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Abstract

We consider the boundedness of a kind of nonlinear integral operators on LP spaces. Including the
parametric Marcinkiewicz integrals with rough kernels along compound curves {®(¢(|y|))y;y € R™} with
® satisfying certain growth conditions and ¢ being differentiable function with monotonicity and some
properties on the positive real line, we investigate the LP bounds of these operators under the integral
kernels given by the sphere functions Q in H'(S"1) or Q in L(log® L)/2(5"~1) and the radial function
h € A,(RT). As applications, the corresponding results for parametric Marcinkiewicz integral operators
related to area integrals and Littlewood-Paley g}-functions are presented. (©2016 All rights reserved.
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1. Introduction

As is well known, Marcinkiewicz integral operators, a kind of nonlinear integral operators, belong to broad
class of Littlewood-Paley g-function and LP bounds regarding them are useful in the study of smoothness
properties of functions and behavior of integral transformations, such as Poisson integrals, Singular integrals
and, more generally, Singular Radon transforms. In this paper we focus on the LP mapping properties for
a class of parametric Marcinkewicz integral operators with rough kernels along certain compound curves.
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Let R™ (n > 2) be the n-dimensional Euclidean space and S™~! denote the unit sphere in R™ equipped
with the induced Lebesgue measure do. For any nonzero y € R”, we shall let v/ = y/|y|. Let Q € L*(S"1)
and satisfy

/ Q(u)do(u) = 0. (1.1)
Sn—1
Suppose that ®(t) is a real-valued C? function on Rt := (0, co) satisfying
(1) < Crlt|, |@"(1)] < Colt|2, (1.2)
Cslt|]™! < |@/(t)] < Cult] " (1.3)

for some d # 0 and t € R™, where Cy, Cs, C3, Cy4 are positive constants independent of t.

For a complex number p = o +i7(0, 7 € R with o > 0) and a suitable function ¢ : RT — R, we consider
the parametric Marcinkiewicz integral operator DJTZ’Q’(I)W along the compound curves {®(¢(|y|))y’; y € R"}
defined by

2 1/2
@) " (1.4)

W00 = ([ [ [ O ateuan] G
yl<t

where h € Ay(R"). Here A,(R")(y > 1) denotes the set of all measurable functions i defined on R*
satisfying

R 1/y
. -1 -
IAlla, @ty : sup (R /0 |h(t)] dt) < 0.

Clearly, L¥(R") = Ao (RT) € A, (RT) C A, (RT) for 1 <71 < 42 < oo0.

For the sake of simplicity, we denote M}, ¢ 4 , = M} o if D(t) = p(t) =t and M) , = MY, if h(t) = 1.
When p = 1, the operator fmg reduces to the classical Marcinkiewicz integral operator denoted by Mg,
which was introduced by Stein [20] and investigated by many authors (see [4} [6l, [0, 18, 20H23] for examples).
In particular, Ding et al. [9] (resp., Al-Salman et al. [4]) showed that 9tq was bounded on LP(R™) for
1 < p < oo provided that Q@ € H'(S™!) (resp., Q € L(log™ L)"/2(S"~1)). Recently, it follows from [I8,
Remark 1.2] that,

Theorem 1.1 ([18]). Let ¢(t) =t, h(t) = p =1 and ® satisfy (1.2)-(1.3). Suppose that Q € Fg(S"~1) for
some [ > 1/2 with satisfying (L.1). Then Smfuflﬁl’,eo is bounded on LP(R™) for 1+ 1/(28) < p < 1+ 25.
Here, F(S" 1) is the set of all functions Q € LY(S™1) satisfying

1 B
sup Q)| ( lo do(y') < oo.
5€Sn1/gn1' W) (g =) o)

It should be pointed out that the function class F3(S™ 1) was introduced by Grafakos and Stefanov
[16] in the study of LP bounds for singular integral operator with rough kernels. Note that the following
relationships are valid:

UJzos ) ¢ () Fo(sm) (15)
g>1 £5>0

() Fs(s") ¢ H'(S") ¢ | Fs(s™ ) (1.6)
B>1 B>1

m ]:5(5"_1) ¢ Llog™ L(S™1); (1.7)
B>1

L(logt L)?(S" 1) € L(logt L)*(S™™Y) if 0 < a < f;
Llogt L)*(S" Y ¢ HY(s" 1 Cc LY (S" ) if a > 1;
L(log™ L)*(S™ 1) ¢ H'(S"™™') ¢ L(log™ L)*(S™™ 1) if 0<a < 1. (1.10)
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The parametric Marcinkiewicz integral operator 90, has been extensively studied (see [3, 13} 17, [19] et
al.). Later on, the investigation of the parametric Marcinkiewicz integral operators with rough kernels on
the unit sphere as well as on the radial direction have also received a large amount of attention of many
authors (see [B, [9-12] et al.). In particular, Ding et al. [9] proved that Dﬁzﬂ is of type (p, p) for 1 < p < o0
if p=1,0Q¢€ HY(S" ') and h € L®(R"). Subsequently, Ding et al. [I0] extended the result of [J] to the
Marcinkiewicz integrals along polynomial mappings. Recently, Ding et al. [12] obtained the following result.

Theorem 1.2. Let ®(t) =t, p > 0 and ¢ satisfy one of the following conditions:

(i) ¢ : RT — RT is a increasing C* function such that t¢/(t) > Cpp(t) and $(2t) < csp(t) for all t > 0,
where Cy and cy are independent of t.

(ii) ¢ : RT — R is a decreasing C' function such that t¢/(t) < —Cyo(t) and ¢(t) < cpp(2t) for all t >0,
where Cy and cy are independent of t.

Suppose that Q@ € H'(S™') U L(log™ L)Y/2(S"~1) satisfying (I1) and h € A, (R*) for some v > 1.
Then MY, & , s bounded on LP(R") for p satisfying [1/p —1/2| <min{1/2,1/~'}.

For convenience, we denote by §; (or F2) the set of all functions which satisfy the condition (i) (or (ii))
of Theorem .21

Remark 1.3. There are some model examples in the class §1, such as t* (o > 0), t*(In(1 + ¢))? (o, >
0), tInln(e +t), real-valued polynomials P on R with positive coefficients and P(0) = 0 and so on. We now
give examples in the class §» such as t° (6 < 0) and t~'In(1 +¢t~!). Note that for any ¢ belonging to §1
(or §2), there exists a constant B, > 1 such that ¢(2t) > B,p(t) (or ¢(t) > Byp(2t)) for any t > 0 (see
[2,12]).

On the other hand, Fan and Pan [I4] proved that the singular integral operator T}, o ¢ defined by

Taalf)e) = pv. [ fle = () LT gy

is bounded on LP(R™) for |1/p — 1/2| < min{1/2,1/4'}, provided that ® satisfies (1.2)-(1.3)), » € A,(RT)
for some v > 1 and Q € H'(S"™!) with satisfying (L.1).

A question that arises naturally is whether the condition Q € H'(S"!) is also sufficient for the LP
boundedness of smh 0,0 with ® being as in Theorem and ¢ being as in Theorem (1.2} Our following
results greatly generahze Theorem [1.2) E and extend the result of [] (resp.,[I]), even in the special case:
O(t) = ¢(t) =t and p = 1.

Theorem 1.4. Let ¢ € §F1 or F2 and ® satisfy (1.2 . . Suppose that h € Ay(RT) for some v > 1 and
Qe HY(S" 1)U Llogt L)Y/2(S™1) satisfying (L.1). Then I, Q.. s bounded on LP(R™) for p satisfying
11/p—1/2| < min{1/2,1/+'}. The bounds depend on .

In 2006, Ye and Zhu [24] investigated the properties of certain block spaces B(0 v) (S™~1) and proved the
following
0, -1 1rgn—1 + 731+ -1
B (s ¢ HY(S"™') + L(log™ L) (S"™), V¢ >1and v > —1. (1.11)

Applying (|1.11)) and the conclusion of Theorem we get immediately the following,

Corollary 1.5. Let ®, ¢ be as in Theorem (1.4 . Suppose that h € A, (RT) for some v > 1 and Q €
Ugs1 B 71/2)(8” ) satisfying (L.1). Then E)JTZQ¢ is bounded on LP(R™) for p satisfying |1/p — 1/2] <
mln{1/2 1/4'}. The bounds depend on .

By . and ( -, we know that our main results are distinct from the corresponding result in
Theorem 1.1} even in the special case: ¢(t) =t and h(t) = p = 1.



F. Liu, Z. Fu, Y. Zheng, Q. Yuan, J. Nonlinear Sci. Appl. 9 (2016), 4450-4464 4453

The rest of the paper is organized as follows. After presenting some auxiliary lemmas in Section [2, we
shall prove Theorem [I.4]in Section[3] In Section[dwe consider the L” bounds of the corresponding parametric
Marcinkiewicz integral operators related to area integrals and Littlewood-Paley g} functions. We remark
that our methods in this paper are very simple and are different from those in [12, 14]. Especially, in [14]
the authors used the TT™* methods in estimating some measures. Here, we only use a simple oscillatory
integral (see Lemma . Throughout the paper, we denote p’ by the conjugate index of p, which satisfies
1/p+1/p' = 1. The letter C or ¢, sometimes with certain parameters, will stand for positive constants not
necessarily the same one at each occurrence, but are independent of the essential variables.

2. Preliminaries

In this section we shall recall some definitions and present some auxiliary lemmas, which will play the
key roles in our proofs. Let us begin with recalling Hardy space on S"~! and its atomic decomposition. The
Hardy space H'(S™"~!) is given by

HY(S" 1) = {QeLl(S” DE Q] 1 (gn-1) ::/ sup ‘/Sn ) Py(0)do (6 ‘da <oo}

Sn—10<r<1
where Py, (#) denote the Poisson kernel on S"~! defined by

1—r2
|rw — 6|’

Prp(0) = 0<r<landf, weS" '

We now give the definition of atom and atomic decomposition of H!'(S"~1).

Definition 2.1 ([7]). A function a(-) on S"~! is a regular atom if there exist & € S"~! and ¢ € (0, 2] such
that

supp(a) C S" ' N B(¢,0), where B(¢,0) ={y e R": |y —¢| < o}; (2.1)
lalloo < 0™ (2.2)

| ezt ~o. (2:3)
Lemma 2.2 ([7,8]). If @ € H'(S"') and satisfies (1.1)), then there ezist {c;} C C and H' regular atoms

{Q;} such that
Q= ZC]'Q]',
J
where 3 |cj| = ||| 1 (sn-1y.-
J

The following Lemmas can be found in [14].

Lemma 2.3 ([I4]). Suppose that n >3 and b(-) satisfies (2.1)-(2.3)). Let

Fy(s) = (1— )92y 1 1(s) / b(s, (1 — 52)1/25)do(5),

Sn—2

and

Golo) = (1 =)D () [l (1= )25l

Then there exists a constant C, independent of b, such that

supp(Fy) C (€1 — 2r(£), &1 + 2r()); (2.4)
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supp(Ghy) C (€1 — 2r(£'), &1 + 2r()); (2.5)
[Fblloc < C/r(€); Gl < C/r(€)); (2.6)
/ Fy(s)ds =0, (2.7)

R

where € = (€1, 160, € = & = (€l E1), 7(€) = % and Ly(€) = (261, 06s, ., 06n).
Lemma 2.4 ([I4]). Suppose that n =2 and b(-) satisfies (2.1)-(2.3)). Let
Fy(s) = (1= s”) 72 x11)(8)(b(s, (1 = 5%)/) + b(s, —(1 = *)'/2)),

Gy(s) = (1 - 52)_1/2X(_1,1>(8)(!b(8, (1= s)Y2)] + [b(s, =(1 = )'/2))).

Then Fy(-) satisfies -, and
1Fs ]l < ClLo(€)] 7,

and Gy(+) satisfies and
1Gyllq < ClLg(€)]

for some 1 < q <2, where £ = (&1,&) and Ly(§) = (0%, 0&2).

Lemma 2.5. Let r > 0, A # 0 and ® satisfy (1.2)-(1.3). Then

e(r)
‘/ efz)«b(t)@’ < Clre(m)d~L, if ¢ € Fi;
r/2) ¢

e(r/2) dt
‘/ eﬂ)“p(t)Tl < C])\go(r)drl, if ¢ € Fo.
o(r
The constant C' > 0 is independent of r, X, but depends on .

Proof. We only prove the first inequality and the other case is analogous. By Remark there exists
B, > 1 such that B,p(r/2) < ¢(r) < cop(r/2). By integration by parts and the properties of ®,

‘/ e~ A2t ‘/ —iA®' (t)t)~ lde_ikq)(t)‘
(r/2) (r/2)

< Cp(r) ™ + /W::z dt()@’l())‘dt

_ _ ' (t) + 1" (t)|
< C|hp(r =1 4 CIA 1/ |
e B T A

dt
< ClAp(r)? 7.
Lemma is proved. O

Lemma 2.6 ([3]). Let ®(t) satisfy (1.2))-(1.3) and y € R™. Let Mg, be the mazimal operator defined on
R"™ by

My (f) () = sup |2~ / fa—a
teR

Then
Moy (F)llemny < Cllfllr@n)

for all 1 < p < oo, where the constant C' > 0 is independent of y € R™.
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Let h, Q, p be as in (1.4). For two suitable functions ® : R — R and ¢ : R™ — R, one defines the
sequence of measures {0 o ,}i>0 by

My)O)

ly|n—r

F(2)dora,0(7) = = / @)y
R» t/2<|y|<t

tP
Applying Lemma [2.6] we have,

Lemma 2.7. Let v € N\{0}, ¢ € F1 or Fo and ® satisfy (1.2)-(1.3). Suppose that Q € L*'(S" 1) and
h € Ay(RY) for some v > 1. Then for |1/p —1/2| < min{1/2,1/4'}, there exists C > 0 such that

I /.. (o)™

keZ
where the constant C' is independent of u, 2, h, but depends on .

2(k+1)v

< Cv'2|1Q|| 1 (5m-1) (2.8)

1/2
‘th),cp*g“ 7) ‘

LP(R™) Lr(Rm)

Proof. We shall use the method in the proof of [I5] Theorem 7.5]. We only prove the case ¢ € §; and the

other case is analogous. Since
AL () € Ag(RY)

for v > 2, we only prove for the case 1 <y <2 and |1/p —1/2| < 1/4'. By the duality, it suffices to
prove this lemma, for
2<p<2y/(2=7).
Let
Y=9/2=7),a=(p/2)
and
{gr}rez € LP(R, £7).

Then there exists a nonnegative function f € LI(R™) with unit norm such that

2kt 1/2 e dt
2
H Z/z |ot,@,p * gk! - LP(Rn /n 2/2 lot,®. * gr ()] 7f(:c)d:r. (2.9)
keZ
By a change of variable and Holder’s inequality,
/ / / d/r' 2
|ot2.0 * g (2 ( gk (2 = (p(r))y) |12y |do (y) |h(r)|—
/2 Sn—1 T

2
< 1€ L1 sm)

/t/z (/Sn—l lgw( - ‘b(w(r))y')\Qlﬂ(y’)Ida(y’))I/QIh(r)I@

r

< Ol pr(sn-1) l91.(x — (0 (r)y) P12 |do (')A (r)[* s
t/2Jgn—1 T

It follows that

9(k+1)v

/n /2 |t * gk(a:)]Q%f(x)dx

v—1 2kv+i+1
< Clflsn X [ /

<0||Q||L1(sn12 / ML) (@) gi ()| 2de,

/S aele — 2ol PIRGNIdo ) A)P T iz (2.10)

kv+i—1
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where
2kv+7,+1

= [ sw [ e @) 66l ),
S 2

n—1 keZ kv+i—

Note that H]h!Q*VHAW@_W)(Rﬂ < ]\h[\A;(R+). Mgy, is defined as in Lemma and f(z) = f(—z). By
Holder’s inequality, we conclude that

2kv+i+1 d/r’
sup [ I+ Sl IhrP
keZ 2kv+171 T
2kv+i+1 ~
rdr\1/(3)
2—y )
< I oy (sup [ 1o+ Bt )
(2t i dr /G
<C sup/ f(z+ ®(r)y)|D
(828 [ sy 1+ 2N o)
p(2E ) v dr\ 1/ (2.11)
<c@)(swp [* i+ 201
kezZ Jp(2kv+i-1) r
[210g§“’]+1 9+ p(Qkvti=1y \/
v dry\1/(F)
<co) > (sw [ ey )
0 keZ 2]<p(2k'u+271) T
J
[2logs?]+1
~ g 1/(7)
<Clp) Y (May (1Y) (@)
§=0
Since ¢ = (p/2)" > (¥)', by (2.10), Minkowski’s inequality and Lemma [2.9| we have
M ()| Larny < C(@NQU L1 (sn-1)l1f [ La@n) < C)IQ| L1 (5n-1y, (2.12)
where C(¢) > 0 is independent of Q, h, i, p. It follows from (2.9)-(2.10)), (2.12) and Hélder’s inequality that
(2.8)) holds 2 < p < 2v/(2 — ). This completes the proof. O

Lemma 2.8. Let v, N € N\{0} and {0 : t > 0} be a family of measures on R™. Let 6, 5 > 0, v # 0 and
L :R* = RN be a linear transformation. Assume that ¢ is a monotonous function satisfying one of the
following conditions:

(a) 31;13<p(27")/<ﬁ(7“) > Dy > 1;

(b) iglgso(r)/@(%) 2D, >1.

Suppose that there exists C, A > 0 such that
(i) 16:()] < CAmin{1, [p(t)Y L&), [p(t)L(E)P/*} for € € R™ and t > 0;
(i) there exist pg > 1 and C > 0 which are independent of v, A such that

e 20 (i)

o(k+1)v

[ ety

Then for any p € [min{pg, 2}, max{po, 2}], there exist C > 0 which is independent of v, A such that

LPO(R™)

[ e 725 ™ ey = €40 N 21

Specially, p = 2 if pg = 2.
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Proof. We only prove (2.13)) for the case ¢ satisfying the condition (a), the other case can be obtained
similarly. Let A = rank(L). By [15, Lemma 6.1], there exist two nonsingular linear transformations R :
R* =5 R* and Q : R® — R™ such that

(R7XQE)| < [L(E)] < NIR7XQ(E)]; (2.14)

where 7Y is a projection operator from R" to R*. We take a sequence of nonnegative functions {Uk}rez in
C5°(R) such that

supp(¥) C [p(2HHD) 77, (20707 N T (¢) =
keZ

d .
’@(\Pk(t))‘ <G|t/ (j=1,2,...) forallt > 0 and j € N,
where C; are independent of k, t. Define the Fourier multiplier operator Sy, by

Skf(€) = FOUR(RTLQE))). (2.15)

We can write

op* f(x Z op* f(x X[Q’W,2(k+1)v)(t)

kEZ

= Z Ot * Z Sjyif(z X[zkv 2(k+1)v)(t)

keZ JEZ

= Z Z ot * Sj+kf(x)x[2m,2<k+nv)(t)

JEZ ke

= Hi(f)(t

JEZ
Thus by (2.16)) and Minkowski’s inequality we have

(/OOO |Ut*f<w>!2it>1/2 <> (/OOO (0P = S 00 (2.17)

JEZL JEL

(2.16)

Below we only consider the case v > 0, the case v < 0 can be obtained similarly. By ([2.14]), Plancherel’s
theorem and our assumption (i) we have

WSy = / / " () L

2dt
/ / ‘ Z O * S]+kf X[Qk'u 2(k+1)1) ‘ —dz

keZ
k:+1)'u
o odt
» / 5 W (R () ) ()
o(k+1)v dt
<c / [ w@Pifera
ren ) eUHIFDY) =Y R Q(x)| p(2k+HI—Dv) = Jokv t

< CA*0BY| fll72@ny»
where '
Bj = DY I%x20(j) + x-1<j<2(5) + DY x<1(5).

Thus we have
1U; (F)ll 2 (rny < CAOY2Bj| £l 12 ny- (2.18)
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On the other hand, we get from our assumption (ii) and Littlewood-Paley theory that
U5 ()| zro @y < CAUY?|| ]| oo @ny.- (2.19)

Then by interpolation between (2.18)) and (2.19)), for any p € [min{po, 2}, max{pg, 2}], there exists a constant
6, € (0,1] such that
6.
||U'( M Lo @ny < CAVY2BP|| £l 1oy

Combining this inequality with (2.17)) and Minkowski’s inequality yields (2 and completes the proof. [

3. Proof of Theorem 1.4

In this section we aim to prove Theorem We only consider the case ¢ € §1 and the other case is
analogous. By Remark there exists a constant B, > 1 such that

Boip(r/2) < o(r) < cop(r/2).

Case 3.1. Q € H'(S"!). By Lemma 2.2 -, to prove Theorem [1.4] . for Q € H'(S™1), it suffices to prove
Theorem [1.4] for © being H' regular atom satisfying - . Without loss of generality we may assume
that

supp(Q) C B(1,0)( )5,

where 1 = (1,0,...,0) € S"1. We shall prove the case n > 3, since the proof for n = 2 is essentially the
same (using Lemma instead of Lemma . By Minkowski’s inequality, we can write

M) 0.0, (/ ’ Z v /th<|y<2k+lt z —(p(ly))y )Wdy‘%?)lm

kg:oo (/0°° ’tlﬂ /2kt<y|<2k+1t fla— ‘I’(SO(‘y’))y,)}Wdy’%f)l/Q (3.1)

<=2 ([Tl @) "

IN

where oy is defined by

: N lyDO(y)
5 o @) T

For & # 0, we choose a rotation O such that

f(x)doy(z) =
R”

O(¢) = [¢/1.
Let O~! be the inverse of @. By the change of variables, it is easy to check that

t tp //2 [9n IQ O ) —2mi®(p ())|£|1'y/d0_(y/)h<r)rl_p‘

For simplicity in our argument, we set b(y’) = Q(O~(y’). Note that b(-) is H' regular atom with satisfying
(2.1)-(2.3)). By a change of variable we have

- L “amid(p(r))léls dr
7te) =5 [ [ o ashir) -

where Fj(-) is the function defined in Lemma [2.3] Let

A(s) = (&) Fy(r(€)(s + & /r (&)
By Lemma we know that supp(A) C (=2,2), ||Afl« < C (C is independent of s and ¢) and [ A(s)ds = 0.
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After changing variables we have

/ /A s 67271%1)( e(r))|Lo(€ )|sdsh( ) —2mi®(p(r))é1 dr
t/2

rl=p’

5 = 5,

where L,(§) is as in Lemma [2.3] . By a change of variable, Holder’s inequality and Lemma

O —omi®(o(r o [V dr\1/Y
51O < Cllhlla, &) / | / 2 )20y 1)

w(t) . 2 dr 1/ max{2,7'}
<C / / Als)e-2mi®0)ILo(©ls g
( ©(t/2) ‘ (s) ‘ gD_l(?")(,D’(tp_l(r)))
(/ ‘/ —27rz‘1>('r |Lo(€ ‘sd ‘Qd?">1/max{2;y}
t/2
(/ / A *27T’L’<I>(T’)|LQ(£)|(S u)d d’u,@) 1/(2¢")
(t/2) J JRxR
( / / A<U)!‘ / e—%i@(r)ng(an(s—u)@ ds du)l/w)
RxR (t/2)
1/(2v")
(j/ // min{1, (| (t) Lo(€)l[s — ul) ™ }dsdu)

d —1/(4 ') 12 —-1/(2v)
< @I L@ ([ [ s = ul2asa)
CPNpt) Ly(€)| ).

The last inequality follows from the inequality
2 —1/(2v)
(/ / |s —u|_1/2d8du) ! <C
—2J-2
On the other hand, by (1.2)), (3.2)) and the properties of A(:) we have

o L[ —2mi r s —2mi®(r dr
|6¢(8)| = \W/M/A(S)(e 2mi@(p(r)ILo(@)ls _ 1) dsh(r)e2m e 2

rl-p

t ) dr
< C/t/Q/R|A(S)’m1n{17|(I)((70(r))|LQ(£)|S|}dS|h(r)|r
< Cmin{L, [p(t)"Ly(€)], (t/2) Lo (€}
< Cmin{L, [p(t)"Ly(£)[}-

Moreover, it follows from Lemma that

1=/,

o(k+1)

dt\1/2
o0 T)

ey < Ol sn

(}jmm)

LP(R™)

(3.2)

(3.5)

holds for |1/p —1/2] < min{1/2,1/+'}. Taking L(§) = L,(§) and v = 1, by (3.1)), (3.3)-(3.5) and Lemma
we can get Theorem for 2 being H' regular atom satisfying (2.1))-(2.3). This completes the proof

of Theorem [1.4] for Q € H(S"1).

Case 3.2. Q € L(log" L)Y2(S"1).  Let Q € L(log™ L)/2(S"!) and satisfy (L.1). Employing the
notation in [5], let E, = {y’ € S"71: 2# < |Q(y/)| < 2¢#H} for p € Z and Ep = {y € S"1: |Q(y)] < 2}

Set Ag = {u € N: o(E,) > 2%} and for u > 1,

fmwvzﬂwmuhwﬂaw”*r{ésuywﬂyx
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and Qo(y') = QYY) — X .eny Qu(y’)- It is easy to check that

/ Qu(y)do(y) =0, for pe A, U{0}; (3.6)
Sn—l
[Q0l[L1(sn-1) < C, [Qullpr(sn-1y < ClQ|L1(w,), for p € Ag; (3.7)
190l r2(sn-1) < C, [1Qull2(s0-1) < C2%|Q|11(5,), for p € Ag; (3.8)
Q)= Y W) (3.9)
neAqU{0}

> (w+ D25 < CI L aogt )12 (sn1y: (3.10)

neAqU{0}

By Minkowski’s inequality and (3.9)), we have

M () (@)
< Y m, (D@

neAqU{0}

- \ Z i), (e (ly)y >Wdy(2f)”2

neAaU{0} ’“t<'y'<2’““t (3.11)
S <1 Q. (v h(ly 2dt\ 1/2
<Y S ([ f<x¢<w<|y|>>y’>Wdy\ iy
pEAQU{0} k=—o0 0 2kt<|y|<2kF1e
—o\— dt\1/2
<a-29" Y ([T s@rf) "

neAqU{0}
where 7,,; is defined by

2)dry (@) = N D% (y')
[ @@ =g [ e Ty

By (3.10)-(3.11)) and Minkowski’s inequality, to prove Theorem for Q € L(logt L)'/2(S™1), it suffices

to show that 1/2
() twee 52%)

for |1/p —1/2] < min{1/2,1/4'} and p € Aq U {0}. Here the constant C' > 0 is independent of Q,,, p
We first estimate the following

[Tt ()] < ClIQ g1 (s, min {1, ()] OH), (1) %71/ 1D (3.13)

< O+ 1)Y2190 £ (g I 1l o ey (3.12)

Lp(RM)

The constant C' > 0 is independent of i, €,,. By a change of variable and Holder’s inequality,

o 1 t —omi ' - dr
@l =l [ [ i e

t ) ,
<c [ | i, oty o)
/2 Sn—1 r
t
< Clbllaser( [ ] [ 00, a0ty
t/2 ' JSn—1

t
< CHQ Hmax{l 2/y 0} )/ 672772'@(@(7"))@/’-59”(y/)do_(y/)
t/2 ' Jsn-1

) , (3.14)
ol @) 1/~
T

2 dr) 1/ max{2,7'}

r

LlSn 1
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Invoking Lemma by a change of variable, Holder’s inequality and (3.8) we have

¢ ; ! ’
/ ’/ e 2NV EQ) (v )do (i) el
/2" JSn—t
2 dr

_ e 2w ()€
‘/ o) ’/SM W] ST
2dr

SC / ‘/ 727rz<1)(ry §Q ( )dO’( )
(t/2) ' JSn-1

dr
o 2mi2(r)(y' —0)-£() 0,(0)do(y)do(0)—
/t/2 //S'nlSnl ( ) ()U( )O'()T (315)
©(t)
// / —27rzq>( (' 9)5@“9 )|dU( ) (‘9)
Sn=1xgn=11Jp(t/2)

= //Snl x §n—1 min{l, \go(t) & (y/ o 9)’_1}|Q#(y/)9u(0)|d0(y/)d0(9)

2 : d / —2 / 1/2
< Il ([ min{L, [p(1)%€ - ('~ ) *}do(y/)do (0))
Sn—1xgn—1
< C2%|Q|F 1 |0 (8) 24,

where the last inequality follows from

/] € — ) 2do(y)do(0) < .
Sn—l XS”_I
It follows from and - - ) that
Tt ()] < C2/ MmN Q) 11y ) [ep(t) g 7Y max (8B4, (3.16)

By a change of variable and Hélder’s inequality, we get from (3.6))-(3.7), (1.2]) and the fact that B,p(r/2) <
©(r) < cpp(r/2) that

dr
—27m<I> (M)y’-€ ! /
@)l = |- //2 L 10, oy )h(r) o
. dr
< s /W min{1, [B((r))¢l} ()| (3.17)

< C|9| 1 (s, min{L, o (t) %€, |o(t/2)%]}
< C||9 1 s,y min{1, [ (t) %[}

Combining (3.16]) with (3.17] - yields - Applying Lemma- 2.7 and we have

2(k+1)(ﬂ+1) 1/2 / 1/2
il 1)12||0) ‘ 1
H(k%/ww a2 0 PE) |y < Clt DR i (;Z\gu ) Ny @18)
Equation ({3.12)) follows form (3.13), (3.18) and Lemma O

4. Additional results

As applications of our main results, we consider the corresponding parametric Marcinkiewicz integral
operators imh 00,0\ and E)ﬁz 0.0.0.9 related to the Littlewood-Paley g)-function and the area integral S,
respectively, which are interesting themselves and are defined by

ML (Do) NG
Wi (] ! »
Foanl oo Grea) T |, s T = e ian] 55)

tP |ly|n—r
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where A > 0 and Riﬂ =R" x RT;

mz,ﬂ,@,w, //
I'(z)

where T'(z) = {(y,t) € RT™ ¢ |z —y| < t}.
Our results can be formulated as follows.

(ly))2(y ) 2dydt\1/2
/y<t |Z;/|n7p flo = (el tijﬂ) ’

Theorem 4.1. Let A > 1 and ®, ¢, Q be as in Theorem . Suppose that h € A (R™T) for some v > 1 and
d = max{2,7'}. Then for 2 <p<2§/(6 —2) we have

196 3 o0 (Dl o@ny < C(A, 0,0, 2, 0) |l Lr @en), (4.1)

19% 0.0.0,5 (Pl e @) < C(n, 0, @, 0)|1 fllo(rn)- (4.2)

The proof of Theorem [4.1] is based on the following lemma.

Lemma 4.2. Let A > 1. Then there exists a constant C(n,\) > 0 such that for any nonnegative locally
integrable function g on R",

| 00 (D) Polalde < C) [ @0 g 0, ()@)PM(g)(e)da, (13)

where M is the usual Hardy-Littlewood maximal operator on R™.

Proof. By the definition of M}, & o We have

/ (imﬁﬂ B0, (f)($))2g(x)dx
o )f<w—<1><so<ry\>>y’>dyQf,?fgum

ni
/Rn //]Rn+1 t—&—’x—y’) tP \y[” p
(ly)2(y")
T — d
L LT L s
t ni d J
s [ Grpy) o $> v
for A > 1. Since,
1 t n\
_— d
s / <t+lw—y|) glo)ds

<sup )@+ Y ) (wa
sup(/ < ) glr)ax + / < ) glx a:)
t>0 " |lx—y|<t t+ ‘IL’ - y‘ =1 2i—1t<|z—y| <29t t+ ‘{L‘ - y‘

1 =
< sup — / g(z)dr + g (23_1)_")‘/ g(z)dx
>0 t”< lz—y|<t = |z —y|<2it )

1
<Cn)M —1—2"/\ 2 A= 1)Jsup / g(x)dx
WM(9)() Zl W i |9

(4.4)

< C(n, A)M(9)(y),
which together with (4.4) yields (4.3]). O
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Proof of Theorems 4.1. First we prove (4.1). For 2 < p < 26/(6 — 2), by the duality we have

1966 o n (DIl 7p@ny = sup (MY o () () g(2)d,
llgll La@ny<1 JR™

where ¢ = (p/2)" and the supremum is taken over all g satisfying ||g||farny < 1. By the LP bounds for M,
Holder’s inequality, Lemma and Theorem we get

195 0 n () Eoey < Cn N sup [ (O g (F)(@))2M(g) (x)da
llgllLa@mny<1JR™

< C(”? )‘)”Dﬁh,Q,@,g(f)H%P(Rn)

Thus (4.1) holds. On the other hand, one can easily check that

EmZ,Q,@,@,s(f) (x) < 2n)\/29ﬁ€[,?2,q>,¢,x(f) ().

Combining this with yields and completes the proof of Theorem O

Finally, we give some further comments about our results. The exponent 1/2 in L(logt L)Y/2(S"~1) of
Theorem u can’t be replaced by any smaller number (see [4, [21]). The exponent 1/2 in 350’71/2)(5"_1) of
Corollary can’t be replaced by any larger number which is restricted in (1/2,1) (see [1]). We also note
that our main results are new even in the special case: ¢(t) =t and h(t) = p = 1.
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