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Abstract

The purpose of this paper is to introduce the implicit midpoint rule of asymptotically nonexpansive
mappings in Hilbert spaces. The strong convergence of this viscosity method is proved under certain as-
sumptions imposed on the sequence of parameters. Moreover, it is shown that the limit solves an additional
variational inequality. Applications to nonlinear variational inclusion problem, nonlinear Volterra integral
equations, variational inequality problem and hierarchical minimization problems are included. The results
presented in the paper extend and improve some recent results announced in the current literature. c©2016
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1. Introduction

Let H be a Hilbert space, T : H → H be a nonexpansive mapping and f : H → H be a contraction. The
viscosity approximation method for nonexpansive mapping in Hilbert spaces was introduced by Moudafi
[9], following the ideas of Attouch [2]. Refinements in Hilbert spaces and extensions to Banach spaces were
obtained by Xu [15].
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The explicit viscosity method for nonexpansive mappings generates a sequence {xn} through the iteration
process:

xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0, (1.1)

where I is the identity of H. It is well known [9, 15] that under certain conditions, the sequence {xn}
converges in norm to a fixed point q of T which also solves the variational inequality

〈(I − f)q, x− q〉 ≥ 0, x ∈ F (T ), (1.2)

where F (T ) is the set of fixed points of T .
The implicit midpoint rule is one of the powerful methods for solving ordinary differential equations; see

[3, 4, 7, 10, 11, 13] and the references cited therein. For instance, consider the initial value problem for the
differential equation y′(t) = f(y(t)) with the initial condition y(0) = y0, where f is a continuous function
from Rd to Rd. The implicit midpoint rule is that which generates a sequence {yn} via the relation

1

h
(yn+1 − yn) = f

(
yn+1 + yn

2

)
.

The implicit midpoint rule has been extended [1] to nonexpansive mappings, which generates a sequence
{xn} by the implicit procedure:

xn+1 = (1− tn)xn + tnT

(
xn + xn+1

2

)
, n ≥ 0. (1.3)

Recently, Xu et al [16] in a Hilbert spaces introduced the following process:

xn+1 = αnf(xn) + (1− αn)T

(
xn + xn+1

2

)
, n ≥ 0, (1.4)

where T is a nonexpansive mapping. They proved that the sequence {xn} converges strongly to a fixed
point of T , which, in addition, also solves the variational inequality (1.2).

Motivated and inspired by the research going on in this direction. The purpose of this paper is to
introduce the viscosity implicit midpoint rule for asymptotically nonexpansive mapping in Hilbert space.
More precisely, we consider the following implicit iterative algorithm:

xn+1 = αnf(xn) + (1− αn)Tn
(
xn + xn+1

2

)
, n ≥ 1. (1.5)

Under suitable conditions, some strong converge theorems to a fixed point of the asymptotically nonex-
pansive mapping are proved. Also, it is shown that the limit solves an additional variational inequality.
Applications to nonlinear variational inclusion problem, nonlinear Volterra integral equations, variational
inequality problem and hierarchical minimization problems are included. The results presented in the paper
extend and improve some recent results announced in the current literature.

2. preliminaries

In the sequel, we always assume that H is a real Hilbert space and C is a nonempty, closed, and convex
subset of H. The nearest point projection from H onto C, PC , is defined by

PC(x) := argmin
z∈C
‖x− z‖2, x ∈ H. (2.1)

Namely, PC(x) is the only point in C that minimizes the objective ‖x− z‖ over z ∈ C.
Note that PC(x) is characterized as follows:

PC(x) ∈ C and 〈x− PC(x), z − PC(x)〉 ≤ 0 for all z ∈ C. (2.2)
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Recall that a mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, x, y ∈ C.

Recall that a mapping T : C → C is said to be asymptotically nonexpansive if there exists a sequence
{kn} ⊂ [1,+∞) with limn→∞ kn = 1 such that

‖Tnx− Tny‖ ≤ kn‖x− y‖, x, y ∈ C, n ≥ 1.

The set of fixed points of T is denoted by Fix(T ), that is, Fix(T ) = {x ∈ C : Tx = x}.
Note that if T : C → C is an asymptotically nonexpansive mapping, then Fix(T ) is always closed and

convex. Further if, in addition, C is bounded, then Fix(T ) is nonempty.
The demiclosedness principle of asymptotically nonexpansive mappings is quite helpful in verifying the

weak convergence of an algorithm to a fixed point of a asymptotically nonexpansive mapping.

Lemma 2.1 ([6]). (Demiclosedness principle). Let H be a real Hilbert space, C be a nonempty closed and
convex subset of H, and T : C → C be a asymptotically nonexpansive mapping with Fix(T ) 6= ∅. If {xn} is
a sequence in C such that (i) {xn} weakly converges to x and (ii) (I − T )xn converges strongly to 0, then
x = Tx.

The following lemmas play an important role in our paper.

Lemma 2.2 ([8]). Let H be a real Hilbert space. x, y ∈ H and t ∈ [0, 1]. Then

‖tx+ (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2.

It is easy to prove that the following lemma holds:

Lemma 2.3. Let H be a Hilbert space. Then for all u, x, y ∈ H, the following inequality holds

‖x− u‖2 ≤ ‖y − u‖2 + 2〈x− y, x− u〉.

Lemma 2.4 ([14]). Let {an} be a sequence of nonnegative real numbers satisfying

an+1 ≤ (1− γn)an + δn, ∀n ≥ 0, (2.3)

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1)
∑∞

n=1 γn =∞;

(2) lim supn→∞
δn
γn
≤ 0 or

∑∞
n=1 |δn| <∞;

Then limn→∞ an = 0.

3. Main results

Theorem 3.1. Let C be a nonempty closed and convex subset of a Hilbert space H, and T : C → C be a
asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1,+∞), limn→∞ kn = 1 and F (T ) 6= ∅. Let
f be a contraction on C with coefficient α ∈ [0, 1). For an arbitrary initial point x0 ∈ C, let {xn} be the
sequence generated by

xn+1 = αnf(xn) + (1− αn)Tn
(
xn + xn+1

2

)
, n ≥ 1. (3.1)

where {αn} ∈ (0, 1) satisfies the following conditions:

(i) limn→∞ αn = 0;
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(ii)
∑∞

n=0 αn =∞;

(iii) limn→∞
k2n−1
αn

= 0;

If the following condition is satisfied

(iv) limn→∞ ‖Tnxn − xn‖ = 0;

then the sequence {xn} converges strongly to x̃ = PF (T )f(x̃), which solves the following variational inequality:

〈(I − f)q, x− q〉 ≥ 0, ∀x ∈ F (T ).

Proof. We divided the proof into six steps.
Step 1. We prove that {xn} is bounded.

In fact, for any p ∈ F (T ), we have

‖xn+1 − p‖ =

∥∥∥∥αnf(xn) + (1− αn)Tn
(
xn + xn+1

2

)
− p
∥∥∥∥

≤ (1− αn)

∥∥∥∥Tn(xn + xn+1

2

)
− p
∥∥∥∥+ αn||f(xn)− p||

≤ (1− αn)kn

∥∥∥∥xn + xn+1

2
− p
∥∥∥∥+ αn(‖f(xn)− f(p)‖+ ‖f(p)− p‖)

≤ (1− αn)kn
2

(‖xn − p‖+ ‖xn+1 − p‖) + αn (α‖xn − p‖+ ‖f(p)− p‖) .

After simplifying, it follows that

(1− (1− αn)kn
2

)‖xn+1 − p‖ ≤
(1− αn)kn + 2ααn

2
‖xn − p‖+ αn‖f(p)− p‖,

that is,

1− (kn − 1) + knαn
2

‖xn+1 − p‖ ≤
1 + (kn − 1)− αnkn + 2ααn

2
‖xn − p‖+ αn‖f(p)− p‖

≤ 1 + εαn − αnkn + 2ααn
2

||xn − p‖+ αn‖f(p)− p‖

=
1− (kn − 2α− ε)αn

2
‖xn − p‖+ αn‖f(p)− p‖

≤ 1− (1− 2α− ε)αn
2

‖xn − p‖+ αn‖f(p)− p‖.

(3.2)

Also by condition (iii), for any given positive number ε, 0 < ε < 1 − α, there exists a sufficient large
positive integer n0, such that for any n ≥ n0, we have

k2n − 1 ≤ 2εαn, and kn − 1 ≤ kn + 1

2
(kn − 1) ≤ k2n − 1

2
≤ εαn. (3.3)

Since {kn} ∈ [1,+∞) and kn − 1 ≤ εαn for all n ≥ n0, then we have

1− (kn − 1) + knαn ≥ 1− εαn + knαn = 1 + (kn − ε)αn ≥ 1 + (1− ε)αn. (3.4)

Substituting (3.4) into (3.2), after simplifying we have

‖xn+1 − p‖ ≤
1− (1− 2α− ε)αn

1 + (1− ε)αn
‖xn − p‖+

2αn
1 + (1− ε)αn

‖f(p)− p‖
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≤
(

1− 2(1− α− ε)αn
1 + (1− ε)αn

)
‖xn − p‖+

2αn
1 + (1− ε)αn

‖f(p)− p‖

≤
(

1− 2(1− α− ε)αn
1 + (1− ε)αn

)
‖xn − p‖+

2(1− α− ε)αn
1 + (1− ε)αn

(
1

1− α− ε
‖f(p)− p‖

)
≤ max

{
‖xn − p‖,

1

1− α− ε
‖f(p)− p‖

}
, ∀n ≥ n0.

By induction we readily obtain

‖xn − p‖ ≤ max

{
‖x0 − p‖,

1

1− α− ε
‖f(p)− p‖

}
, ∀n ≥ n0.

Hence {xn} is bounded, and so are {f(xn)}, {Tnxn} and
{
Tn(xn+xn+1

2 )
}

.

Step 2. We show that limn→∞ ||xn+1 − xn|| = 0. Observe that

‖xn+1 − xn‖ ≤ ‖xn+1 − Tnxn‖+ ‖Tnxn − xn‖

=

∥∥∥∥αnf(xn) + (1− αn)Tn
(
xn + xn+1

2

)
− Tnxn

∥∥∥∥+ ‖Tnxn − xn‖

≤ (1− αn)

∥∥∥∥Tn(xn + xn+1

2

)
− Tnxn

∥∥∥∥+ αn‖f(xn)− Tnxn‖+ ‖Tnxn − xn‖

≤ (1− αn)kn

∥∥∥∥xn + xn+1

2
− xn

∥∥∥∥+ αn‖f(xn)− Tnxn‖+ ‖Tnxn − xn‖

≤ (1− αn)kn
2

‖xn+1 − xn‖+ αn‖f(xn)− Tnxn‖+ ‖Tnxn − xn‖

≤ (1− αn)kn
2

‖xn+1 − xn‖+ αnM + ‖Tnxn − xn‖.

Here M > 0 is a constant such that

M ≥ sup {‖f(xn)− Tnxn‖, n ≥ 1} .

It turns out that

(1− (1− αn)kn
2

)‖xn+1 − xn‖ ≤ αnM + ‖Tnxn − xn‖.

By (3.3) 1− (1−αn)kn
2 = 1−(kn−1)+knαn

2 ≥ 1+(1−ε)αn

2 for all n ≥ n0 . Consequently, we arrive at

‖xn+1 − xn‖ ≤
2αn

1 + (1− ε)αn
M +

1

1 + (1− ε)αn
‖Tnxn − xn‖.

By virtue of the conditions (i) and (iv), we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.5)

Step 3. We show that limn→∞ ||xn − Txn|| = 0. In fact, since

‖xn − Tn−1xn| =
∥∥∥∥(αn−1f(xn−1) + (1− αn−1)Tn−1

(
xn−1 + xn

2

)
− Tn−1xn

∥∥∥∥
≤ αn−1

∥∥f(xn−1)− Tn−1xn
∥∥+ (1− αn−1)

∥∥∥∥Tn−1(xn−1 + xn
2

)
− Tn−1xn

∥∥∥∥
≤ αn−1

∥∥f(xn−1)− Tn−1xn
∥∥+ (1− αn−1)kn−1

∥∥∥∥xn−1 + xn
2

− xn
∥∥∥∥

≤ αn−1
∥∥f(xn−1)− Tn−1xn

∥∥+
(1− αn−1)kn−1

2
‖xn−1 − xn‖ ,
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by condition (i) and (3.5), we have

lim
n→∞

‖xn − Tn−1xn‖ = 0. (3.6)

Therefore
‖xn − Txn‖ ≤ ‖xn − Tnxn‖+ ‖Tnxn − Txn‖

≤ ‖xn − Tnxn‖+ k1‖Tn−1xn − xn‖ → 0.

Step 4. From Step 3 and Lemma 2.1, it is a straightforward consequence that the following weak
ω−limit set of {xn}:

ωw(xn) = {x ∈ H : there exists a subsequence of {xn} weakly converging to x}

is contained in Fix(T ).

Step 5. Now we prove
lim sup
n→∞

〈f(q)− q, xn − q〉 ≤ 0, (3.7)

where q ∈ Fix(T ) is the unique fixed point of the contraction PFix(T )f , that is, q = PFix(T )f(q).
As a matter of fact, since {xn} is bounded, there exists a subsequence {xnj} of {xn} such that {xnj}

converges weakly to a point p and moreover

lim sup
n→∞

〈f(q)− q, xn − q〉 = lim
j→∞
〈f(q)− q, xnj − q〉. (3.8)

Since p ∈ Fix(T ), by using (2.2), (3.7), (3.8) and by virtue of Step 4, we can conclude that

lim sup
n→∞

〈f(q)− q, xn − q〉 = 〈f(q)− q, p− q〉 ≤ 0. (3.9)

Step 6. Finally, we prove that xn → q ∈ F (T ) as n→∞.

Indeed, for any n ≥ 1, we set zn = αnq+ (1−αn)Tn
(
xn+xn+1

2

)
. It follows from Lemma 2.2 and Lemma

2.3 that

‖xn+1 − q‖2 ≤ ‖zn − q‖2 + 2〈xn+1 − zn, xn+1 − q〉

≤ (1− αn)2
∥∥∥∥Tn(

xn + xn+1

2
)− q

∥∥∥∥2 + 2〈xn+1 − zn, xn+1 − q〉

≤ (1− αn)2k2n

∥∥∥∥xn + xn+1

2
− q
∥∥∥∥2 + 2〈αn(f(xn)− q), xn+1 − q〉

= (1− αn)2k2n

∥∥∥∥xn + xn+1

2
− q
∥∥∥∥2 + 2αn〈f(xn)− f(q), xn+1 − q〉

+ 2αn〈f(q)− q, xn+1 − q〉

≤ (1− αn)2k2n

∥∥∥∥xn + xn+1

2
− q
∥∥∥∥2 + 2αn‖f(xn)− f(q)‖ · ‖xn+1 − q‖

+ 2αn〈f(q)− q, xn+1 − q〉

≤ (1− αn)2k2n

∥∥∥∥xn + xn+1

2
− q
∥∥∥∥2 + 2αnα‖xn − q‖ · ‖xn+1 − q‖

+ 2αn〈f(q)− q, xn+1 − q〉

≤ (1− αn)2k2n

(
1

2
‖xn − q‖2 +

1

2
‖xn+1 − q‖2 −

1

4
‖xn+1 − xn‖2

)
+ αnα

(
‖xn − q‖2 + ‖xn+1 − q‖2

)
+ 2αn〈f(q)− q, xn+1 − q〉
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≤
(

(1− αn)2k2n
2

+ αnα

)(
‖xn − q‖2 + ‖xn+1 − q‖2

)
+ 2αn〈f(q)− q, xn+1 − q〉

≤ (1− 2αn)k2n + 2αnα

2

(
‖xn − q‖2 + ‖xn+1 − q‖2

)
+ α2

nM1

+ 2αn〈f(q)− q, xn+1 − q〉.

Here M1 > 0 is a constant such that

M1 ≥ sup
{
k2n‖xn − q‖2, n ≥ 1

}
.

It follows from (3.3) that for all n ≥ n0(
1− (1− 2αn)k2n + 2αnα

2

)
‖xn+1 − q‖2 ≤

(1− 2αn)k2n + 2αnα

2
‖xn − q‖2 + α2

nM1

+ 2αn〈f(q)− q, xn+1 − q〉

=
1 + (k2n − 1)− 2(k2n − α)αn

2
‖xn − q‖2 + α2

nM1

+ 2αn〈f(q)− q, xn+1 − q〉

≤ 1 + 2εαn − 2(1− α)αn
2

‖xn − q‖2 + α2
nM1

+ 2αn〈f(q)− q, xn+1 − q〉

=
1− 2(1− ε− α)αn

2
‖xn − q‖2 + α2

nM1

+ 2αn〈f(q)− q, xn+1 − q〉.

Since

1− (1− 2αn)k2n + 2ααn
2

=
1− (k2n − 1) + 2(k2n − α)αn

2

≥ 1− 2εαn + 2(1− α)αn
2

=
1 + 2(1− ε− α)αn

2
, ∀n ≥ n0,

consequently, we arrive at

‖xn+1 − q‖2 ≤
1− 2(1− ε− α)αn
1 + 2(1− ε− α)αn

‖xn − q‖2 +
2α2

n

1 + 2(1− ε− α)αn
M1

+
4αn

1 + 2(1− ε− α)αn
〈f(q)− q, xn+1 − q〉

=

(
1− 4(1− ε− α)αn

1 + 2(1− ε− α)αn

)
‖xn − q‖2 +

2α2
n

1 + 2(1− ε− α)αn
M1

+
4αn

1 + 2(1− ε− α)αn
〈f(q)− q, xn+1 − q〉.

Now, take γn = 4(1−ε−α)αn

1+2(1−ε−α)αn
, δn = 2α2

n
1+2(1−ε−α)αn

M1 + 4αn
1+2(1−ε−α)αn

〈f(q) − q, xn+1 − q〉. It follows from

conditions (i), (ii) and (3.7) that {γn} ⊂ (0, 1),
∑∞

n=1 γn =∞ and

lim sup
n→∞

δn
γn

= lim sup
n→∞

1

2(1− ε− α)

(
αnM1 + 2〈f(q)− q, xn+1 − q〉

)
≤ 0.

From Lemma 2.4 we have that xn → q as n→∞. This completes the proof.
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Remark 3.2. Since every nonexpansive mapping is an asymptotically nonexpansive mapping, Theorem 3.1
is an improvement and generalization of the main results in Alghamdi et al. [1] and Xu et al. [16].

The following result can be obtained from Theorem 3.1 immediately.

Theorem 3.3. Let C be a nonempty closed and convex subset of a real Hilbert space H, and let T : C → C
be a nonexpansive mapping with Fix(T ) 6= ∅. Let f be a contraction on C with coefficient k ∈ [0, 1), and
for the arbitrary initial point x0 ∈ C, let {xn} be the sequence generated by

xn+1 = αnf(xn) + (1− αn)T

(
xn + xn+1

2

)
, n ≥ 0, (3.10)

where {αn} ∈ (0, 1) satisfies the conditions: (i), (ii) and (iii) in Theorem 3.1. Then the sequence {xn}
defined by (3.10) converges strongly to q such that q = PFix(T )f(q) which is also a solution of the following
variational inequality:

〈q − f(q), x− q〉 ≥ 0, ∀x ∈ Fix(T ).

Proof. It suffices to prove that the following condition is satisfied:

lim
n→∞

‖xn − Txn‖ = 0. (3.11)

In fact, by the same method as given in [16] we can prove that ‖xn− xn+1‖ → 0 (as n→∞). Therefore
we have

‖xn − Txn‖ =

∥∥∥∥αn−1f(xn−1) + (1− αn−1)T
(
xn−1 + xn

2

)
− Txn

∥∥∥∥
≤ αn−1 ‖f(xn−1)− Txn‖+

(1− αn−1)
2

‖xn−1 − xn‖

≤ αn−1M +
(1− αn−1)

2
‖xn−1 − xn‖ → 0 (as n→∞),

where M = supn≥2 ‖f(xn−1)− Txn‖. This completes the proof of Theorem 3.3.

4. Applications

4.1. Application to nonlinear variational inclusion problem

Let H be a real Hilbert space, M : H → 2H be a multi-valued maximal monotone mapping. Then, the
resolvent mapping JMλ : H → H associated with M , is defined by

JMλ (x) := (I + λM)−1(x), ∀x ∈ H (4.1)

for some λ > 0, where I stands identity operator on H. We note that for all λ > 0 the resolvent operator
JMλ is a single-valued nonexpansive mapping.

The “so-called” monotone variational inclusion problem (in short, MVIP) is to find x∗ ∈ H such that

0 ∈M(x∗). (4.2)

From the definition of resolvent mapping JMλ , it is easy to know that (MVIP) (4.2) is equivalent to find
x∗ ∈ H such that

x∗ ∈ Fix(JMλ ) for some λ > 0. (4.3)

For any given function x0 ∈ H, define a sequence by

xn+1 = αnf(xn) + (1− αn)JMλ

(
xn ⊕ xn+1

2

)
, n ≥ 0. (4.4)

From Theorem 3.3 we have the following,
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Theorem 4.1. Let M,JMλ be the same as above. Let f : H → H be a contraction. Let {xn} be the sequence
defined by (4.4). If the sequence {αn} ∈ (0, 1) satisfies the conditions: (i), (ii) and (iii) in Theorem 3.1 and
Fix(JMλ ) 6= ∅, then {xn} converges strongly to the solution of monotone variational inclusion (4.2), which
is also a solution of the following variational inequality:

〈x̃− f(x̃), x− x̃〉 ≥ 0, ∀ x ∈ Fix(JMλ ).

4.2. Application to nonlinear Volterra integral equations

Let us consider the following nonlinear Volterra integral equation

x(t) = g(t) +

∫ t

0
F (t, s, x(s)) ds, t ∈ [0, 1], (4.5)

where g is a continuous function on [0, 1] and F : [0, 1] × [0, 1] × R → R is continuous and satisfies the
following condition

|F (t, s, x)− F (t, s, y)| ≤ |x− y|, t, s ∈ [0, 1] x, y ∈ R.
Define a mapping T : L2[0, 1]→ L2[0, 1] by

(Tx)(t) = g(t) +

∫ t

0
F (t, s, x(s))ds, t ∈ [0, 1]. (4.6)

It is easy to see that T is a nonexpansive mapping. This means that to find the solution of integral equation
(4.5) is reduced to find a fixed point of the nonexpansive mapping T in L2[0, 1].

For any given function x0 ∈ L2[0, 1], define a sequence of functions {xn} in L2[0, 1] by

xn+1 = αnf(xn) + (1− αn)T

(
xn ⊕ xn+1

2

)
, n ≥ 0. (4.7)

From Theorem 3.3 we have the following,

Theorem 4.2. Let F, g, T, L2[0, 1] be the same as above. Let f be a contraction on L2[0, 1] with coefficient
k ∈ [0, 1). Let {xn} be the sequence defined by (4.7). If the sequence {αn} ∈ (0, 1) satisfies the conditions:
(i), (ii) and (iii) in Theorem 3.1 and Fix(T ) 6= ∅. Then {xn} converges strongly in L2[0, 1] to the solution
of integral equation (4.5) which is also a solution of the following variational inequality:

〈x̃− f(x̃), x− x̃〉 ≥ 0, ∀ x ∈ Fix(T ).

4.3. Application to variational inequalities

Consider the variational inequality (VI)

〈Ax∗, x− x∗〉 ≥ 0, x ∈ C, (4.8)

where A is a (single-valued) monotone operator in Hilbert space H and C is a closed convex subset of H
with C ⊂ dom(A).

An example of (4.8) is the constrained minimization problem

min
x∈C

ϕ(x), (4.9)

where ϕ : H → R is a proper convex and lower-semicontinuous function. If ϕ is (Fréchet) differentiable,
then the minimization problem (4.9) is equivalently reformulated as (4.8) with A = ∇ϕ.

Notice that the VI (4.8) is equivalent to the fixed point problem, for any λ > 0,

Tx∗ = x∗, Tx := PC(I − λA)x. (4.10)

If A is Lipschitzian and strongly monotone, then, for λ > 0 small enough, T is a contraction and its unique
fixed point is also the unique solution of the VI (4.8). However, if A is not strongly monotone, T is no longer
a contraction, in general. In this case we must deal with nonexpansive mappings for solving the VI (4.8).
More precisely, we assume
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(A1) A is L−Lipschitzian for some L > 0, that is,

‖Ax−Ay‖ ≤ L‖x− y‖, x, y ∈ H.

(A2) A is µ−inverse strongly monotone (µ−ism) for some µ > 0, namely,

〈Ax−Ay, x− y〉 ≥ µ‖Ax−Ay‖2, x, y ∈ H.

Note that if ∇ϕ is L−Lipschtzian, then ∇ϕ is 1
L−ism.

Under the conditions (A1) and (A2), it is well known [5] that the operator T = PC(I−λA) is nonexpansive
provided 0 < λ < 2µ. Applying Theorem 3.3 we can get the following result:

Theorem 4.3. Assume the VI (4.8) is solvable. Assume also A satisfies (A1) and (A2), and 0 < λ < 2µ.
Let f : C → C be a contraction. Define a sequence {xn} by the viscosity implicit midpoint rule:

xn+1 = αnf(xn) + (1− αn)PC(I − λA)

(
xn + xn+1

2

)
, n ≥ 0.

In addition, assume {αn} satisfies the conditions (i)–(iii) in Theorem 3.1. Then {xn} converges in norm to
a solution x∗ of the VI (4.8) which is also a solution to the VI

〈(I − f)(x∗), x− x∗〉 ≥ 0, x ∈ A−1(0). (4.11)

4.4. Application to hierarchical minimization

We next consider a hierarchical minimization problem (see [12] and references cited therein). Let ϕ0, ϕ1 :
H → R be a lower semicontinuous convex function. Consider the following hierarchical minimization
problem:

min
x∈S0

ϕ1(x), S0 := arg min
x∈H

ϕ0(x). (4.12)

Here we always assume that S0 is nonempty. Let S := arg minx∈S0 ϕ1(x) and assume S 6= ∅.
Assume ϕ0 and ϕ1 are differentiable and their gradients satisfy the Lipschitz continuity conditions:

‖∇ϕ0(x)−∇ϕ0(y)‖ ≤ L0‖x− y‖, ‖∇ϕ1(x)−∇ϕ1(y)‖ ≤ L1‖x− y‖. (4.13)

Note that the condition (4.13) implies that ∇ϕi is 1
Li
− ism(i = 0, 1). Now let

T0 = I − γ0∇ϕ0, T1 = I − γ1∇ϕ1,

where γ0 > 0 and γ1 > 0. Note that Ti is nonexpansive [5] if 0 < γi <
2
Li

(i = 0, 1). Also, it is easily seen
that S0 = Fix(T0).

The optimality condition for x∗ ∈ S0 to be a solution of the hierarchical minimization (4.12) is the VI:

x∗ ∈ S0, 〈∇ϕ1(x
∗), x− x∗〉 ≥ 0, x ∈ S0. (4.14)

This is the VI (4.8) with C = S0 and A = ∇ϕ1. From Theorem 3.3 we have the following result.

Theorem 4.4. Assume the hierarchical minimization problem (4.12) is solvable. Let f : C → C be a
contraction. Define a sequence {xn} by the viscosity implicit midpoint rule:

xn+1 = αnf(xn) + (1− αn)PS0(I − λ∇ϕ1)

(
xn + xn+1

2

)
.

In addition, assume {αn} satisfies the conditions (i)–(iii) in Theorem 3.1. If the condition (4.13) is satisfied
and 0 < γi <

2
Li

(i = 0, 1), then {xn} converges in norm to a solution x∗ of the VI (4.14) that is, a solution
of hierarchical minimization problem (4.12) which also solves the VI

〈(I − f)x∗, x− x∗〉 ≥ 0, x ∈ S.
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Remark 4.5. As we have observed that Theorem 3.1 can be viewed as an extension of the main result in
[1, 16]. It remains an open question whether Theorem 3.1 holds without the condition (iv), that is, we have
the following:

Open Question Let C be a nonempty closed and convex subset of a Hilbert space H, and T : C → C
be a asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1,+∞), limn→∞ kn = 1 and F (T ) 6= ∅.
Let f be a contraction on C with coefficient α ∈ [0, 1). For an arbitrary initial point x0 ∈ C, let {xn} be
the sequence generated by (3.1). If the sequence {αn} ∈ (0, 1) satisfies the conditions (i)-(iii) in Theorem
3.1, does the conclusion of Theorem 3.1 hold?
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