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Abstract

No matter constructing or solving nonlinear evolution equations (NLEEs), it is important and interesting
in the field of nonlinear science. In this paper, generalized Ablowitz–Kaup–Newell–Segur (AKNS) equations
are constructed and solved exactly. To be specific, the famous AKNS spectral problem is first generalized by
embedding a nonisospectral parameter whose varying with time obeys the exponential function of spectral
parameter. Based on the generalized AKNS spectral problem and its corresponding time evolution equation,
we then derive a generalized AKNS equation with infinite number of terms. Furthermore, exact solutions of
the generalized AKNS equations are formulated through the inverse scattering transform method. Finally, in
the case of reflectionless potentials, the obtained exact solutions are reduced to explicit n-soliton solutions.
It is shown that the dynamical evolutions of such soliton solutions possess not only time-varying speeds and
amplitudes but also singular points in the process of propagations. c©2016 All rights reserved.

Keywords: Exact solution, n-soliton solution, dynamical evolution, generalized AKNS equations, inverse
scattering transform.
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1. Introduction

Recently, constructing NLEEs is relatively active because of searching for as many as meaningful NLEEs
and studying their properties are of both theoretical and practical value [34, 35, 45, 48, 49]. In general, there
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are two sets of NLEEs called the isospectral hierarchy and nonisospectral hierarchy respectively. Starting
from a proper linear spectral problem, we can derive a hierarchy of isospectral NLEEs often describing
solitary waves in lossless and uniform media if the associated spectral parameter is independent of time.
While nonisospectral NLEEs which describe the solitary waves in a certain type of nonuniform media are
usually resulted from the spectral problem with a time-dependent spectral parameter. In 1974, Ablowitz et
al. [2] derived a hierarchy of isospectral NLEEs from the zero curvature equation

Mt −Nx + [M,N ] = 0, (1.1)

which is namely the compatibility condition of the following spectral problem, that is, the famous AKNS
spectral problem

ϕx = Mϕ, M =

(
−ik q
r ik

)
, ϕ =

(
ϕ1

ϕ2

)
, (1.2)

and its time evolution equation

ϕt = Nϕ, N =

(
A B
C −A

)
, (1.3)

where the potentials q = q(x, t), r = r(x, t) and their derivatives of any order with respect to x and t are
smooth functions which vanish as x tends to infinity, the spectral parameter k is independent of x and t
(that is, kt = 0), and A, B, and C are undetermined functions of x, t, q, r and k. It should be noted that
the isospectral AKNS hierarchy [14](

q
r

)
t

= Ln
(
−q
r

)
, n = 0, 1, 2, · · · , (1.4)

derived from Eqs. (1.1)–(1.3) includes two nontrivial equations in the cases of n = 1, 2(
q
r

)
t

=

(
−qxx + 2q2r
rxx − 2qr2

)
, (1.5)

and (
q
r

)
t

=

(
qxxx − 6qrqx
rxxx − 6qrrx

)
. (1.6)

In Eqs. (1.4), the operator L is defined as follows

L = σ∂ + 2

(
q
−r

)
∂−1(r, q), ∂ =

∂

∂x
, ∂−1 =

1

2

(∫ x

−∞
dx−

∫ +∞

x
dx

)
, σ =

(
−1 0
0 1

)
. (1.7)

If we set q = u and r = −1, then Eq. (1.6) reduces to the celebrated Korteweg-de Vries (KdV) equation
ut = uxxx+ 6uux. When q = v and r = ∓v, Eq. (1.6) is converted into the modified KdV (mKdV) equation
vt = vxxx + 6v2vx. Subsequently, Celogero and Degasperis [8–10] and Li [24] developed different methods to
construct hierarchies of nonisospectral NLEEs under the case of spectral parameter k being dependent on
time t (that is, kt 6= 0). For example, letting ikt = 1

2(2ik)n and using Eqs. (1.1)–(1.3) we can construct the
following nonisospectral AKNS hierarchy [14](

q
r

)
t

= Ln
(
−xq
xr

)
, n = 0, 1, 2, · · · , (1.8)

in which the following two pair of nonisospectral equations (n = 1, 2) are included(
q
r

)
t

=

(
q + xqx
r + xrx

)
, (1.9)
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(
q
r

)
t

=

(
−2qx − xqxx + 2q∂−1qr + 2xq2r
2rx + xrxx − 2r∂−1qr − 2xqr2

)
. (1.10)

Due to appearance of nonisospectral NLEEs, the types of integrable equations were extremely enriched.
In the past two decades, constructing nonisospectral NLEEs has attached much attention like those in
[13, 25, 50] and has become one of the most important and significant research directions in nonlinear
science.

On the other hand, it is well known that solving NLEEs plays an important role in the study of nonlinear
physical phenomena in many fields such as fluid dynamics, plasma physics and nonlinear optics. Many
mathematicians and physicists have done a lot of meaningful work, for instance, those in [4, 16, 18, 21, 22,
26, 27, 37, 38]. Since the pioneer work of Gardner, Green, Kruskal and Miura [18] exactly solving the initial-
value problem of the KdV equation in 1965, the inverse scattering transform (IST) method has developed
to a systematic method for solving NLEEs [1, 3, 6, 7, 11, 12, 14, 15, 17, 19, 20, 23, 28, 36, 39, 46, 47]. One
of the advantages over other methods is that the IST can solve a whole hierarchy of NLEEs associated with
the same spectral problem. As early as in 1976, the IST was extended to nonisospectral NLEEs for the
first time by Chen and Liu to the nonlinear Schrödinger (NLS) equation with a linear external potential
[15], Hirota and Satsuma to the KdV equation in nonuniform media [20], and Calogero and Degasperis to
the KdV model [7]. In the framework of the IST with time-varying spectral parameter, Serkin, Hasegawa
and Belyaeva [29–33] found nonautonomous solitons which interact elastically and generally move with
varying amplitudes, speeds, and spectra adapted both to the external potentials and to the dispersion and
nonlinearity variations.

The aim of this paper is to introduce such a new nonisospectral parameter k satisfying

ikt =
1

2
e2ik, (1.11)

that we construct the following new and more general AKNS equations(
q
r

)
t

=
+∞∑
j=0

1

j!
Lj
(
−xq
xr

)
, (1.12)

associated with the AKNS spectral problem (1.2). Obviously, the generalized AKNS equations (1.12) cannot
be contained by the nonisospectral AKNS hierarchy (1.8) and (1.12) are more general than Eqs. (1.9) and
(1.10). In this work, we shall extend the IST with the new nonisospectral parameter k in Eq. (1.11) to the
generalized AKNS equations (1.12). It is shown from computer running that the dynamical evolutions of
Eqs. (1.12) can possess not only time-varying speeds and amplitudes but also singular points in the process
of propagations.

The rest of the paper is organized as follows. In Section 2, we derive the generalized AKNS equations
(1.12) by embedding the nonisospectral parameter k determined by Eq. (1.11) to the AKNS spectral problem
(1.2). In Section 3, following the steps of IST method we exactly solve the AKNS equations (1.12). Also,
the uniform formulae of exact solutions of the AKNS equations (1.12) are obtained. In the special case of
reflectionless potentials, the obtained exact solutions are reduced to explicit n-soliton solutions. For the
cases when n = 1, 2, the dynamical evolutions of one-soliton solutions and two-soliton solutions possessing
not only time-varying speeds and amplitudes but also singular points in the process of propagations are
shown by figures. In Section 4, we conclude this paper.

2. Derivation of the generalized AKNS equations

To begin with, we substitute the matrixes M and N of Eqs. (1.2) and (1.3) into Eq. (1.1), then Eq.
(1.1) is reduced to

Ax = qC − rB − ikt, (2.1)
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qt = Bx + 2ikB + 2qA, (2.2)

rt = Cx − 2ikC − 2rA. (2.3)

Integrating (2.1) with respective to x and using (1.4) we have

A = ∂−1(r, q)

(
−B
C

)
− 1

2
e2ikx+A0, (2.4)

where A0 is an arbitrary function of k and t. For convenience, we employ Taylor series expansion formula
of exponential function

e2ik =
+∞∑
j=0

1

j!
(2ik)j . (2.5)

Then Eqs. (2.2) and (2.3) can be rewritten as follows(
q
r

)
t

= L

(
−B
C

)
− 2ik

(
−B
C

)
+

+∞∑
j=0

1

j!
(2ik)j

(
−xq
xr

)
. (2.6)

We next suppose that (
−B
C

)
=

+∞∑
s=1

(
−bs
cs

)
(2ik)s−1, (2.7)

with the asymptotic condition (
−bn
cn

)
=

1

n!

(
−xq
xr

)
, n→ +∞, (2.8)

and substitute Eq. (2.7) into Eq. (2.6). Comparing the coefficients of 2ik in Eq. (2.6) yields(
q
r

)
t

= L

(
−b1
c1

)
+

(
−xq
xr

)
, (2.9)

(
−bs−1

cs−1

)
= L

(
−bs
cs

)
+

1

(s− 1)!

(
−xq
xr

)
, s = 2, 3, · · · . (2.10)

Finally, with the help of Eq. (2.10) we have(
−b1
c1

)
=

+∞∑
j=1

1

j!
Lj−1

(
−xq
xr

)
, (2.11)

and hence obtain the generalized AKNS equations (1.1) by the substitution of Eq. (2.11) into Eq. (2.9).

3. Exact solutions and soliton dynamics

We first determine in this section the time dependence of scattering data for the AKNS spectral problem
(1.2) with the nonisospectral k satisfying Eq. (1.11). With the help of the determined scattering data, we
then construct exact solutions of the generalized AKNS hierarchy (1.1). Finally, we reduce the obtained
exact solutions to soliton solutions and simulate the soliton dynamics by figures.

3.1. The time dependence of the scattering data

Theorem 3.1. The scattering data{
κj(t), cj(t), R(t, k) =

b(k, t)

a(k, t)
, j = 1, 2, · · · , n

}
, (3.1)
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κ̄m(t), c̄m(t), R̄(k, t) =

b̄(k, t)

ā(k, t)
,m = 1, 2, · · · , n̄

}
, (3.2)

for the spectral problem (1.2) possess the following time dependence

κj(t) =
i

2
ln(e−2iκj(0) − t), (3.3)

c2
j (t) = c2

j (0)e−2iκj(0)−2
∫ t
0 A0(κj(w),w)dw(e−2iκj(0) − t)−1, (3.4)

a(k, t) = a(k, 0), b(k, t) = b(k, 0)e−2ik(0)−2
∫ t
0 A0(k(w),w)dw(e−2ik(0) − t)−1, (3.5)

κ̄m(t) =
i

2
ln(e−2iκ̄m(0) − t), (3.6)

c̄2
m(t) = c̄2

m(0)e2iκ̄m(0)+2
∫ t
0 A0(κ̄m(w),w)dw(e−2iκ̄m(0) − t), (3.7)

ā(k, t) = ā(k, 0), b̄(k, t) = b̄(k, 0)e2ik̄(0)+2
∫ t
0 A0(k̄(w),w)dw(e−2ik̄(0) − t), (3.8)

where c2
j (0), c̄2

m(0), κj(0), κ̄m(0), R(k, 0) = b(k, 0)/a(k, 0) and R̄(k, 0) = b̄(k, 0)/ā(k, 0) are the scattering

data of (1.2) with the nonisospectral k satisfying Eq. (1.4) in the case of (q(x, 0), r(x, 0))T .

Proof. It is easy to see that if φ(x, k) is a solution of Eq. (1.2) with the nonisospectral k satisfying Eq. (1.4)
then P (x, k) = φt(x, k) − Nφ(x, k) is also a solution of Eq. (1.2). Therefore, P (x, k) can be represented
by φ(x, k) and φ̃(x, k) which also satisfies Eq. (1.2) but is independent of φ(x, k), that is, there exist two
functions α(k, t) and β(k, t) such that

φt(x, k)−Nφ(x, k) = α(k, t)φ(x, k) + β(k, t)φ̃(x, k). (3.9)

Firstly, we consider the discrete spectral k = κj(Imκj > 0). Since φ(x, κj) decays exponentially while

φ̃(x, κj) must increases exponentially as x → +∞, we then have β(k, t) = 0. Thus, Eq. (3.9) is simplified
as:

φt(x, κj)−Nφ(x, κj) = α(κj , t)φ(x, κj). (3.10)

Left-multiplying (3.10) by the inner product (φ2(x, κj), φ1(x, κj)) yields:

d

dt
φ1(x, κj)φ2(x, κj)− (Cφ2

1(x, κj) +Bφ2
2(x, κj)) = 2α(κj , t)φ1(x, κj)φ2(x, κj). (3.11)

Presuming φ(x, κj) to be the normalization eigenfunction and noting that

2

∫ ∞
−∞

c2
j (t)φ1(x, κj)φ2(x, κj)dx = 1, (3.12)

we have

α(κj , t) = −c2
j (t)

∫ ∞
−∞

[Cφ2
1(x, κj) +Bφ2

2(x, κj)]dx. (3.13)

For convenience, we rewrite Eq. (3.13) as:

α(κj , t) = −c2
j (t)((φ

2
2(x, κj), φ

2
1(x, κj))

T , (B,C)T ), (3.14)

where the following inner product had be used

(f(x), g(x)) =

∫ ∞
−∞

(f1(x)g1(x) + f2(x)g2(x))dx, (3.15)

for arbitrary two vectors f(x) = (f1(x), f2(x))T and g(x) = (g1(x), g2(x))T .
Using Eq. (1.2), we have

φ1x(x, κj) + iκjφ1(x, κj) = q(x)φ2(x, κj), (3.16)
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ϕ2x(x, κj)− iκjϕ2(x, κj) = r(x)ϕ1(x, κj), (3.17)

and hence obtain

[ϕ1(x, κj)ϕ2(x, κj)]x = q(x)ϕ2
2(x, κj) + r(x)ϕ2

1(x, κj). (3.18)

Integrating Eq. (3.18) with respect to x from −∞ to +∞ yields∫ ∞
−∞

[q(x)φ2
2(x, κj) + r(x)φ2

1(x, κj)]dx =

∫ ∞
−∞

[φ1(x, κj)φ2(x, κj)]xdx = 0. (3.19)

In the other hand, we rewrite Eq. (2.7) as(
B
C

)
= lim

n→+∞

n∑
s=1

n∑
j=s

1

j!
L̄j−s

(
xq
xr

)
(2iκj)

s−1, L̄ = σ∂ − 2

(
q
r

)
∂−1 (−r, q) , (3.20)

and then from Eq. (3.14), we obtain

α(κj , t) = −c2
j (t)

(φ2
2(x, κj), φ

2
1(x, κj))

T , lim
n→+∞

n∑
s=1

n∑
j=s

1

j!
L̄j−s

(
xq
xr

)
(2iκj)

s−1

 (3.21)

=
1

2
lim

n→+∞

n−1∑
l=0

1

l!
(2iκj)

l =
1

2
e2iκj ,

through using the following results

L̄∗j−s(φ2
2(x, κj), φ

2
1(x, κj))

T = (2iκj(t))
j−s(φ2

2(x, κj), φ
2
1(x, κj))

T , (3.22)(
(φ2

2(x, κj), φ
2
1(x, κj))

T ,

(
xq
xr

))
=

∫ ∞
−∞

x[φ1(x, κj)φ2(x, κj)]xdx = − 1

2c2
j (t)

, (3.23)

where L̄∗ is the conjugation operator of L̄ [23]

L̄∗ = −σ∂ + 2

(
−r
q

)
∂−1 (q, r) , L̄ = σLσ.

In view of Eq. (3.21), we simplify Eq. (3.10) as

φt(x, κj)−Nφ(x, κj) =
1

2
e2iκjφ(x, κj). (3.24)

Noting that

N →
(
−1

2e
2iκjx+A0 0

0 1
2e

2iκjx−A0

)
, φ(x, κj)→ cj(t)

(
0
1

)
eiκjx, (3.25)

φt(x, κj)→ cjt(t)

(
0
1

)
eiκjx + iκjtxcj(t)

(
0
1

)
eiκjx, κjt = − i

2
e2iκj , (3.26)

as x→ +∞, then from Eqs. (3.24)–(3.26) we have

cjt(t) =
1

2
e2iκjcj(t)−A0. (3.27)

Similarly, we have

c̄jt(t) = −1

2
e2iκ̄j c̄j(t) +A0. (3.28)
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Secondly, we consider k as a real continuous spectral and take a solution ϕ(x, k) of Eq. (1.2) with
the nonisospectral k determined in Eq. (1.4), then Q(x, k) = ϕt(x, k) − Nϕ(x, k) is also a solution of Eq.
(1.2) and therefore can be represented linearly by ϕ(x, k) and ϕ̄(x, k) which also satisfies Eq. (1.2) but is
independent of ϕ(x, k), that is, there exist two functions ω(k, t) and ϑ(k, t) such that

ϕt(x, k)−Nϕ(x, k) = ω(k, t)ϕ(x, k) + ϑ(k, t)ϕ̄(x, k). (3.29)

Using the asymptotical properties

ϕt(x, k)→ −iktx
(

1
0

)
e−ikx, ϕ(x, k)→

(
1
0

)
e−ikx, ϕ̄(x, k)→

(
0
−1

)
eikx, (3.30)

as x→ −∞, from Eqs. (3.29) and (1.4) we obtain

ϑ(k, t) = 0, ω(k, t) = −A0. (3.31)

Substituting the Jost relationship ϕ(x, k) = a(k, t)φ̄(x, k) + b(k, t)φ(x, k) into Eq. (3.29) yields

[a(k, t)φ̄(x, k) + b(k, t)φ(x, k)]t −N [a(k, t)φ̄(x, k) + b(k, t)φ(x, k)] (3.32)

= −A0[a(k, t)φ̄(x, k) + b(k, t)φ(x, k)].

Letting x→ +∞ and using

φ(x, k)→
(

0
1

)
eikx, φ̄(x, k)→

(
1
0

)
e−ikx, (3.33)

from Eq. (3.32) we derive
at(k, t) = 0, bt(k, t) = −2A0b(k, t). (3.34)

Similarly, we have
āt(k, t) = 0, b̄t(k, t) = 2A0b̄(k, t). (3.35)

Finally, solving Eqs. (3.26)–(3.28), (3.34) and (3.35) yields Eqs. (3.3)–(3.8). We therefore finish the
proof.

3.2. Exact solutions and soliton dynamics

According to Theorem 3.1, we have the following Theorem.

Theorem 3.2. Given the scattering data for the spectral problem (1.2) with the nonisospectral k determined
in Eq. (1.11), the generalized AKNS equations (1.12) have exact solutions as follows:

q(x, t) = −2K1(t, x, x), (3.36)

r(x, t) =
K2x(t, x, x)

K1(t, x, x)
, (3.37)

where K(t, x, y) = (K1(t, x, y),K2(t, x, y))T satisfies the Gel’fand-Levitan-Marchenko (GLM) integral equa-
tion:

K(t, x, y)−
(

1
0

)
F̄ (t, x+ y) +

(
0
1

)∫ ∞
x

F (t, z + x)F̄ (t, z + y)dz

+

∫ ∞
x

K(t, x, s)

∫ ∞
x

F (t, z + s)F̄ (t, z + y)dzds = 0,

(3.38)

with

F (t, x) =
1

2π

∫ ∞
−∞

R(t, k)eikxdk +
n∑
j=1

c2
je
iκjx, (3.39)

F̄ (t, x) =
1

2π

∫ ∞
−∞

R̄(t, k)eikxdk +
n∑
j=1

c̄2
je
iκ̄jx. (3.40)
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To give explicit form of solutions (3.36) and (3.37), in what follows we consider the reflectionless potentials
q(x, t) and r(x, t), that is, R(t, k) = R̄(t, k) = 0. In this case, the GLM integral equation (3.38) can be
solved exactly. For convenience, we use K(t, x, y) = (K1(t, x, y),K2(t, x, y))T to rewrite Eq. (3.38) as:

K1(t, x, y)− F̄d(t, x+ y) +

∫ ∞
x

K1(t, x, s)

∫ ∞
x

Fd(t, z + s)F̄d(t, z + y)dzds = 0, (3.41)

K2(t, x, y) +

∫ ∞
x

Fd(t, z + x)F̄d(t, z + y)dz +

∫ ∞
x

K2(t, x, s)

∫ ∞
x

Fd(t, z + s)F̄d(t, z + y)dzds = 0. (3.42)

Using Eqs. (3.39) and (3.40), we get∫ ∞
x

Fd(t, s+ z)F̄d(t, z + y)dz = −
n∑
j=1

n̄∑
m=1

ic2
j (t)c̄

2
m(t)

κj − κ̄m
eκj(x+s)−iκ̄m(x+y). (3.43)

Supposing that

K1(x, y, t) =

n̄∑
p=1

c̄p(t)gp(t, x)e−iκ̄py, (3.44)

K2(x, y, t) =
n̄∑
p=1

c̄p(t)hp(t, x)e−iκ̄py, (3.45)

and substituting Eqs. (3.44) and (3.45) into Eqs. (3.41) and (3.42) yields

gm(t, x) + c̄m(t)e−iκ̄mx +

n∑
j=1

n̄∑
p=1

c2
j (t)c̄m(t)c̄p(t)

(κj − κ̄m)(κj − κ̄p)
ei(2κj−κ̄m−κ̄p)xgp(x, t) = 0, (3.46)

hm(x, t)−
n∑
j=1

c2
j (t)c̄m(t)ei(2κj−κ̄m)x

(κj − κ̄m)
+

n∑
j=1

n̄∑
p=1

c2
j (t)c̄m(t)c̄p(t)

(κj − κ̄m)(κj − κ̄p)
ei(2κj−κ̄m−κ̄p)xhp(x, t) = 0. (3.47)

Inducing the following vectors

g(x, t) = (g1(x, t), g2(x, t), · · · , gn̄(x, t))T , (3.48)

h(x, t) = (h1(x, t), h2(x, t), · · · , hn̄(x, t))T , (3.49)

Λ = (c1(t)e−iκ1x, c2(t)e−iκ2x, · · · , cn(t)e−iκnx)T , (3.50)

Λ̄ = (c̄1(t)e−iκ̄1x, c̄2(t)e−iκ̄2x, · · · , c̄n̄(t)e−iκ̄n̄x)T , (3.51)

we can write (3.38) in the matrix from

W (x, t)g(x, t) = −Λ̄(x, t), (3.52)

W (x, t)h(x, t) = iP (x, t)Λ(x, t). (3.53)

If W−1(x, t) exists, then
g(x, t) = −W−1(x, t)Λ̄(x, t), (3.54)

h(x, t) = iW−1(x, t)P (x, t)Λ(x, t), (3.55)

in which

W (x, t) = E + P (x, t)P T (x, t), P (x, t) =

(
cj(t)c̄m(t)

κj − κ̄m
ei(κj−κ̄m)x

)
n̄×n

, (3.56)

and E is a n̄× n̄ unit matrix. Substituting Eqs. (3.54) and (3.55) into Eqs. (3.44) and (3.45), we have

K1(x, y, t) = −Λ̄T (y, t)W−1(x, t)Λ̄(x, t), (3.57)

K2(x, y, t) = itr(W−1(x, t)P (x, t)Λ(y, t)Λ̄T (y, t)), (3.58)
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where tr(·) means the trace of a given matrix.
Substituting Eqs. (3.57) and (3.58) into Eqs. (3.36) and (3.37), we obtain n-soliton solutions of the

generalized AKNS hierarchy (1.5)

q(x, t) = 2tr(W−1(x, t)Λ̄(x, t)Λ̄T (x, t)), (3.59)

r(x, t) = −
d

dxtr(W−1(x, t)P (x, t) d
dxP

T (x, t))

tr(W−1(x, t)Λ̄(x, t)Λ̄T (x, t))
. (3.60)

Particularly, when n = n̄ = 1, Eqs. (3.59) and (3.60) give the one-soliton solutions which are simplified
as follows

q =
2c̄2

1(0)e2iκ̄1(0)+2
∫ t
0 A0(κ̄1(w),w)dw(e−2iκ̄1(0) − t)x+1

1− 4
c21(0)c̄21(0)(e−2iκ̄1(0)−t)e−2iκ1(0)+2iκ̄1(0)−2

∫ t
0 [A0(κ1(w),w)−A0(κ̄1(w),w)]dw+x[ln(e−2iκ̄1(0)−t)−ln(e−2iκ1(0)−t)]

(e−2iκ1(0)−t)[ln(e−2iκ1(0)−t)−ln(e−2iκ̄1(0)−t)]2

, (3.61)

r =
2c2

1(0)e−2iκ1(0)−2
∫ t
0 A0(κ1(w),w)dw(e−2iκ1(0) − t)−x−1

1− 4
c21(0)c̄21(0)(e−2iκ̄1(0)−t)e−2iκ1(0)+2iκ̄1(0)−2

∫ t
0 [A0(κ1(w),w)−A0(κ̄1(w),w)]dw+x[ln(e−2iκ̄1(0)−t)−ln(e−2iκ1(0)−t)]

(e−2iκ1(0)−t)[ln(e−2iκ1(0)−t)−ln(e−2iκ̄1(0)−t)]2

. (3.62)

Figure 1: Spatial structures of bright and dark one-solitons determined by solutions (3.61) and (3.62).
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Figure 2: Dynamical evolutions of one-soliton determined by solution (3.61).



S. Zhang, X. D. Gao, J. Nonlinear Sci. Appl. 9 (2016), 4529–4541 4538

-3 -2 -1 1
x

-100 000

-50 000

50 000

100 000

150 000

200 000

r

-3 -2 -1 1
x

-100 000

100 000

200 000

300 000

400 000

500 000

r

t = 0 t = 1

Figure 3: Dynamical evolutions of one-soliton determined by solution (3.62).

We can see that solutions (3.61) and (3.62) possess singularity. In Fig. 1, the spatial structures of
singular bright and dark one-solitons determined by solutions (3.61) and (3.62) are shown by selecting the
parameters as c1(0) = 0.1, c̄1(0) = 1, κ1(0) = 2i, κ̄1(0) = i, A0(κ1(t), t) = 0, A0(κ̄1(t), t) = 0. Figs. 2 and 3
are used to describe the corresponding dynamical evolutions of these bright and dark one-solitons at times
t = 0 and t = 1. It can be seen from Figs. 1–3 that the bright and dark one-solitons determined by solutions
(3.61) and (3.62) possess time-varying amplitudes and singular points in the process of propagations.

In Fig. 4, the spatial structures of singular bright and dark two-solitons determined by solutions (3.59)
and (3.60) are shown by selecting the parameters as c1(0) = 1, c̄1(0) = 0.2, c2(0) = 2, c̄2(0) = 0.3,
κ1(0) = 0.8i, κ̄1(0) = i, κ2(0) = 1.5i, κ̄2(0) = 2i, A0(κ1(t), t) = 0, A0(κ̄1(t), t) = 0, A0(κ2(t), t) = 0,
A0(κ̄2(t), t) = 0. We use Figs. 5 and 6 to describe the corresponding dynamical evolutions of these bright
and dark two-solitons at times t = 0 and t = 1. Figs. 4–6 show that the bright and dark two-solitons
determined by solutions (3.59) and (3.60) possess not only singular points but also time-varying velocities
and amplitudes in the process of propagations.

Figure 4: Spatial structures of bright and dark two-solitons determined by solutions (3.59) and (3.60).
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Figure 5: Dynamical evolutions of of two-soliton determined by solution (3.59).
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Figure 6: Dynamical evolutions of two-soliton determined by solution (3.60).

4. Conclusions

In summary, we have generalized the AKNS spectral problem (1.2) by embedding a nonisospectral
parameter which varies with time obeying the exponential function of spectral parameter k determined in
Eq. (1.11). Starting from the generalized AKNS spectral problem (1.2) and its corresponding time evolution
equation (1.3), together with (1.11), we constructed a generalized AKNS equations (1.12) with infinite
number of terms. In order to solve the generalized AKNS equations (1.12), the IST method is employed.
As a result, exact solutions (3.36) and (3.37) are formulated and then reduced to explicit n-soliton solutions
(3.59) and (3.60) in the case of reflectionless potentials. This paper shows that the dynamical evolutions of
one-soliton solutions and two-soliton solutions determined by solutions (3.59) and (3.60) possess time-varying
speeds, amplitudes and singular points in the process of propagations. To the best of our knowledge, the
nonisospectral parameter k satisfying Eq. (1.11), the generalized AKNS equations (1.12) and the n-soliton
solutions (3.59) and (3.60) have not been reported in literatures. Recently, fractional-order differential
calculus and its applications have attached much attention [5, 40–44]. How to construct hierarchies of
fractional-order NLEEs and their exact solutions in the framework of IST method is worthy of study.
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