
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 5107–5118

Research Article

A new integrable symplectic map and the lie point
symmetry associated with nonlinear lattice equations

Huanhe Donga,b, Tingting Chena,∗, Longfei Chenc, Yong Zhanga

aCollege of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
bKey Laboratory for Robot and Intelligent Technology of Shandong Province, Qingdao, 266510, P. R. China.
cSchool of Economics of Shanghai University, Shanghai 200444, P. R. China.

Communicated by S. S. Chang

Abstract

A discrete matrix spectral problem is proposed, the hierarchy of discrete integrable system is inferred,
which are Liouville integrable. And the Hamiltonian structures of the hierarchy are constructed. A family of
finite-dimensional completely integrable systems and a new integrable symplectic map are provided in terms
of the binary nonlinearity of spectral problem. In particular, two explicit formulations are acquired under
the condition of the bargmann constraints. After that, the symmetry of the discrete integrable systems is
given on the basis of the seed symmetry and its prolongation. Moreover, the solution of the discrete lattice
equation can be gained by the way of the infinitesimal generator. c©2016 All rights reserved.
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1. Introduction

In the last several years, with the deepening of theoretical research on the discrete integrable systems
such as the Toda lattice, Ablowitz-Ladik lattice the differential-difference KdV equation and so on [6, 9,
10, 19, 21, 23, 26], many people have made many outstanding research results which are widely used in
photology and hydromechanics. After studying the integrable systems, we find that the discrete integrable
systems can better explain the natural phenomenon than the continuous integrable system from the aspects
of nature. There are two very important issues, one of which is to find a new Lax integrable nonlinear
lattice systems and discuss their Hamiltonian structures [1, 4, 5, 11, 14, 17, 18, 22] and the other is to obtain
integrable symplectic map, which has been proposed and developed in Refs. [3, 20, 24, 25, 27]. We can
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solve the discrete integrable system through various methods, such as Bäcklund transformation, Dârboux
transformation, Hirota approach, the inverse scattering method, etc. Lie symmetry provides a systematic
approach to the purpose of reducing the order of the differential equations. Usually, the standard method
is used to solve the differential equation. However, using lie point symmetry can simplify solution, and
it can also be used to solve the equation. For differential equations, it is important to study the group-
invariant solution and symmetry reduction, because it provides a powerful tool for the study of differential
equations. And for some equations, it can greatly reduce the calculation of the equation, which can be used
to solve the equation. In this paper, we will use the symmetry theory to solve the discrete integrable systems
[2, 7, 8, 12, 13, 15, 16].

General discrete integrable systems are as follows:

Ea(xn−1, xn, xn+1, un−1, un, un+1) = 0, a = 1, 2, · · · , N, (1.1)

where

det(
∂(Ea, Eb)

∂(xn+1, un+1)
) 6= 0, det(

∂(Ea, Eb)

∂(xn−1, un−1)
) 6= 0.

Set infinitesimal generator ν as follows:

ν =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα
,

and

Pr(n)ν = ν +

q∑
α=1

∑
J

φJα
∂

∂uJα
.

Here Pr(n)ν is the infinitesimal generator of nth order prolonged space, where n indicates the highest order,
in which

φJα(x, u(n)) = DJ(φα −
p∑
i=1

ξiuα,i) +

p∑
i=1

ξiu
J
α,i,

where uJα,uα,i satisfies uJα ∈ U (n)(n ≥ 1), uα,i = ∂uα/∂xi; and operator D is the total derivative, which is
the differential operator of prolonged space,

DiP =
∂P

∂xi
+

q∑
α=1

∂P

∂uα
· ∂uα
∂xi

+

q∑
α=1

∑
J

∂P

∂uJα
· uJα,i,

where J = (J1, · · · , Jk) and DJ = DJ1DJ2 · · ·DJk .
Substituting prolongation operator Pr(n)ν into Eq. (1.1) and handling the coefficients of all un, un+1 · · · ,

we gain a linear independent expression and get the extension of the solution through setting the coefficient
as zero.

In this paper, we would like to consider a new hierarchy of integrable nonlinear lattice equation which
is inferred from a new discrete spectrum problem. Then, we will construct its Hamiltonian structure and
test its properties of Liouville integrability. After that, a new integrable symplectic map and a family of
finite-dimension completely integrable systems would be given according to the binary nonlinearization of
the spectral problem. At the end of the paper, we use the symmetry theory and the gâteaux derivative to
solve the symmetry and the infinitesimal generator of the discrete Lattice equation. We explain our results
by some figures.

2. A new discrete integrable hierarchy and its Hamiltonian structure

Consider the following discrete spectrum problem,
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Eϕ = Uϕ, U = U(u, λ) =

(
λ λq
1
p 1 + q

p

)
, ϕ =

(
ϕ1

ϕ2

)
. (2.1)

The shift operator and the difference operator are defined as follows

(Ef)(n) = f(n+ 1), (E−1f)(n) = f(n− 1), n ∈ Z,
(Df)(n) = f(n+ 1)− f(n) = (E − 1)f(n), n ∈ Z,

where f (j) = Ejf, j ∈ Z, λ is the spectral parameter, λt = 0.
We give a static discrete zero curvature equation for obtaining the discrete integrable systems

(EΓ)U − UΓ = 0, (2.2)

and choose

Γ =

(
A λB
C −A

)
.

We have four equations from Eq. (2.2) as follows:


λA(1) + λ1

pB
(1) − λA− λqC = 0,

λqA(1) + λ(1 + q
p)B(1) − λ2B + λqA = 0,

λC(1) − 1
p(A(1) +A)− (1 + q

p)C = 0,

λqC(1) − λ1
pB − (1 + q

p)(A(1) −A) = 0.

(2.3)

Furthermore, substituting A =
∞∑
m=0

Amλ
−m, B =

∞∑
m=0

Bmλ
−m, C =

∞∑
m=0

Cmλ
−m into Eq. (2.3), we have

C
(1)
0 = 0, B0 = 0, A

(1)
0 −A0 +

1

p
B

(1)
0 − qC0 = 0,

and 
A

(1)
m −Am + 1

pB
(1)
m − qCm = 0,

q(A
(1)
m +Am) + (1 + q

p )B
(1)
m −Bm+1 = 0,

qC
(1)
m+1 − 1

p (A
(1)
m +Am)− (1 + q

p )Cm = 0,

qC
(1)
m+1 − 1

pBm+1 − (1 + q
p )(A

(1)
m −Am) = 0, m ≥ 0.

(2.4)

By setting A0 =
1

2
, B0 = 0, the coefficients Am, Bm, Cm, (m ≥ 1) can be obtained according to the Eq. (2.4). A set

of coefficients are as follows

A1 = − q

p(−1)
, B1 = q, C1 =

1

p(−1)
, · · · .

For any integer m ≥ 0, we let f =
∑
m∈Z

fmλ
m and denote f+ =

∑
m≥0

fmλ
m, choose

Γ
(n)
+ =

n∑
m=0

(
Am λBm
Cm −Am

)
λn−m,Γ

(n)
− = λnΓ− Γ

(n)
+ ,

and rewrite Eq. (2.2) into

(Γ
(n)
+ )U − UΓ

(n)
+ = −(Γ

(n)
− )U + UΓ

(n)
− .

A direct calculation reads that

(Γ
(n)
+ )U − UΓ

(n)
+ =

(
0 λBn+1

−C(1)
n+1

1
pBn+1 − qC(1)

n+1

)
.



H. H. Dong, T. T. Chen, L. F. Chen, Y. Zhang, J. Nonlinear Sci. Appl. 9 (2016), 5107–5118 5110

Let Γ(n) = Γ
(n)
+ , then the discrete zero curvature equation meets the following Lax integrable system{

pt = C
(1)
n+1p

2,
qt = Bn+1.

(2.5)

According to Eq. (2.4), we acquire the recurrence operator L as follows

L =

(
E−1(1 + q

p ) + q
p (E + 1)(E − 1)−1E−1 E−1(E + 1)(E − 1)−1

− q
2

p2 (E + 1)(E − 1)−1 (1 + q
p ) + q

p (E + 1)(E − 1)−1

)
.

We rewrite System (2.5) into(
q
p

)
nt

= J

(
Cn+1

−B
(1)
n+1

p2

)
= JLn

(
C1

−B
(1)
1

p2

)
= JLn

(
1

p(−1)

− q
(1)

p2

)
, (2.6)

where

J = p2

(
0 −E−1

E 0

)
.

When we take n = 1, system (2.6) reduces to {
pt = p2

p(−1) − q(1),

qt = q(1) − q2

p(−1) .
(2.7)

For purpose of constructing the Hamiltonian structure of system (2.6), we define

V = ΓU−1 =

(
λ−1(1 + q

p )A− B
p λB − qA

λ−1(1 + q
p )C + 1

pλA −qC −A

)
.

We have
∂U

∂λ
=

(
1 q
0 0

)
,
∂U

∂p
=

(
0 0
− 1
p2 − q

p2

)
,
∂U

∂q
=

(
0 λ
0 1

p

)
.

Therefore, 
〈
V, ∂U∂λ

〉
= 1

λ (1 + q
p )(A+ qC)− B

p + q
pλA,〈

V, ∂U∂p

〉
= 1

p2 (2qA− λB + q2C),〈
V, ∂U∂q

〉
= C,

and 〈A,B〉 = Tr(AB), where A and B are the same order square matrix. By applying the discrete trace identity

δ

δu

∑
n∈Z

〈
V,
∂U

∂λ

〉
=

(
λ−ε

(
∂

∂λ

)
λε
)〈

V,
∂U

∂ui

〉
, i = 1, 2,

we obtain that
δ

δu

A

λ
= λ−ε

∂

∂λ
λε

(
C

−B
(1)

p2

)
.

By comparing with the coefficient of λ−n−1, we get

δ

δu
An = (ε− n)

(
Cn

−B
(1)
n

p2

)
.

When n = 1, let ε = 0, then we have

δ

δu

(
−An
n

)
=

(
Cn

−B
(1)
n

p2

)
,
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and (
Cn+1

−B
(1)
n+1

p2

)
=
δHn

δu
,Hn = −An+1

n+ 1
,

where J is a Hamiltonian operator. Hence, Eq. (2.6) can be written as the Hamiltonian structure.(
q
p

)
nt

= J
δHn

δu
. (2.8)

Furthermore, we test the following result
(JL)∗ = −JL,

where

K = JL =

(
q2(E + 1)(E − 1)−1E−1 qp(E + 1)(E − 1)−1E−1 − (p2 + qp)E−1

qp(E + 1)(E − 1)−1 + (p2 + qp) p2(E + 1)(E − 1)−1

)
{
H̃m, H̃l

}
J

= 0, m, l ≥ 1, (2.9)

(H̃m)tl =
∑
n∈Z

(
δH̃m

δu
utl

)
(n) =

∑
n∈Z

(
δH̃m

δu
, J
δH̃l

δu
) =

{
H̃m, H̃l

}
J

= 0, m, l ≥ 1.

Hence, the conserved densities
{
H̃m

}∞
m=1

are the involution with respect to Poisson bracket (2.9) and we conclude

that each nonlinear difference-differential equation of the discrete hierarchy is Liouville integrable.

3. A new integrable symplectic map and representation of solutions for Eq. (2.7)

In the subsection, we will discuss the symmetry constraint of Eq. (2.5). Consider the adjoint spectral problem of
Eq. (2.1)

E−1ψ = (E−1UT (a, λ))ψ, ψ =

(
ψ1

ψ2

)
, (3.1)

and the auxiliary problem
ψtm = −(Vm(a, λ))Tψ. (3.2)

In terms of the compatibility condition of Eq. (2.6) and Eq. (2.7) (E−1ψ)tm = E−1(ψtm), we gain

E−1UTtm = (E−1UT )(Vm)T − (E−1(Vm)T )(E−1UT ). (3.3)

It is easy to test that Eq. (3.3) and Utm = (EVm)U −UVm are equivalent. Hence, Eq. (3.3) is the another kind of
zero curvature representation of the discrete soliton Eq. (2.8), where (3.1) and (3.2) are regarded as the adjoint Lax
pairs of discrete soliton Eq. (2.8).

Assuming λ1 , λ2 , · · · , λN are n different eigenvalues of the spectral problem (2.1), we gain(
Eϕ1j

Eϕ2j

)
= U(a, λj)

(
ϕ1j

ϕ2j

)
,(

E−1ψ1j

E−1ψ2j

)
= (E−1UT (a, λj))

(
ψ1j

ψ2j

)
, 1 ≤ j ≤ N,

(3.4)

(
ϕ1j

ϕ2j

)
tm

= Vm(a, λj)

(
ϕ1j

ϕ2j

)
,(

ψ1j

ψ2j

)
tm

= −V Tm (a, λj)

(
ψ1j

ψ2j

)
, 1 ≤ j ≤ N,

(3.5)

(Eϕ1j ,Eϕ2j) = (ϕ1j , ϕ2j )U( a, λj )T , 1 ≤ j ≤ N,

(Eψ1j , Eψ2j) = (ψ1j , ψ2j)U( a , λj)
−1, 1 ≤ j ≤ N.
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According to Ref. [3], we infer

δλj
δ p

=
q

p2
ϕ1jψ1j −

1

p2
ϕ1jψ2j +

q2

p2
ϕ2jψ1j −

q

p2
ϕ1jψ2j , 1 ≤ j ≤ N,

δλj
δ q

= ϕ2jψ1j , 1 ≤ j ≤ N,

where 〈. , .〉 denotes the inner product in RN . By making use of the discrete Bargmann constraint

J
δH̃0

δu
= J

N∑
j=0

δλj
δu

,

where αj = 1, 1 ≤ j ≤ N . That is,

δH̃0

δ p
=

q

p2
〈Φ1,Ψ1〉 −

1

p2
〈Φ1,Ψ2〉+

q2

p2
〈Φ2,Ψ1〉 −

q

p2
〈Φ2,Ψ2〉 ,

δH̃0

δ q
= 〈Φ2,Ψ1〉 ,

where

Φi = (ϕi1, ϕi2, · · · , ϕiN )T , Ψi = (ψi1, ψi2, · · · , ψiN )T , i = 1, 2.

We obtain two explict constraints
q = Λ−1 〈Φ1,Ψ2〉 ,

p =
Λ2 + Λ〈Φ2,Ψ2〉 − 〈Φ1,Ψ2〉〈Φ2,Ψ1〉 − Λ〈Φ1,Ψ1〉

Λ 〈Φ2,Ψ1〉
,

(3.6)

or {
q = Λ−1 〈Φ1,Ψ2〉 ,
p = −Λ−1 〈Φ1,Ψ2〉 .

(3.7)

Substituting Eqs. (3.6) and (3.7) into Eq. (3.4), we obtain a discrete Bargmann system

Eφ1j = λjφ1j + λjqφ2j = Λφ1j + 〈Φ1,Ψ2〉φ2j ,

Eφ2j =
1

p
φ1j + (1 +

q

p
)φ2j

= Λ〈Φ2,Ψ1〉(Λ2 − Λ〈Φ1,Ψ1〉 − 〈Φ1,Ψ2〉〈Φ2,Ψ1〉+ Λ〈Φ2,Ψ2〉)−1φ1j

+ (1 + 〈Φ1,Ψ2〉〈Φ2,Ψ1〉(Λ2 − Λ〈Φ1,Ψ1〉 − 〈Φ1,Ψ2〉〈Φ2,Ψ1〉+ Λ〈Φ2,Ψ2〉)−1)φ2j ,

Eψ1j =
1

λj
(1 +

q

p
)ψ1j −

1

λjp
ψ2j

= Λ−1(1 + 〈Φ1,Ψ2〉〈Φ2,Ψ1〉(Λ2 − Λ〈Φ1,Ψ1〉 − 〈Φ1,Ψ2〉〈Φ2,Ψ1〉

+ Λ〈Φ2,Ψ2〉)−1)ψ1j − 〈Φ2,Ψ1〉(Λ2 − Λ〈Φ1,Ψ1〉 − 〈Φ1,Ψ2〉〈Φ2,Ψ1〉+ Λ〈Φ2,Ψ2〉)−1ψ2j ,

Eψ2j = −qψ1j + ψ2j = −Λ−1〈Φ1,Ψ2〉ψ1j + ψ2j ,

(3.8)

or 

EΦ1j = λjφ1j + λjqφ2j = Λφ1j + 〈Φ1,Ψ2〉φ2j ,

EΦ2j =
1

p
φ1j + (1 +

q

p
)φ2j = −Λ〈Φ1,Ψ2〉−1φ1j ,

EΨ1j =
1

λj
(1 +

q

p
)ψ1j −

1

λjp
ψ2j = −〈Φ1,Ψ2〉−1ψ2j ,

EΨ2j = −qψ1j + ψ2j = −Λ−1〈Φ1,Ψ2〉ψ1j + ψ2j .

(3.9)
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Let fi = fi(Φ1,Φ2,Ψ1,Ψ2), gi = gi(Φ1,Φ2,Ψ1,Ψ2), 1 ≤ i ≤ 2N. We present

fj = Λ−1(1 + 〈Φ1,Ψ2〉〈Φ2,Ψ1〉(Λ2 − Λ〈Φ1,Ψ1〉 − 〈Φ1,Ψ2〉〈Φ2,Ψ1〉+ Λ〈Φ2,Ψ2〉)−1)ψ1j

− 〈Φ2,Ψ1〉(Λ2 − Λ〈Φ1,Ψ1〉 − 〈Φ1,Ψ2〉〈Φ2,Ψ1〉+ Λ〈Φ2,Ψ2〉)−1ψ2j ,

fN+j = −Λ−1〈Φ1,Ψ2〉ψ1j + ψ2j ,

gj = Λφ1j + 〈Φ1,Ψ2〉φ2j ,

gN+j = Λ〈Φ2,Ψ1〉(Λ2 − Λ〈Φ1,Ψ1〉 − 〈Φ1,Ψ2〉〈Φ2,Ψ1〉+ Λ〈Φ2,Ψ2〉)−1φ1j

+ (1 + 〈Φ1,Ψ2〉〈Φ2,Ψ1〉(Λ2 − Λ〈Φ1,Ψ1〉 − 〈Φ1,Ψ2〉〈Φ2,Ψ1〉+ Λ〈Φ2,Ψ2〉)−1)φ2j ,

or 

fj = −〈Φ1,Ψ2〉−1ψ2j ,

fN+j = −Λ−1〈Φ1,Ψ2〉ψ1j + ψ2j ,

gj = Λφ1j + 〈Φ1,Ψ2〉φ2j ,

gN+j = −Λ〈Φ1,Ψ2〉−1φ1j , 1 ≤ j ≤ N.

We define Poisson bracket as

{f , g} =

2∑
i=1

N∑
j=1

(
∂f

∂ψij

∂g

∂ϕij
− ∂f

∂ϕij

∂g

∂ψij

)

=

2∑
i=1

(〈
∂f

∂Ψi
,
∂g

∂Φi

〉
−
〈
∂f

∂Φi
,
∂g

∂Ψi

〉)
on any pair of functions f = f(Φ1,Φ2,Ψ1,Ψ2) and g = g(Φ1,Φ2,Ψ1,Ψ2). Let

H(Ψ1,Ψ2,Φ1,Φ2) = (EΨ1, EΨ2, EΦ1, EΦ2),

then, via a direct calculation, we infer

{fi, fj} = {gi, gj} = 0 , {fi, gj} = δij , 1 ≤ i, j ≤ 2N,

we define Eqs. (3.8) and (3.9) as an integrable symplectic map. Then we take the binary nonlinearization of the Lax

pairs and the adjoint Lax pairs into account. According to the Eq. (2.4), the following values could be selected as
Ã0 =

1

2
, B̃0 = C̃0 = 0, Ã1 = 0,

B̃m = Λm−2〈Φ1,Ψ2〉, C̃m = Λm−1〈Φ2,Ψ1〉,

Ãm =
Λm−1〈Φ1,Ψ1〉 − Λm−1〈Φ2,Ψ2〉

2
, m ≥ 1.

(3.10)

Let

Γ̃ =

(
Ã λB̃

C̃ −̃A

)
=

∞∑
m=0

(
Ãm λB̃m
C̃m −Ãm

)
λ−m

and

F̃m = det Γ̃ =
1

2
trΓ̃2 = Ã2 + ΛB̃C̃ =

m∑
0

(ÃiÃm−i + ΛB̃iC̃m−i), (3.11)
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then we have

F̃0 =
1

4
, F̃1 = 0, F̃m =

Λm−1〈Φ1,Ψ1〉 − Λm−1〈Φ2,Ψ2〉
2

+

m−1∑
i=1

(Λi−2〈Φ1,Ψ2〉Λm−i〈Φ2,Ψ1〉

+
Λi−1〈Φ1,Ψ1〉 − Λi−1〈Φ2,Ψ2〉

2

Λm−i−1〈Φ1,Ψ1〉 − Λm−i−1〈Φ2,Ψ2〉
2

).

We could obtain a family of finite-dimensional integrable systems and an integrable symplectic map via the binary

nonlinearity of the isospectral problem. Bringing Eq. (3.10) into Eq. (3.5), we have(
ϕ1j

ϕ2j

)
tm

= V (m)(u, λj)
∣∣
B

(
ϕ1j

ϕ2j

)
,(

ψ1j

ψ2j

)
tm

= − V (m)T (u, λj)
∣∣
B

(
ψ1j

ψ2j

)
, j = 1, 2, · · · , N,

(3.12)

where subscript B stands for Eqs. (3.6) and (3.7).

Rewriting Eq. (3.12) as the Hamilton systems, we infer

D(Ã2 + B̃C̃) = 0, Ψitm = −∂(F̃m+1)

∂Φi
, Φitm =

∂(F̃m+1)

∂Ψi
, i = 1, 2.

Setting

Fj = ϕ1jψ1j + ϕ2jψ2j , 1 ≤ j ≤ N,

we have

{ F̃m+1, F̄j} =
dF̄j
dtm

= 0, 1 ≤ j ≤ N,m ≥ 0; { F̄i, F̄j} = 0, 1 ≤ i, j ≤ N.

Therefore, we get

∂F̃m
∂Φ1

=
Λm−1Ψ1

2
+

m−1∑
i=1

C̃m+1−iΛ
i−2Ψ2 +

m−1∑
i=1

ÃiΛ
m−i−1Ψ1,

∂F̃m
∂Φ2

= −Λm−1Ψ2

2
+

m−1∑
i=1

B̃m−iΛ
m−iΨ1 +

m−1∑
i=1

ÃiΛ
m−i−1Ψ2.

According to Eq. (3.11), the following conclusions can be drawn directly

∂F̃m+1

∂Φ1

∣∣∣∣∣
Φ1=Φ2=0

=
Λm−1Ψ1

2
,

∂F̃m+1

∂Φ2

∣∣∣∣∣
Φ1=Φ2=0

= −Λm−1Ψ2

2
.

Set
N∑
j=1

ψ2
1j 6= 0 , we suppose that Φ1 = (ϕ11,ϕ12, · · ·ϕ1N )T is satisfied with the following nonlinear equation



ϕ11ψ11 + ϕ12ψ12 + · · ·ϕ1Nψ1N = 0,

λ1ϕ11ψ11 + λ2ϕ12ψ12 + · · ·+ λNϕ1Nψ1N = 0,

...

λN−1
1 ϕ11ψ11 + λN−1

2 ϕ12ψ12 + · · ·+ λN−1
N ϕ1Nψ1N = 0.

(3.13)
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Through the observation of Vandermode determinant∣∣∣∣∣∣∣∣
1 1 · · · 1
λ1 λ2 · · · λN

· · · · · ·
λN−1

1 λN−1
2 · · · λN−1

N

∣∣∣∣∣∣∣∣ 6= 0,

we know Φ1 = (ϕ11, ϕ12, · · ·ϕ1N )T is only decided by Eq. (3.13). In addition, we obtain the following proposition by

direct calculation

∂F̄j
∂ϕil

= ψijδjl, i = 1, 2, j, l = 1, 2 · · ·N.

det

(
∂F̄1

∂Φ1
· · · ∂F̄N

∂Φ1

∂F̃1

∂Φ1
· · · ∂F̃N

∂Φ1

∂F̄1

∂Φ2
· · · ∂F̄N

∂Φ2

∂F̃1

∂Φ2
· · · ∂F̃N

∂Φ2

)
= det



ψ11 · · · 0 1
2λ1ψ11 · · · 1

2λ
N
1 ψ11

...
. . .

...
...

. . .
...

0 · · · ψ1N
1
2λNψ1N · · · 1

2λ
N
Nψ1N

ψ21 · · · 0 − 1
2λ1ψ21 · · · − 1

2λ
N
1 ψ21

...
. . .

...
...

. . .
...

0 · · · ψ2N − 1
2λNψ2N · · · − 1

2λ
N
Nψ2N



= ((

N∏
j=1

ψ1jψ2j)(

N∏
k=1

λk)

∣∣∣∣∣∣∣∣
1 λ1 · · · λN−1

1

1 λ2 · · · λN−1
2

· · · · · ·
1 λN · · · λN−1

N

∣∣∣∣∣∣∣∣.
That is, F̃m+1, 1 ≤ m ≤ N, F̄j , 1 ≤ j ≤ N are functionally independent in some region of R4N .

4. The symmetry of the discrete integrable system

In this section we use the symmetry theory to find the solution to Eq. (2.7). The vector fields of the general form

are

ν1 = τ(t)∂t + φn(t, p(n))∂p(n) , ν2 = τ(t)∂t + ψn(t, q(n))∂q(n) .

So as to obtain the Lie algebra of local Lie point symmetries of Eq. (2.7), we present the first prolongation of ν1, ν2,

that is,

Pr(n)ν1 = τ(t)∂t +

1∑
i=−1

φi(t, p
(i))∂p(i) + φ(1)∂ṗ, φ(1) = Dtφ(t, p)− [Dtτ(t)]ṗ,

P r(n)ν2 = τ1(t)∂t +

1∑
i=−1

ψi(t, q
(i))∂q(i) + ψ(1)∂q̇, ψ

(1) = −Dtψ(t, q) + [Dtτ1(t)]q̇,

where Dt stands for the total derivative operator. Substituting Pr(n)ν into Eq. (2.7), we have

ϕ(−1)
p2

p2(−1)
− ϕ 2p

p(−1)
+ ϕt + (ϕp − τ̇)(

p2

p(−1)
− q(1)) + ψ

2q

p(−1)
− ψ(1) − ψt − (ψq − τ̇1)(q(1) − q2

p(−1)
) = 0. (4.1)

Substituting the second derivative ∂p∂q(−1) and ∂q∂q(1) into Eq. (4.1), we infer

−ϕpp
1

p2(−1)
= 0, ψqq = 0.
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It is easy to get that

ϕpp = 0, ψqq = 0,

which infer the following result

ϕ = ap, ψ = bq. (4.2)

Substituting Eq. (4.2) into Eq. (4.1), we gain

a(−1)
p2

p(−1)
− 2a

p2

p(−1)
+ (2a− τ̇)(

p2

p(−1)
− q(1)) + 2b

q2

p(−1)
− b(1)q

(1) − (2b− τ̇1)(q(1) − q2

p(−1)
) = 0, (4.3)

inferring the special coefficient relation of the Eq. (4.3), we have τ̇ = a(−1),
τ̇1 = 4b,
b(1) = 2b− 2a+ a(−1),

where the coefficients a(1), b(1) are constants.

Since the solution of the Eq. (2.7) could be obtained on the basis of the symmetry theory with the help of the

infinitesimal generator, we can rewrite Eq. (2.7) into the following form.

pt =
p2

p(−1)
− q(1),

qt = q(1) − q2

p(−1)
,

prX1[p] = τ(t)pt + ϕ = 0,

prX2[q] = τ1(t)qt + ψ = 0.

(4.4)

If we take some appropriate initial values

a = 3b, b(1) = −2b, a(−1) = 2b, τ̇1 = 4b, τ̇ = 2b, (4.5)

and set the step length p− p(−1) = q(1) − q = h, we obtain the solution of Eq. (2.7)
q = (

ap

τ
+

p2

p− h
)− h,

b

τ1
(
ap

τ
+

p2

p− h
− h) =

(apτ −
p2

p−h − h)2

p− h
− (

ap

τ
+

p2

p− h
),

(4.6)

according to Eqs. (4.4) and (4.5).

5. Conclusion

In this paper, we prove that Eqs. (3.8) and (3.9) are an integrable symplectic map through the binary nonlin-

earization method, and we know that F̃m+1, 1 ≤ m ≤ N, F̄j , 1 ≤ j ≤ N are functionally independent in some region

of R4N . According to the symmetry theory, we gain the seed symmetry and the infinitesimal generator by the seed

symmetry and the recursion operator. And we gain the infinitesimal generator of the discrete lattice equation based

on the Lie point symmetry theory.
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The explanation of the p and q with the time variable t is given in Figs. 1–3. According to the figures, by

adjusting the step size, we find that the longer the step length, the greater the minimum, and the smaller the

maximum. Meanwhile, the convergence rate of the graphics is becoming slower.
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Figure 1: the left figure indicates the solution of the q and the right is the solution of the p, based on the Eq. (4.6), with the
step length h = 0.1.
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Figure 2: the left figure indicates the solution of the q and the right is the solution of the p, based on the Eq. (4.6), with the
step length h = 0.5.
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Figure 3: the left figure indicates the solution of the q and the right is the solution of the p, based on the Eq. (4.6), with the
step length h = 1.

Our plan of the future work is that using Bäcklund transformation or Dârboux transformation to research these

discrete integrable systems. Moreover, we would try to create the potential of the spectral problem rt to get more

explicit equation. It can be better to research the essence of nature.
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