(x0, x1) ≥ 1;

(iv) T is a continuous α-proximal C-contraction.

Then, there exists u ∈ A such that σ(u, u) = 0. Assume in addition that

(v) α(z, z) ≥ 1 for each z ∈ A such that σ(z, z) = 0.

Then, such u is a best proximity point of T , that is,

σ(u, Tu) = σ(A,B).

Proof. By following the proof of Theorem 2.1, we construct a sequence {xn} in A0 such that (2.3) holds,
that is,

σ(xn+1, Txn) = σ(A,B), and α(xn, xn+1) ≥ 1, for all n ≥ 0.
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Since T is triangular α-proximal admissible, then

α(xn, xn+1) ≥ 1, and α(xn+1, xn+2) ≥ 1⇒ α(xn, xn+2) ≥ 1.

Thus by the induction, we get

α(xn, xm) ≥ 1, for all m > n ≥ 0.

Again, (2.4) is satisfied, that is,

σ(xn, xn+1) ≤ σ(Txn−1, Txn), for all n ≥ 1.

By condition (iv), T is an α-proximal C-contraction, so

σ(xn, xn+1) ≤ σ(Txn−1, Txn)

≤ α(xn−1, xn)σ(Txn−1, Txn)

≤ σ(xn−1, Txn) + σ(xn, Txn−1)− 2σ(A,B)

2
− φ(σ(xn−1, Txn)− σ(A,B), σ(xn, Txn−1)− σ(A,B))

=
σ(xn−1, Txn)− σ(A,B)

2
− φ(σ(xn−1, Txn)− σ(A,B), 0)

≤ σ(xn−1, Txn)− σ(A,B)

2

≤ σ(xn−1, xn) + σ(xn, xn+1) + σ(xn+1, Txn)− σ(A,B)

2

=
σ(xn−1, xn) + σ(xn, xn+1)

2
.

One can write
σ(xn, xn+1) ≤ σ(xn−1, xn), for all n ≥ 1,

which allows to say that {σ(xn, xn+1)} is an nonincreasing sequence in [0,∞). Then, there exists t ≥ 0 such
that

lim
n→∞

σ(xn, xn+1) = t. (2.7)

We obtained

σ(xn, xn+1) ≤
σ(xn−1, Txn)− σ(A,B)

2
≤ σ(xn−1, xn) + σ(xn, xn+1)

2
.

By (2.7), we have
lim
n→∞

σ(xn−1, Txn)− σ(A,B) = 2t.

Moreover, we have

σ(xn, xn+1) ≤
σ(xn−1, xn) + σ(xn, xn+1)

2
− φ(σ(xn−1, Txn)− σ(A,B), 0).

By letting n→∞, we get
t ≤ t− φ(2t, 0),

which holds unless φ(2t, 0) = 0, so by a property of φ, t = 0, i.e.,

lim
n→∞

σ(xn, xn+1) = 0. (2.8)
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Now, we shall prove that
lim

n,m→∞
σ(xn, xm) = 0. (2.9)

Suppose to the contrary that there exists ε > 0 for which we can find subsequences {xm(k)} and {xn(k)}
of {xn} with m(k) > n(k) > k such that for every k

σ(xn(k), xm(k)) ≥ ε. (2.10)

Moreover, corresponding to n(k) we can choose m(k) in such a way that it is the smallest integer with
m(k) > n(k) and satisfying (2.10). Then

σ(xn(k), xm(k)−1) < ε. (2.11)

By using (2.10), (2.11) and the triangular inequality, we get

ε ≤ σ(xn(k), xm(k)) ≤ σ(xn(k), xm(k)−1) + σ(xm(k)−1, xm(k))

< σ(xm(k)−1, xm(k)) + ε.

By letting k →∞ in the above inequality and using (2.8), we obtain

lim
k→∞

σ(xn(k), xm(k)) = lim
k→∞

σ(xn(k), xm(k)−1) = ε. (2.12)

Also, by the triangular inequality, we have

σ(xn(k), xm(k)−1)− σ(xn(k), xn(k)−1)− σ(xm(k), xm(k)−1) ≤ σ(xn(k)−1, xm(k)).

σ(xn(k)−1, xm(k)) ≤ σ(xn(k)−1, xn(k)) + σ(xn(k), xm(k)).

By letting k →∞ in the above inequalities and by using (2.8) and (2.12), we obtain

lim
k→∞

σ(xn(k)−1, xm(k)) = ε. (2.13)

On the other hand, we have

σ(xn(k), Txn(k)−1) = σ(A,B), and σ(xm(k), Txm(k)−1) = σ(A,B), for all k ≥ 1.

Since the pair (A,B) satisfies the (P )-property, it follows that

σ(xn(k), xm(k)) ≤ σ(Txn(k)−1, Txm(k)−1), for all k ≥ 1.

Consider

ak := σ(xn(k)−1, Txm(k)−1)− σ(A,B), and bk := σ(xm(k)−1, Txn(k)−1)− σ(A,B).

By (1.2) and as α(xn(k)−1, xm(k) − 1) ≥ 1 for all k ≥ 1, we get

σ(xn(k), xm(k)) ≤ σ(Txn(k)−1, Txm(k)−1) ≤ α(xn(k)−1, xm(k) − 1)σ(Txn(k)−1, Txm(k)−1)

≤ 2−1[σ(xn(k)−1, Txm(k)−1) + σ(xm(k)−1, Txn(k)−1)− 2σ(A,B)]

− φ(σ(xn(k)−1, Txm(k)−1)− σ(A,B), σ(xm(k)−1, Txn(k)−1)− σ(A,B))

≤ 2−1[σ(xn(k)−1, xm(k)) + σ(xm(k), Txm(k)−1)

+ σ(xm(k)−1, xn(k)) + σ(xn(k), Txn(k)−1)− 2σ(A,B)]− φ(ak, bk)

= 2−1[σ(xn(k)−1, xm(k)) + σ(xm(k)−1, xn(k))]− φ(ak, bk)

≤ 2−1[σ(xn(k)−1, xm(k)) + σ(xm(k)−1, xn(k))].
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By letting k →∞ and taking into account (2.12) and (2.13), we get

ε ≤ 2−1[ε+ ε]− lim
k→∞

φ(ak, bk) ≤ ε.

Thus,
lim
k→∞

φ(ak, bk) = 0.

Also
lim
k→∞

(ak + bk) = 2ε. (2.14)

By (2.14), {ak} and {bk} are bounded in [0,∞). Then, {(ak, bk)} is bounded in [0,∞) × [0,∞). Con-
sequently, there exists a subsequence of {(ak, bk)} denoted by {(ank

, bnk
)} and to be convergent. It follows

that {ank
} and {bnk

} are convergent. Again, by (2.14), we have

lim
k→∞

φ(ank
, bnk

) = lim
k→∞

φ(ak, bk) = 0.

Since φ is continuous, then
φ( lim
k→∞

ank
, lim
k→∞

bnk
) = 0.

From the fact that φ(x, y) = 0 if and only if x = y = 0, we obtain

lim
k→∞

ank
= lim

k→∞
bnk

= 0. (2.15)

By (2.14) and (2.15),
2ε = lim

k→∞
(ak + bk) = lim

k→∞
(ank

+ bnk
) = 0.

This yields ε = 0, which is a contradiction. This completes the proof of (2.9). It follows that {xn} is a
Cauchy sequence in A. Since A is a closed subset of the complete metric-like space (X,σ), then there exists
u ∈ A such that xn → u as n→∞, that is,

lim
n→∞

σ(xn, u) = σ(u, u) = lim
n,m→∞

σ(xn, xm) = 0. (2.16)

We have obtained σ(u, u) = 0. Thus, by condition (v), α(u, u) ≥ 1. Consequently, from condition (iv),

σ(Tu, Tu) ≤ α(u, u)σ(Tu, Tu) ≤ σ(u, Tu)− σ(A,B)− φ
(
σ(u, Tu)− σ(A,B), σ(u, Tu)− σ(A,B)

)
.

The mapping T is continuous at u, so

lim
n→∞

σ(Txn, Tu) = σ(Tu, Tu). (2.17)

On the other hand, by triangular inequality,

σ(u, Tu) ≤σ(u, xn+1) + σ(xn+1, Txn) + σ(Txn, Tu)

=σ(u, xn+1) + σ(A,B) + σ(Txn, Tu).

By letting n→∞ in above inequalities, by (2.16) and (2.17),

σ(u, Tu) ≤ σ(A,B) + σ(Tu, Tu).

Then

σ(u, Tu)− σ(A,B) ≤ σ(Tu, Tu) ≤ σ(u, Tu)− σ(A,B)

− φ
(
σ(u, Tu)− σ(A,B), σ(u, Tu)− σ(A,B)

)
≤ σ(u, Tu)− σ(A,B).
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We deduce that φ
(
σ(u, Tu) − σ(A,B), σ(u, Tu) − σ(A,B)

)
= 0. Again from the fact that φ(x, y) = 0

if and only if x = y = 0, we obtain σ(u, Tu) − σ(A,B) = 0, that is, σ(A,B) = σ(u, Tu), i.e., u is a best
proximity point of T .

Theorem 2.6. Let A and B be nonempty closed subsets of a complete metric-like space (X,σ) such that
A0 6= ∅. Let T : A→ B be a given non-self-mapping. Suppose that

(i) T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) T is triangular α-proximal admissible;

(iii) there exist elements x0 and x1 in A0 such that

σ(x1, Tx0) = σ(A,B), and α(x0, x1) ≥ 1;

(iv) T is an α-proximal C-contraction;

(v) (H) holds.

Then, there exists u ∈ A such that u is a best proximity point of T and σ(u, u) = 0.

Proof. By following the proof of Theorem 2.5, there exists a sequence {xn} in A0 such that

σ(xn+1, Txn) = σ(A,B), and α(xn, xm) ≥ 1, for all m > n ≥ 0.

Also, {xn} is Cauchy in the subset A, which is closed in the complete metric-like space (X,σ), then there
exists u ∈ A such that xn → u as n → ∞. By hypothesis (H), there exists a subsequence {xn(k)} of {xn}
such that α(xn(k), u) ≥ 1 for all k. Now, from condition (iv), we have

σ(Txn(k), Tu) ≤ α(xn(k), u)σ(Txn(k), Tu)

≤ 2−1[σ(xn(k), Tu) + σ(u, Txn(k))− 2σ(A,B)]

− φ(σ(xn(k), Tu)− σ(A,B), σ(u, Txn(k))− σ(A,B))

≤ 2−1[σ(xn(k), u) + σ(u, Tu) + σ(u, xn(k)+1)− σ(A,B)].

On the other hand, we have

σ(A,B) ≤ σ(u, Tu) ≤σ(u, xn(k)+1) + σ(xn(k)+1, Txn(k)) + σ(Txn(k), Tu)

=σ(u, xn(k)+1) + σ(A,B) + σ(Txn(k), Tu).

Therefore,

σ(A,B) ≤ σ(u, Tu) ≤ σ(u, xn(k)+1) + σ(A,B)

+ 2−1[σ(xn(k), u) + σ(u, Tu) + σ(u, xn(k)+1)− σ(A,B)].

By (2.5), as n→∞, we get

σ(A,B) ≤ σ(u, Tu) ≤ σ(A,B) + 2−1[σ(u, Tu)− σ(A,B)] = 2−1[σ(u, Tu) + σ(A,B)].

Hence
σ(A,B) ≤ σ(u, Tu) ≤ σ(A,B),

that is, σ(A,B) = σ(u, Tu), i.e., u is a best proximity point of T .

Theorem 2.7. By adding condition (U) to the hypotheses of Theorem 2.5 (resp. Theorem 2.6), we obtain
that u is the unique best proximity point of T .
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Proof. Suppose that there exist u, v ∈ A such that σ(A,B) = σ(u, Tu) = σ(v, Tv). By assumption (U), we
have α(u, v) ≥ 1. So, as the pair (A,B) satisfies the weak (P )-property, then by (1.2), we have

σ(u, v) ≤ σ(Tu, Tv) ≤ α(u, v)σ(Tu, Tv) ≤ 2−1[σ(u, Tv) + σ(Tu, v)− 2σ(A,B)]

− φ(σ(u, Tv)− σ(A,B), σ(v, Tu)− σ(A,B))

≤ 2−1[σ(u, v) + σ(v, Tv) + σ(v, u) + σ(u, Tu)− 2σ(A,B)]

− φ(σ(u, Tv)− σ(A,B), σ(v, Tu)− σ(A,B))

= σ(u, v)− φ(σ(u, Tv)− σ(A,B), σ(v, Tu)− σ(A,B))

≤ σ(u, v).

Therefore,
φ(σ(u, Tv)− σ(A,B), σ(v, Tu)− σ(A,B)) = 0.

From the fact that φ(x, y) = 0 iff x = y = 0, we obtain σ(u, Tv)−σ(A,B) = 0 and σ(v, Tu)−σ(A,B) = 0.
Then, we have σ(u, Tu) = σ(v, Tu) = σ(A,B), and since the pair (A,B) satisfies the weak (P )-property,
then

σ(u, v) ≤ σ(Tu, Tu).

Also 
α(u, v) ≥ 1,

σ(u, Tu) = σ(A,B),

σ(u, Tv) = σ(A,B).

The mapping T is α-proximal admissible, then α(u, u) ≥ 1. It follows from (1.2) that

σ(u, v) ≤ σ(Tu, Tu) ≤ α(u, u)σ(Tu, Tu) ≤ 2−1[2σ(u, Tu)− 2σ(A,B)]

− φ(σ(u, Tu)− σ(A,B), σ(u, Tu)− σ(A,B))

= −φ(0, 0) = 0.

This yields that σ(u, v) = 0 and so, u = v.

The following example illustrates Theorem 2.6.

Example 2.8. Let X = [0,∞)× [0,∞) endowed with the metric-like σ : X ×X → [0,∞) given as

σ((x1, x2), (y1, y2)) =

{
|x1 − y1|+ |x2 − y2|, if (x1, x2), (y1, y2) ∈ [0, 1]2,

x1 + x2 + y1 + y2, if not.

It is easy to prove that (X,σ) a complete metric-like space. Take A = {0}× [0,∞) and B = {1}× [0,∞).
Remark that σ(A,B) = σ((0, 0), (1, 0)) = 1. Also, A0 = {0} × [0, 1] and B0 = {1} × [0, 1]. Consider the
mapping T : A→ B defined by

T (0, x) = (1,
x

4
), ∀ x ≥ 0.

We have T (A0) ⊆ B0. Now, let (0, x1), (0, x2) ∈ A and (1, u1), (1, u2) ∈ B such that{
σ((0, x1), (1, u1)) = σ(A,B) = 1,

σ((0, x2), (1, u2)) = σ(A,B) = 1.

Necessarily, (x1 = u1 ∈ [0, 1]) and (x2 = u2 ∈ [0, 1]). In this case,

σ((0, x1), (0, x2)) = σ((1, u1), (1, u2)),
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that is, the pair (A,B) has the weak (P )-property.
Take φ(u, v) = 1

20(u+ v) for all u, v ≥ 0. Define α : X ×X → [0,∞) as follows{
α((x, y), (s, t)) = 1, if (x, y), (s, t) ∈ [0, 1]× [0, 1],

α((x, y), (s, t)) = 0, if not.

Let (0, x1), (0, x2), (0, u1) and (0, u2) in A such that
α((0, x1), (0, x2)) ≥ 1,

σ((0, u1), T (0, x1)) = σ(A,B) = 1,

σ((0, u2), T (0, x2)) = σ(A,B) = 1.

Then, necessarily, (x1, x2) ∈ [0, 1]× [0, 1]. Also, we have (u1 = x1
4 and u2 = x2

4 ). So

α(u1, u2) ≥ 1,

that is, T is α-proximal admissible. Moreover, the condition (T2) in Definition 1.9 is satisfied, so the mapping
T : A→ B is triangular α-proximal admissible.

Let (0, x) and (0, y) ∈ A such that α(x, y) = 1. Then, x, y ∈ [0, 1]. In this case, we have

α((0, x), (0, y))σ(T (0, x), T (0, y)) = σ(T (0, x), T (0, y))

= σ((1,
x

4
), (1,

y

4
)

= |x
4
− y

4
|.

On the other hand, we have

σ((0,x),T (0,y))+σ((0,y),T (0,x))−2σ(A,B)
2 − φ

(
σ((0, x), T (0, y))− σ(A,B), σ((0, y), T (0, x))− σ(A,B)

)
=

σ((0,x),(1, y
4
))+σ((0,y),(1,x

4
))−2

2 − φ
(
σ((0, x), (1, y4 ))− 1, σ((0, y), (1, x4 ))− 1

)
= 1

2

(
1 + |x− y

4 |+ 1 + |y − x
4 | − 2

)
− φ

(
1 + |x− y

4 | − 1, 1 + |y − x
4 | − 1

)
= 1

2

(
|x− y

4 |+ |y −
x
4 |
)
− φ(|x− y

4 |, |y −
x
4 |).

Without loss of generality, take x ≤ y. We have the following cases:
Case 1: If x ≤ y

4 , we have

σ((0,x),T (0,y))+σ((0,y),T (0,x))−2σ(A,B)
2 − φ

(
σ((0, x), T (0, y))− σ(A,B), σ((0, y), T (0, x))− σ(A,B)

)
= 1

2

(
y
4 − x+ y − x

4

)
− φ

(
y
4 − x, y −

x
4

)
= 5

8y −
5
8x−

1
20(54y −

5
4x)

= 9
16(y − x).

We deduce from above that (1.2) holds.
Case 2: If x ≥ y

4 , we have

σ((0,x),T (0,y))+σ((0,y),T (0,x))−2σ(A,B)
2 − φ

(
σ((0, x), T (0, y))− σ(A,B), σ((0, y), T (0, x))− σ(A,B)

)
= 1

2

(
x− y

4 + y − x
4

)
− φ

(
x− y

4 , y −
x
4

)
= 3

8x−
3
8y −

1
20(34x−

3
4y)

= 27
80(y − x).

Again, (1.2) holds.

We conclude that (1.2) is satisfied for all x, y ∈ A. Moreover, the conditions (H) and (iii) in Theorem 2.6
are verified. So, T has a best proximity point which is u = (0, 0). It is also unique and verifies σ(u, u) = 0.
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3. Consequences

In this paragraph, we present some consequences on our obtained results.

3.1. Some classical best proximity point results

We have the following results.

Corollary 3.1. Let A and B be nonempty closed subsets of a complete metric-like space (X,σ) such that
A0 6= ∅. Let T : A→ B be a given non-self-mapping such that

σ(Tx, Ty) ≤ ψ(σ(x, y))

for all x, y ∈ A, where ψ ∈ Ψ. Suppose that

(i) T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) there exist elements x0 and x1 in A0 such that

σ(x1, Tx0) = σ(A,B);

(iv) T is continuous.

Then, there exists a unique u ∈ A such that

σ(u, Tu) = σ(A,B), and σ(u, u) = 0.

Proof. It suffices to take α(x, y) = 1 in Theorem 2.1. The uniqueness of u holds since (U) is satisfied.

Corollary 3.2. Let A and B be nonempty closed subsets of a complete metric-like space (X,σ) such that
A0 6= ∅. Let T : A→ B be a given non-self-mapping such that

σ(Tx, Ty) ≤ σ(x, Ty) + σ(y, Tx)− 2σ(A,B)

2
− φ(σ(x, Ty)− σ(A,B), σ(y, Tx)− σ(A,B))

for all x, y ∈ A, where φ ∈ Φ. Suppose that

(i) T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) there exist elements x0 and x1 in A0 such that

σ(x1, Tx0) = σ(A,B).

Then, there exists u ∈ A such that

σ(u, Tu) = σ(A,B), and σ(u, u) = 0.

Proof. It suffices to take α(x, y) = 1 in Theorem 2.6.

3.2. Some best proximity results on a metric-like endowed with a partial order

Let (X,σ) be a metric-like space endowed with a partial order ≤. We introduce the following definition.

Definition 3.3. Let A and B be nonempty subsets of a metric-like space (X,σ) and ≤ a partial order on
X, T : A→ B is named a proximal nondecreasing mapping if

x1 ≤ x2,
σ(u1, Tx1) = σ(A,B),

σ(u2, Tx2) = σ(A,B),

⇒ u1 ≤ u2,

for all x1, x2, u1, u2 ∈ A.
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Wa also need the following hypothesis.

(H1) if {xn} is a sequence in A such that xn ≤ xn+1 for all n and xn → x ∈ A, as n→∞, then there exists
a subsequence {xn(k)} of {xn} such that xn(k) ≤ x for all k.

We state the following.

Corollary 3.4. Let A and B be nonempty closed subsets of a complete metric-like space (X,σ) such that
A0 6= ∅. Let T : A→ B be a given non-self-mapping such that

σ(Tx, Ty) ≤ ψ(σ(x, y))

for all x, y ∈ A such that x ≤ y, where ψ ∈ Ψ. Suppose that

(i) T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) T is a proximal nondecreasing mapping;

(iii) there exist elements x0 and x1 in A0 such that

σ(x1, Tx0) = σ(A,B), and x0 ≤ x1;

(iv) T is continuous or (H1) holds.

Then, there exists u ∈ A such that

σ(u, Tu) = σ(A,B), and σ(u, u) = 0.

Proof. It suffices to consider α : X ×X → [0,∞) such that

α(x, y) =

{
1 if x ≤ y,
0 if not.

All hypotheses of Theorem 2.1 (resp. Theorem 2.2) are satisfied. This completes the proof.

Similar to Corollary 3.4, we may state:

Corollary 3.5. Let A and B be nonempty closed subsets of a complete metric-like space (X,σ) such that
A0 6= ∅. Let T : A→ B be a given non-self-mapping such that

σ(Tx, Ty) ≤ σ(x, Ty) + σ(y, Tx)− 2σ(A,B)

2
− φ(σ(x, Ty)− σ(A,B), σ(y, Tx)− σ(A,B))

for all x, y ∈ A such that x ≤ y, where φ ∈ Φ. Suppose that

(i) T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) T is a proximal nondecreasing mapping;

(ii) There exist elements x0 and x1 in A0 such that

σ(x1, Tx0) = σ(A,B), and x0 ≤ x1;

(iv) T is continuous or (H1) holds.

Then, there exists u ∈ A
σ(u, Tu) = σ(A,B), and σ(u, u) = 0.
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3.3. Some best proximity results on a metric-like with a graph

Let (X,σ) be a metric-like space and let G = (V (G), E(G)) be a directed graph such that V (G) = X
and E(G) contains all loops, i.e., ∆ := {(x, x) : x ∈ X} ⊂ E(G). We need in the sequel the following
hypothesis:

(HG) if {xn} is a sequence in A, such that (xn, xn+1) ∈ E(G) for all n and xn → x ∈ A as n → ∞, then
there exists a subsequence {xn(k)} of {xn} such that (xn(k), x) ∈ E(G) for all k.

Again, we introduce the following definition.

Definition 3.6. Let A and B be nonempty subsets of a metric-like space (X,σ) endowed with a graph G.
T : A→ B is named a G-proximal mapping if

(x1, x2) ∈ E(G),

σ(u1, Tx1) = σ(A,B),

σ(u2, Tx2) = σ(A,B),

⇒ (u1, u2) ∈ E(G),

for all x1, x2, u1, u2 ∈ A.

We also introduce the following.

Definition 3.7. Let A and B be nonempty subsets of a metric-like space (X,σ) and α : X ×X → [0,∞).
A mapping T : A→ B is named triangular G-proximal admissible if

(T1) T is G-proximal admissible;

(T2) (x, y) ∈ E(G) and (y, z) ∈ E(G)⇒ (x, z) ∈ E(G), x, y, z ∈ A.

We have the two following best proximity point results on a metric-like endowed with a graph.

Corollary 3.8. Let A and B be nonempty closed subsets of a complete metric-like space (X,σ) such that
A0 6= ∅. Let T : A→ B be a given non-self-mapping such that

σ(Tx, Ty) ≤ ψ(σ(x, y))

for all x, y ∈ A such that (x, y) ∈ E(G), where ψ ∈ Ψ. Suppose that

(i) T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) T is a G-proximal mapping;

(iii) there exist elements x0 and x1 in A0 such that

σ(x1, Tx0) = σ(A,B), and (x0, x1) ∈ E(G);

(iv) T is continuous or (HG) holds.

Then, there exists u ∈ A such that

σ(u, Tu) = σ(A,B) and σ(u, u) = 0.

Proof. It suffices to consider α : X ×X → [0,∞) such that

α(x, y) =

{
1 if (x, y) ∈ E(G),

0 if not.

All hypotheses of Theorem 2.1 (resp. Theorem 2.2) are satisfied. This completes the proof.
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Similar to Corollary 3.8, we may state the following.

Corollary 3.9. Let A and B be nonempty closed subsets of a complete metric-like space (X,σ) such that
A0 6= ∅. Let T : A→ B be a given non-self-mapping such that

σ(Tx, Ty) ≤ σ(x, Ty) + σ(y, Tx)− 2σ(A,B)

2
− φ(σ(x, Ty)− σ(A,B), σ(y, Tx)− σ(A,B))

for all x, y ∈ A such that (x, y) ∈ E(G), where φ ∈ Φ. Suppose that

(i) T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) T is a triangular G-proximal mapping;

(ii) there exist elements x0 and x1 in A0 such that

σ(x1, Tx0) = σ(A,B), and (x0, x1) ∈ E(G);

(iv) T is continuous or (HG) holds.

Then, there exists u ∈ A
σ(u, Tu) = σ(A,B), and σ(u, u) = 0.

References

[1] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012
(2012), 10 pages. 1

[2] H. Aydi, A. Felhi, E. Karapinar, S. Sahmim, Hausdorff metric-like, generalized Nadler’s fixed point theorem on
metric-like spaces and application, Micolc Math. Notes, (In press). 1

[3] H. Aydi, A. Felhi, S. Sahmim, Fixed points of multivalued nonself almost contractions in metric-like spaces, Math.
Sci. (Springer), 9 (2015), 103–108.

[4] H. Aydi, E. Karapinar, Fixed point results for generalized α-ψ-contractions in metric-like spaces and applications,
Electron. J. Differential Equations, 2015 (2015), 15 pages.

[5] C. Chen, J. Dong, C. Zhu, Some fixed point theorems in b-metric-like spaces, Fixed Point Theory Appl., 2015
(2015), 10 pages.
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