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Abstract

In this paper, to compute the fixed point of self-mapping on general non-convex sets, a modified con-
straint shifting homotopy algorithm for perturbing simultaneously both equality constraints and inequality
constraints is proposed and the global convergence of the smooth homotopy pathways is proven under some
mild conditions. The advantage of the newly constructed homotopy is that the initial point needs to be only
in the shifted feasible set, not necessarily, an interior point in the original feasible set, and hence it is more
convenient to be implemented than the existing results. Some numerical examples are also given to show
its feasibility and effectiveness. c©2016 All rights reserved.
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1. Introduction and preliminaries

Fixed point theory has been broadly implemented in nonlinear analysis, integral and differential equa-
tions, dynamical system theory, game theory, optimization problems and other fields. Recently, lots of results
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on the fixed point theory and algorithms have appeared and attracted many attentions, see references such
as [2, 5, 7, 12–15, 17]. Among all of the fixed point theorems, the famous Brouwer fixed point theorem
only requires that the self-mapping Ψ : X → X is continuous but not contractive and has been extensively
applied in game theory, equilibrium problems and other across numerous fields of mathematics. In 1976, to
give an innovative proof and compute the Brouwer fixed point in a convex set, Kellogg et al. [6] presented
its constructive proof via a homotopy method for a twice continuous differentiable self-mapping. In 1978,
Chow et al. [3] constructed a single and convenient fixed point homotopy for computing Brouwer fixed point
for a twice continuous differentiable self-mapping in convex set. In 1996, to remove the convex assumption
and numerically solve the fixed point problems under much weaker conditions, Yu and Lin [16] first proved
an equivalent condition of the existence for fixed point on non-convex bounded sets with only inequality
constraints X = {x : gi(x) ≤ 0, i = 1, 2, . . . ,m} and constructed an interior point combined homotopy for
computing fixed points of a twice continuous differentiable self-mapping as follows:

H(θ, t) =

 (1− t)(x−Ψ(x) +
m∑
i=1
∇gi(x)yi) + t(x− x0)

Y g(x)− tY 0g(x0)

 ,

where (x0, y0) ∈ X0 × Rm++, yi ≥ 0, t ∈ [0, 1], g(x) = (g1(x), . . . , gm(x))T , Y and Y 0 denote the diagonal
matrices whose ith diagonal element are yi and y0i , respectively, and the strict feasible set X0 = {x : gi(x) <
0, i = 1, 2, . . . ,m}. Throughout the paper, let Rm, Rm+ and Rm++ denote m-dimension Euclidean space,
nonnegative orthant and positive orthant of Rm, respectively.

In 2008, to solve the fixed point problems on the general non-convex sets with equality constraints and
inequality constraints, Su and Liu [9] generalized the interior point combined homotopy to compute the
fixed point of self-mapping in a broader class of non-convex bounded sets

X = {x : gi(x) ≤ 0, hj(x) = 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , l}

and the homotopy was constructed as follows:

H(θ, t) =

 (1− t)(x−Ψ(x) +
m∑
i=1
∇gi(x)yi) +

l∑
j=1
∇hj(x)zj + t(x− x0)

h(x)
Y g(x)− tY 0g(x0)

 , (1.1)

where θ = (x, y, z) ∈ Rn ×Rm+ ×Rl, (x0, y0) ∈ X0 ×Rm++, t ∈ [0, 1], and the strict feasible set

X0 = {x : gi(x) < 0, , hj(x) = 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , l}.

In 2013, to relax the bounded condition and weaken the normal cone condition, Zhu et al. [21] constructed
a modified combined homotopy for computing the fixed point of a self-mapping on the general unbounded
non-convex sets with both equality constraints and inequality constraints and the existence and global
convergence of the smooth homotopy pathway was proven under much weaker pseudo cone condition. Since
the interior point combined homotopy requires that the initial point must be in the original feasible set,
to enlarge the chosen scope of initial points, in 2011, Su et al. [11] presented a boundary perturbation
interior point homotopy method for solving the fixed point problems on the non-convex bounded sets with
only inequality constraints. In 2015, Su and Qian [10] proposed a modified combined homotopy method for
computing the fixed point of a self-mapping by a perturbation on the inequality constraints on the general
non-convex unbounded sets. In 2015, for solving the fixed point problems of self-mapping, Fan et al. [4]
proposed an infeasible interior point homotopy method for enlarging the choice scope of initial points by a
perturbation on equality constraints on the general unbounded sets. In 2016, Zhu and Yang [19] proposed
a more conveniently constraint shifting homotopy method for computing the fixed point of self-mapping on
the non-convex set with only inequality constraints.
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To enlarge the chosen scope of initial points by a perturbation simultaneously both inequality constraints
and equality constraints on the general non-convex sets, it seems reasonable to construct the homotopy
directly instead of (1.1) as follows:

H(θ, t) =

 (1− t)(x−Ψ(x) +
m∑
i=1
∇gi(x)yi) +

l∑
j=1
∇hj(x)zj + t(x− x0)

h(x)− th(x0)
Y g(x)− tY 0g(x0)

 . (1.2)

Unfortunately, the probability-one regularity of the homotopy (1.2) cannot be ensured. The reason is
that the following submatrix may be not full row rank for any t ∈ (0, 1] by taking x0 and y0 as variate:

∂H(θ, x0, y0, t)

∂(x, x0, y0)
=

 Ξ −tI 0
(∇h(x))T −t(∇h(x0))T 0
Y (∇g(x))T −tY 0(∇g(x0))T −tdiag(g(x0))

 ,

where Ξ = (1−t)(I−∇Ψ(x)+
∑m

i=1∇2gi(x)yi)+
∑l

j=1∇2hj(x)zj+tI, and diag(g(x0)) denotes the diagonal

matrix with its ith diagonal element gi(x
0).

Referring to the former results, in this article, a constraint shifting homotopy for computing the fixed
point of self-mapping on the general non-convex sets by perturbing simultaneously both inequality con-
straints and equality constraints is constructed and the existence and global convergence of the smooth
homotopy pathways is proved under some mild conditions.

In Section 2, an equivalent condition of the existence of fixed point will be given and some lemmas
from differential topology which will be used for proving the main result will be presented. In Section 3,
a constraint shifting homotopy for solving the fixed point problems is constructed and the existence and
global convergence of a smooth path from any given initial point in shifted feasible set to a fixed point of
any twice continuous differentiable self-mapping will be proved. In Section 4, some numerical examples will
be given to show the feasibility and effectiveness of the proposed method.

2. Preliminaries

Throughout the paper, the general non-convex closed subset X ∈ Rn is defined as follows:

X = {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , l}. (2.1)

In this paper, to enlarge the chosen scope of initial points to almost all of the Euclidean space, we
construct the shifted constraint functions ĝi(x, t), i = 1, 2, . . . ,m and ĥj(x, t), j = 1, 2, . . . , l, which are

three times continuous differentiable, and satisfy ĝi(x, 0) = gi(x), i = 1, 2, . . . ,m and ĥj(x, 0) = hj(x), j =
1, 2, . . . , l, respectively. For convenience, some denotations are given as follows:

X(t) = {x : ĝi(x, t) ≤ 0, ĥj(x, t) = 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , l},

X0(t) = {x : ĝi(x, t) < 0, ĥj(x, t) = 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , l},

∂X(t) = X(t)\X0(t),

It(x) = {i ∈ {1, 2, . . . ,m} : ĝi(x, t) = 0},

∇g̃(x, t) =
∂g̃(x, t)

∂x
,
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and

∇ĥ(x, t) =
∂ĥ(x, t)

∂x
.

To prove our main result in the next section, the following assumptions will be used.

Assumption 2.1.

(A1) For all t ∈ [0, 1], X0(t) 6= φ and ∪t∈[0,1]X(t) is bounded.

(A2) For all t ∈ [0, 1], x ∈ X(t),
∑

i∈It(x)∇ĝi(x, t)yi +
m∑
j=1
∇ĥj(x, t)zj = 0 for yi ∈ R+ and zj ∈ R implies

yi = zj = 0, i ∈ It(x), j = 1, 2, . . . , l.

(A3) For all t ∈ [0, 1], for any x ∈ ∂X(t),

{x+
∑

i∈It(x)

∇ĝi(x, t)yi +
m∑
j=1

∇ĥj(x, t)zj |yi ≥ 0, zj ∈ R} ∩X(t) = {x}.

To solve the non-convex fixed point problems of self-mapping via the combined homotopy method,
the following theorem which is an equivalent condition of the existence for the fixed point in the general
non-convex sets X is important.

Theorem 2.2. Let X be defined as (2.1), and the constraint functions gi(x), i = 1, 2, . . . ,m and hj(x),
j = 1, 2, . . . , l be C3 mappings. If the conditions (A1)-(A3) hold, then for any C2 self-mapping Ψ : X → X,
x ∈ X is a fixed point of the mapping Ψ(x) iff there exists a vector (y, z) ∈ Rm+ ×Rl, such that (x, y, z) is a
solution of the following system:

x−Ψ(x) +∇g(x)y +∇h(x)z = 0,
h(x) = 0,
Y g(x) = 0, g(x) ≤ 0, y ≥ 0.

(2.2)

Proof. When the parameter t = 0, the conditions (A1)-(A3) of Assumption 2.1 are the same as the conditions
of Lemma 2.1 in [9]. Therefore, the proof is omitted here.

To prove our main results, the following parameterized Sard theorem will be used and given here. Let
U ⊂ Rn be an open set and φ : U → Rp be a Cα (α > max{0, n − p}) mapping; we say that y ∈ Rp is a
regular value for φ if

Range[∂φ(x)/∂x] = Rp, ∀x ∈ φ−1(y).

Lemma 2.3 ([8]). Let V ⊂ Rn, U ⊂ Rm be open sets, and let φ : V × U → Rk be a Cα-mapping, where
α > max{0,m − k}. If 0 ∈ Rk is a regular value of φ, then for almost all a ∈ V , 0 is a regular value of
φa = F (a, ·).

3. Main Result

By Theorem 2.2, computing the fixed point of a C2 self-mapping is equivalent to solve the system (2.2).
Hence, in this paper, to solve the system (2.2), for any randomly chosen vector τ ∈ Rn and any given vector
ζ ∈ Rm++, a constraint shifting homotopy equation is constructed as follows:

H(θ, t) =

 (1− t)(x−Ψ(x) +∇ĝ(x, t)y) + ∇ĥ(x, t)z + t(x− x0) + t(1− t)τ
Y ĝ(x, t) + tζ

ĥ(x, t)

 = 0, (3.1)



Z. Zhu, Y. Li, Y.-C. Xing, X.-Y. Wang, J. Nonlinear Sci. Appl. 9 (2016), 4888–4896 4892

where θ = (x, y, z)T ∈ Rn ×Rm+ ×Rl, (x0, y0) ∈ X0(1)×Rm++.
For the homotopy equation (3.1), when t = 0, the homotopy equation H(θ, 0) = 0 turns to the system

(2.2) and when t = 1, the homotopy equation H(θ, 1) = 0 can be written as follows: ∇ĥ(x, 1)z + x− x0
Y ĝ(x, 1) + ζ

ĥ(x, 1)

 = 0,

which has a unique simple solution under Assumption 2.1, and can be proved by the following lemma.

Lemma 3.1. Let the homotopy equation H(θ, t) = 0 be constructed as (3.1). If gi(x), i = 1, 2, . . . ,m
and hj(x), j = 1, 2, . . . , l are all C3 functions, and conditions (A1)-(A3) of Assumption 2.1 hold, then the
homotopy equation H(θ, 1) = 0 has a unique solution

(x, y, z) = (x0, y0, z0) = (x0,−[diag(ĝ(x0, 1))]−1ζ, 0).

Proof. By the condition (A1), for any parameter t ∈ [0, 1], the set X0(t) is nonempty. Let (θ̄, 1) = (x̄, ȳ, z̄, 1)
be a solution of (3.1), i.e., H(θ̄, 1) = 0. Then, by the fact that the given vector ζ ∈ Rm++ and the vector
ȳ ≥ 0, we can have x̄ ∈ X0(1). Now, we prove x̄ = x0 by the contradiction. If x̄ 6= x0, by the first equation
∇ĥ(x̄, 1)z̄ + x̄ − x0 = 0 of H(θ̄, 1) = 0 and condition (A2), we get z̄ 6= 0, and hence x0 = x̄ + ∇ĥ(x̄, 1)z̄,
which contradicts with condition (A3). Therefore, x̄ = x0 and ∇ĥ(x̄, 1)z̄ = ∇ĥ(x0, 1)z̄ = 0. Moreover, we
get z̄ = 0 from the condition (A2). Finally, by the second equation Ȳ ĝ(x̄, 1) + ζ = 0 of H((x̄, ȳ, z̄), 1) = 0
and x̄ = x0, we can obtain ȳ = −[diag(ĝ(x0, 1))]−1ζ. The proof is complete.

For any given initial point θ0 ∈ X0(1)×Rm++×Rl, the zero-point set of the homotopy equation H(θ, t) = 0
is denoted as follows:

H−1
θ0

(0) = {(θ, t) ∈ X0(1)×Rm++ ×Rl × (0, 1] : H(θ, t) = 0}.

Theorem 3.2. Suppose that X is defined as (2.1). If the constraint functions gi(x), i = 1, 2, . . . ,m and
hj(x), j = 1, 2, . . . , l are all C3, and conditions (A1)-(A3) hold, then any C2 self-mapping Ψ : X → X
has a fixed point in X, and for any θ0 ∈ X(1)0 × Rm++ × Rl, H−1

θ0
(0) contains a smooth curve Γθ0 ⊂

X(1)×Rn+ ×Rl × (0, 1], which begins from (x0, y0, z0, 1) and terminates in or approaches to the hyperplane
t = 0. Moreover, if (x̃, ỹ, z̃, 0) is an ending limit point of the smooth curve Γθ0, then w̃ = (x̃, ỹ, z̃) is a
solution to system (2.2) and the x̃-component is a fixed point of Ψ(x) in X.

Proof. Taking (x0, τ) as variate and let Ĥ(θ, x0, τ, t) be the same mapping as H(θ, t), we consider the
submatrix of the Jacobian DĤ(θ, x0, τ, t):

∂Ĥ(θ, x0, τ, t)

∂(x0, y, τ)
=

 −tI (1− t)∇ĝ(x, t) t(1− t)I
0 diag(ĝ(x, t)) 0

∇ĥ(x0, t)T 0 0


for all t ∈ (0, 1). By the fact that ζ > 0 and Y ĝ(x, t) + tζ = 0, we can obtain that the matrix diag(ĝ(x, t))
is nonsingular. By the condition (A2), since for any x0 ∈ X0(1), the matrix ∇ĥ(x0, t) is full column rank,

we get that the matrix ∇ĥ(x0, t)T is full row rank. Hence, for any t ∈ (0, 1), the matrix ∂Ĥ(θ,x0,τ,t)
∂(x0,y,τ)

is full

row rank, which implies that DĤ(θ, x0, τ, t) is a matrix of full row rank. Since the matrix

∂H(θ0, 1)

∂θ
=

 I 0 ∇ĥ(x0, 1)
Y 0∇ĝ(x0, 1)T diag(ĝ(x0, 1)) 0

∇ĥ(x0, 1)T 0 0


is also nonsingular, we can get that the matrix Dĥ(θ, x0, τ, t) is full row rank for any t ∈ (0, 1]. Hence, 0 is
a regular value of the mapping ĥ(θ, x0, τ, t). Therefore, by Lemma 2.3, for almost all (x0, τ) ∈ X0(1)×Rn,
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0 is a regular value of H(θ, t). Then, for any given θ0 ∈ X0(1) × Rm++ × Rl, if 0 is a regular value of

H(θ, t), by the fact that (θ0, 1) is a solution of H(θ, t) = 0, ∂H(θ0,1)
∂θ is nonsingular and the famous implicit

function theorem, we get H−1
θ0

(0) must contain a smooth curve Γθ0 , which starts from (x0, y0, z0, 1), goes

into X0(1)×Rm++ ×Rl × (0, 1) and terminates in the boundary of X(t)×Rm+ ×Rl × [0, 1].

When t→ 0, let (θ̃, t̃) be an ending limit point of Γθ0 , only the following five cases may hold:

(i) (θ̃, t̃) ∈ X(1)×Rm+ ×Rl × {1}, ‖(ỹ, z̃)‖ <∞;

(ii) (θ̃, t̃) ∈ X(t̃)×Rm+ ×Rl × [0, 1], ‖(ỹ, z̃)‖ =∞;

(iii) (θ̃, t̃) ∈ X(t̃)× ∂Rm+ ×Rl × (0, 1), ‖(ỹ, z̃)‖ <∞;

(iv) (θ̃, t̃) ∈ ∂X(t̃)×Rm++ ×Rl × (0, 1), ‖(ỹ, z̃)‖ <∞;

(v) (θ̃, t̃) ∈ X ×Rm+ ×Rl × {0}, ‖(ỹ, z̃)‖ <∞.

By Lemma 3.1, we have that θ0 is the unique simple solution of the homotopy equation H(θ, 1) = 0.
Hence, case (i) is impossible.

Next, we will prove that case (ii) is also impossible by the contradiction. If the case (ii) happens, there
must exist a sequence of points {(xk, yk, zk, tk)} ⊂ Γθ0 such that tk → t̃ ∈ [0, 1], xk → x̃ ∈ X(t̃) and
‖(yk, zk)‖ → ∞ as k →∞. By the first equation of the homotopy equation (3.1), we get

(1− tk)(xk −Ψ(xk) +
m∑
i=1

yki∇ĝi(xk, tk)) +
l∑

j=1

∇ĥj(xk, tk)zkj + tk(xk − x0) + tk(1− tk)τ = 0. (3.2)

When k →∞, only two subcases are possible:

(I) t̃ = 1;

(II) t̃ ∈ [0, 1).

Case (I): t̃ = 1. Rewrite (3.2) as follows:

(1− tk)
∑

i∈I1(x̃)

yki∇ĝi(xk, tk) +

l∑
j=1

∇ĥj(xk, tk)zkj + xk − x0

= (1− tk)[−
∑

i/∈I1(x̃)

yki∇ĝi(xk, tk)− xk + Ψ(xk) + xk − x0 − tkτ ].

(3.3)

If ‖((1 − tk)yk, zk)‖ < ∞, we assume ((1 − tk)yk, zk) → (ỹ, z̃), then ỹi = 0 for i /∈ I1(x̃) by the second
equation of the homotopy equation (3.1). Now, taking limits in the both sides of (3.3) as k →∞, we have

lim
k→∞

[(1− tk)
∑

i∈I1(x̃)

yki∇ĝi(xk, tk) +

l∑
j=1

∇ĥj(xk, tk)zkj + xk − x0]

= lim
k→∞

(1− tk)[−
∑

i/∈I1(x̃)

yki∇ĝi(xk, tk)− xk + Ψ(xk) + xk − x0 − tkτ ]

= lim
k→∞

[−
∑

i/∈I1(x̃)

(1− tk)yki∇ĝi(xk, tk)] + (1− t̃)[Ψ(x̃)− x0 − t̃τ ]

= [−
∑

i/∈I1(x̃)

ỹi∇ĝi(x̃, t̃)] + (1− t̃)[Ψ(x̃)− x0 − t̃τ ]

= 0.
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Hence, we get

x0 = lim
k→∞

[xk + (1− tk)
∑

i∈I1(x̃)

yki∇ĝi(xk, tk) +
l∑

j=1

∇ĥj(xk, tk)zkj ]

= x̃+
l∑

j=1

∇ĥj(x̃, 1)z̃j + lim
k→∞

∑
i∈I1(x̃)

(1− tk)yki∇ĝi(xk, tk)

= x̃+

l∑
j=1

∇ĥj(x̃, 1)z̃j +
∑

i∈I1(x̃)

ỹi∇ĝi(x̃, 1),

which contradicts with the condition (A3). If ‖((1− tk)yk, zk)‖ → ∞, the proof is the same as the following
Case (II).

Case (II): t̃ ∈ [0, 1). Without loss of generality, we assume that ((1 − tk)yk, zk)/‖((1 − tk)yk, zk)‖ → (α̃, β̃)
with ‖(α̃, β̃)‖ = 1 and α̃i = 0 for i /∈ It̃(x̃). Since t ∈ [0, 1] and X(t) is bounded, dividing the both sides of
(3.2) by ‖((1− tk)yk, zk)‖ and taking limits as k →∞, we can get

∑
i∈It̃(x̃)

α̃i∇ĝi(x̃, t̃) +
l∑

j=1

β̃j∇ĥj(x̃, t̃) = 0,

which contradicts with the condition (A2). Therefore, from the above discussions on subcases (I) and (II),
we get that case (ii) is also impossible.

Now, we prove that case (iii) and case (iv) are also impossible. By the second equation of the homotopy
equation (3.1), we have diag(ĝ(x̃, t̃))ỹ + t̃ζ = 0. Hence, t̃ > 0 and ỹ ∈ ∂Rm+ , i.e., ỹi = 0 for some 1 ≤ i ≤ m
can not hold simultaneously. So, case (iii) is impossible. If case (iv) holds, then we have that ỹ > 0 and
t̃ > 0. However, since diag(ĝ(x̃, t̃))ỹ + t̃ζ = 0 and the given vector ζ ∈ Rm++, we get diag(ĝ(x̃, t̃)) < 0, which
implies that x̃ /∈ ∂X(t̃). Hence, case (iv) is also impossible.

In conclusion, from the above discussions, we have that case (v) is the only possible case. Hence, Γθ0
must terminate in or approach to the hyperplane at t̃ = 0 and θ̃ = (x̃, ỹ, z̃) is a solution to the system (2.2).
By Theorem 2.2, x̃ is a fixed point of Ψ(x) in X. The proof is complete.

4. Numerical test

In this section, we will give some numerical examples to numerically trace the smooth curve Γθ0 . By
Theorem 3.2, the zero-point set H−1

θ0
of the homotopy equation (3.1) determines a smooth curve for any

given initial point θ0 ∈ X0(1) × Rm++ × Rl as t → 0, one can find a fixed point of a C2 self-mapping Ψ(x)
in X. For the numerical method of tracing the homotopy path Γθ0 , we can use standard Euler-Newton
predictor-corrector procedure (for more details see references, e.g., [1, 16, 18, 20]).

In the following numerical examples, the shifted constraint functions are constructed as:

ĝi(x, t) =

{
gi(x), if gi(x

0) < 0,

gi(x)− t2(max{gi(x0)}+ 10), if gi(x
0) ≥ 0,

(4.1)

and ĥj(x, t) = hj(x)− t2hj(x0).
The parameters in homotopy equation (3.1) are set as ζi = 10 and τ = randn(n, 1), an n vector with

random entries drawn from a normal distribution with mean zero and standard deviation one.
The computations are performed on a computer running the software Matlab R2014a on Microsoft

Windows 7 Professional with Intel(R) 3.20GHz processor and 4.00 GB megabytes of memory. And the
termination tolerance is set as ε = 10−6.
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In the following tables, let CPU denote the computer time, IT denote the iteration step which is the
summation of the predictor step and the corrector step in the computing process, and x̃ denote the fixed
point of F (X) ⊆ X.

Example 4.1. To find a fixed point of self-mapping:

Ψ(x) = (
1

2
x1 +

1

25
x2, x

2
1 +

1

4
x2)

T ,

in the set

X = {(x1, x2) ∈ R2 : −x1 − 5 ≤ 0, x1 − 5 ≤ 0, x2 − 50 ≤ 0,−x21 +
1

2
x22 = 0}.

In this example, the initial points are chosen as x01 = (2, 2), x02 = (5, 3), x03 = (−10,−10) and x04 =
(−5, 20), which are not interior points in the original feasible set. Hence, the combined homotopy interior
point method in [9, 18] fails. But, by the homotopy equation (3.1), we can get the unique fixed point
x̃ = (0, 0) of the self-mapping Ψ(X) ⊆ X as t→ 0. The detailed numerical results are listed in Table 1.

Table 1: The numerical results of Example 4.1.

x(0) CPU IT x̃

(2,2) 0.0624 24 10−10×(-3.1075, -1.1740)
(5,3) 0.2652 85 10−7×(-1.1578, -5.9051)

(-10,-10) 0.2184 86 10−10×(4.3591, -1.7146)
(-5,20) 0.1560 52 10−8×(-0.0343, -1.6570)

Example 4.2. To find a fixed point of self-mapping:

Ψ(x) = (x1,−x2)T ,

in the set
X = {(x1, x2) ∈ R2 : −x1 − 5 ≤ 0, x2 − 10 ≤ 0,−x2 − 10 ≤ 0, x1 − x22 − 5 = 0}.

In this example, the initial points are chosen as x01 = (1, 1), x02 = (10, 5), x03 = (20,−20) and x04 =
(−20, 10), which are not interior points in the original feasible set. Hence, the combined homotopy interior
point method in [9, 18] fails. But, by the homotopy equation (3.1), we can get the unique fixed point
x̃ = (5, 0) of the self-mapping Ψ(X) ⊆ X as t→ 0. The detailed numerical results are listed in Table 2.

Table 2: The numerical results of Example 4.2.

x(0) CPU IT x̃

(1,1) 0.0624 9 (5, 4.3988×10−9)
(10,5) 0.0312 13 (5, 6.2204×10−13)

(20,-20) 0.4524 80 (5, -1.7418×10−11)
(-20,10) 0.1404 50 (5, -4.7762×10−16)
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