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Abstract

We consider the boundedness of a kind of nonlinear integral operators on Lp spaces. Including the
parametric Marcinkiewicz integrals with rough kernels along compound curves {Φ(ϕ(|y|))y′; y ∈ Rn} with
Φ satisfying certain growth conditions and ϕ being differentiable function with monotonicity and some
properties on the positive real line, we investigate the Lp bounds of these operators under the integral
kernels given by the sphere functions Ω in H1(Sn−1) or Ω in L(log+ L)1/2(Sn−1) and the radial function
h ∈ ∆γ(R+). As applications, the corresponding results for parametric Marcinkiewicz integral operators
related to area integrals and Littlewood-Paley g∗λ-functions are presented. c©2016 All rights reserved.
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1. Introduction

As is well known, Marcinkiewicz integral operators, a kind of nonlinear integral operators, belong to broad
class of Littlewood-Paley g-function and Lp bounds regarding them are useful in the study of smoothness
properties of functions and behavior of integral transformations, such as Poisson integrals, Singular integrals
and, more generally, Singular Radon transforms. In this paper we focus on the Lp mapping properties for
a class of parametric Marcinkewicz integral operators with rough kernels along certain compound curves.
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Let Rn (n ≥ 2) be the n-dimensional Euclidean space and Sn−1 denote the unit sphere in Rn equipped
with the induced Lebesgue measure dσ. For any nonzero y ∈ Rn, we shall let y′ = y/|y|. Let Ω ∈ L1(Sn−1)
and satisfy ∫

Sn−1

Ω(u)dσ(u) = 0. (1.1)

Suppose that Φ(t) is a real-valued C2 function on R+ := (0,∞) satisfying

|Φ(t)| ≤ C1|t|d, |Φ′′(t)| ≤ C2|t|d−2, (1.2)

C3|t|d−1 ≤ |Φ′(t)| ≤ C4|t|d−1 (1.3)

for some d 6= 0 and t ∈ R+, where C1, C2, C3, C4 are positive constants independent of t.
For a complex number ρ = σ+ iτ(σ, τ ∈ R with σ > 0) and a suitable function ϕ : R+ → R, we consider

the parametric Marcinkiewicz integral operator Mρ
h,Ω,Φ,ϕ along the compound curves {Φ(ϕ(|y|))y′; y ∈ Rn}

defined by

Mρ
h,Ω,Φ,ϕ(f)(x) =

(∫ ∞
0

∣∣∣ 1

tρ

∫
|y|≤t

h(|y|)Ω(y′)

|y|n−ρ
f(x− Φ(ϕ(|y|))y′)dy

∣∣∣2dt
t

)1/2
, (1.4)

where h ∈ ∆1(R+). Here ∆γ(R+) (γ ≥ 1) denotes the set of all measurable functions h defined on R+

satisfying

‖h‖∆γ(R+) := sup
R>0

(
R−1

∫ R

0
|h(t)|γdt

)1/γ
<∞.

Clearly, L∞(R+) = ∆∞(R+) ( ∆γ2(R+) ( ∆γ1(R+) for 1 ≤ γ1 < γ2 <∞.
For the sake of simplicity, we denote Mρ

h,Ω,Φ,ϕ = Mρ
h,Ω if Φ(t) = ϕ(t) = t and Mρ

h,Ω = Mρ
Ω if h(t) ≡ 1.

When ρ ≡ 1, the operator Mρ
Ω reduces to the classical Marcinkiewicz integral operator denoted by MΩ,

which was introduced by Stein [20] and investigated by many authors (see [4, 6, 9, 18, 20–23] for examples).
In particular, Ding et al. [9] (resp., Al-Salman et al. [4]) showed that MΩ was bounded on Lp(Rn) for
1 < p < ∞ provided that Ω ∈ H1(Sn−1) (resp., Ω ∈ L(log+ L)1/2(Sn−1)). Recently, it follows from [18,
Remark 1.2] that,

Theorem 1.1 ([18]). Let ϕ(t) = t, h(t) = ρ = 1 and Φ satisfy (1.2)-(1.3). Suppose that Ω ∈ Fβ(Sn−1) for
some β > 1/2 with satisfying (1.1). Then Mρ

h,Ω,Φ,ϕ is bounded on Lp(Rn) for 1 + 1/(2β) < p < 1 + 2β.

Here, Fβ(Sn−1) is the set of all functions Ω ∈ L1(Sn−1) satisfying

sup
ξ∈Sn−1

∫
Sn−1

|Ω(y′)|
(

log
1

|ξ · y′|

)β
dσ(y′) <∞.

It should be pointed out that the function class Fβ(Sn−1) was introduced by Grafakos and Stefanov
[16] in the study of Lp bounds for singular integral operator with rough kernels. Note that the following
relationships are valid:⋃

q>1

Lq(Sn−1) (
⋂
β>0

Fβ(Sn−1); (1.5)

⋂
β>1

Fβ(Sn−1) * H1(Sn−1) *
⋃
β>1

Fβ(Sn−1); (1.6)

⋂
β>1

Fβ(Sn−1) * L log+ L(Sn−1); (1.7)

L(log+ L)β(Sn−1) ( L(log+ L)α(Sn−1) if 0 < α < β; (1.8)

L(log+ L)α(Sn−1) ( H1(Sn−1) ( L1(Sn−1) if α ≥ 1; (1.9)

L(log+ L)α(Sn−1) * H1(Sn−1) * L(log+ L)α(Sn−1) if 0 < α < 1. (1.10)
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The parametric Marcinkiewicz integral operator Mρ
Ω has been extensively studied (see [3, 13, 17, 19] et

al.). Later on, the investigation of the parametric Marcinkiewicz integral operators with rough kernels on
the unit sphere as well as on the radial direction have also received a large amount of attention of many
authors (see [5, 9–12] et al.). In particular, Ding et al. [9] proved that Mρ

h,Ω is of type (p, p) for 1 < p <∞
if ρ = 1, Ω ∈ H1(Sn−1) and h ∈ L∞(R+). Subsequently, Ding et al. [10] extended the result of [9] to the
Marcinkiewicz integrals along polynomial mappings. Recently, Ding et al. [12] obtained the following result.

Theorem 1.2. Let Φ(t) = t, ρ > 0 and ϕ satisfy one of the following conditions:

(i) φ : R+ → R+ is a increasing C1 function such that tφ′(t) ≥ Cφφ(t) and φ(2t) ≤ cφφ(t) for all t > 0,
where Cφ and cφ are independent of t.

(ii) φ : R+ → R+ is a decreasing C1 function such that tφ′(t) ≤ −Cφφ(t) and φ(t) ≤ cφφ(2t) for all t > 0,
where Cφ and cφ are independent of t.

Suppose that Ω ∈ H1(Sn−1) ∪ L(log+ L)1/2(Sn−1) satisfying (1.1) and h ∈ ∆γ(R+) for some γ > 1.
Then Mρ

h,Ω,Φ,ϕ is bounded on Lp(Rn) for p satisfying |1/p− 1/2| < min{1/2, 1/γ′}.

For convenience, we denote by F1 (or F2) the set of all functions which satisfy the condition (i) (or (ii))
of Theorem 1.2.

Remark 1.3. There are some model examples in the class F1, such as tα (α > 0), tα(ln(1 + t))β (α, β >
0), t ln ln(e+ t), real-valued polynomials P on R with positive coefficients and P (0) = 0 and so on. We now
give examples in the class F2 such as tδ (δ < 0) and t−1 ln(1 + t−1). Note that for any ϕ belonging to F1

(or F2), there exists a constant Bϕ > 1 such that ϕ(2t) ≥ Bϕϕ(t) (or ϕ(t) ≥ Bϕϕ(2t)) for any t > 0 (see
[2, 12]).

On the other hand, Fan and Pan [14] proved that the singular integral operator Th,Ω,Φ defined by

Th,Ω,Φ(f)(x) := p.v.

∫
Rn
f(x− Φ(|y|)y′)h(|y|)Ω(y′)

|y|n
dy

is bounded on Lp(Rn) for |1/p − 1/2| < min{1/2, 1/γ′}, provided that Φ satisfies (1.2)-(1.3), h ∈ ∆γ(R+)
for some γ > 1 and Ω ∈ H1(Sn−1) with satisfying (1.1).

A question that arises naturally is whether the condition Ω ∈ H1(Sn−1) is also sufficient for the Lp

boundedness of Mρ
h,Ω,Φ,ϕ with Φ being as in Theorem 1.1 and ϕ being as in Theorem 1.2. Our following

results greatly generalize Theorem 1.2 and extend the result of [4] (resp.,[1]), even in the special case:
Φ(t) = ϕ(t) = t and ρ = 1.

Theorem 1.4. Let ϕ ∈ F1 or F2 and Φ satisfy (1.2)-(1.3). Suppose that h ∈ ∆γ(R+) for some γ > 1 and
Ω ∈ H1(Sn−1) ∪ L(log+ L)1/2(Sn−1) satisfying (1.1). Then Mρ

h,Ω,Φ,ϕ is bounded on Lp(Rn) for p satisfying
|1/p− 1/2| < min{1/2, 1/γ′}. The bounds depend on ϕ.

In 2006, Ye and Zhu [24] investigated the properties of certain block spaces B
(0,v)
q (Sn−1) and proved the

following
B(0,v)
q (Sn−1) ⊂ H1(Sn−1) + L(log+ L)1+v(Sn−1), ∀ q > 1 and v > −1. (1.11)

Applying (1.11) and the conclusion of Theorem 1.4, we get immediately the following,

Corollary 1.5. Let Φ, ϕ be as in Theorem 1.4. Suppose that h ∈ ∆γ(R+) for some γ > 1 and Ω ∈⋃
q>1B

(0,−1/2)
q (Sn−1) satisfying (1.1). Then Mρ

h,Ω,Φ,ϕ is bounded on Lp(Rn) for p satisfying |1/p − 1/2| <
min{1/2, 1/γ′}. The bounds depend on ϕ.

By (1.6)-(1.8) and (1.11), we know that our main results are distinct from the corresponding result in
Theorem 1.1, even in the special case: ϕ(t) = t and h(t) = ρ = 1.
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The rest of the paper is organized as follows. After presenting some auxiliary lemmas in Section 2, we
shall prove Theorem 1.4 in Section 3. In Section 4 we consider the Lp bounds of the corresponding parametric
Marcinkiewicz integral operators related to area integrals and Littlewood-Paley g∗λ functions. We remark
that our methods in this paper are very simple and are different from those in [12, 14]. Especially, in [14]
the authors used the TT ∗ methods in estimating some measures. Here, we only use a simple oscillatory
integral (see Lemma 2.5). Throughout the paper, we denote p′ by the conjugate index of p, which satisfies
1/p+ 1/p′ = 1. The letter C or c, sometimes with certain parameters, will stand for positive constants not
necessarily the same one at each occurrence, but are independent of the essential variables.

2. Preliminaries

In this section we shall recall some definitions and present some auxiliary lemmas, which will play the
key roles in our proofs. Let us begin with recalling Hardy space on Sn−1 and its atomic decomposition. The
Hardy space H1(Sn−1) is given by

H1(Sn−1) :=
{

Ω ∈ L1(Sn−1) : ‖Ω‖H1(Sn−1) :=

∫
Sn−1

sup
0≤r<1

∣∣∣ ∫
Sn−1

Ω(θ)Prw(θ)dσ(θ)
∣∣∣dσ(w) <∞

}
,

where Prw(θ) denote the Poisson kernel on Sn−1 defined by

Prw(θ) =
1− r2

|rw − θ|n
, 0 ≤ r < 1 and θ, w ∈ Sn−1.

We now give the definition of atom and atomic decomposition of H1(Sn−1).

Definition 2.1 ([7]). A function a(·) on Sn−1 is a regular atom if there exist ξ′ ∈ Sn−1 and % ∈ (0, 2] such
that

supp(a) ⊂ Sn−1 ∩B(ξ′, %), where B(ξ′, %) = {y ∈ Rn : |y − ξ′| < %}; (2.1)

‖a‖∞ ≤ %−n+1; (2.2)∫
Sn−1

a(y)dσ(y) = 0. (2.3)

Lemma 2.2 ([7, 8]). If Ω ∈ H1(Sn−1) and satisfies (1.1), then there exist {cj} ⊂ C and H1 regular atoms
{Ωj} such that

Ω =
∑
j

cjΩj ,

where
∑
j
|cj | ≈ ‖Ω‖H1(Sn−1).

The following Lemmas can be found in [14].

Lemma 2.3 ([14]). Suppose that n ≥ 3 and b(·) satisfies (2.1)-(2.3). Let

Fb(s) = (1− s2)(n−3)/2χ(−1,1)(s)

∫
Sn−2

b(s, (1− s2)1/2ỹ)dσ(ỹ),

and

Gb(s) = (1− s2)(n−3)/2χ(−1,1)(s)

∫
Sn−2

|b(s, (1− s2)1/2ỹ)|dσ(ỹ).

Then there exists a constant C, independent of b, such that

supp(Fb) ⊂ (ξ′1 − 2r(ξ′), ξ′1 + 2r(ξ′)); (2.4)
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supp(Gb) ⊂ (ξ′1 − 2r(ξ′), ξ′1 + 2r(ξ′)); (2.5)

‖Fb‖∞ ≤ C/r(ξ′); ‖Gb‖∞ ≤ C/r(ξ′); (2.6)∫
R
Fb(s)ds = 0, (2.7)

where ξ = (ξ1, . . . , ξn), ξ′ = ξ
|ξ| = (ξ′1, . . . , ξ

′
n), r(ξ′) =

|L%(ξ)|
|ξ| and L%(ξ) = (%2ξ1, %ξ2, . . . , %ξn).

Lemma 2.4 ([14]). Suppose that n = 2 and b(·) satisfies (2.1)-(2.3). Let

Fb(s) = (1− s2)−1/2χ(−1,1)(s)(b(s, (1− s2)1/2) + b(s,−(1− s2)1/2)),

Gb(s) = (1− s2)−1/2χ(−1,1)(s)(|b(s, (1− s2)1/2)|+ |b(s,−(1− s2)1/2)|).

Then Fb(·) satisfies (2.4), (2.7) and
‖Fb‖q ≤ C|L%(ξ)|−1+1/q,

and Gb(·) satisfies (2.5) and
‖Gb‖q ≤ C|L%(ξ)|−1+1/q

for some 1 < q < 2, where ξ = (ξ1, ξ2) and L%(ξ) = (%2ξ1, %ξ2).

Lemma 2.5. Let r > 0, λ 6= 0 and Φ satisfy (1.2)-(1.3). Then∣∣∣ ∫ ϕ(r)

ϕ(r/2)
e−iλΦ(t)dt

t

∣∣∣ ≤ C|λϕ(r)d|−1, if ϕ ∈ F1;

∣∣∣ ∫ ϕ(r/2)

ϕ(r)
e−iλΦ(t)dt

t

∣∣∣ ≤ C|λϕ(r)d|−1, if ϕ ∈ F2.

The constant C > 0 is independent of r, λ, but depends on ϕ.

Proof. We only prove the first inequality and the other case is analogous. By Remark 1.3, there exists
Bϕ > 1 such that Bϕϕ(r/2) ≤ ϕ(r) ≤ cϕϕ(r/2). By integration by parts and the properties of Φ,∣∣∣ ∫ ϕ(r)

ϕ(r/2)
e−iλΦ(t)dt

t

∣∣∣ =
∣∣∣ ∫ ϕ(r)

ϕ(r/2)
(−iλΦ′(t)t)−1de−iλΦ(t)

∣∣∣
≤ C|λϕ(r)d|−1 +

∫ ϕ(r)

ϕ(r/2)

∣∣∣ d
dt

( 1

λΦ′(t)t

)∣∣∣dt
≤ C|λϕ(r)d|−1 + C|λ|−1

∫ ϕ(r)

ϕ(r/2)

|Φ′(t) + tΦ′′(t)|
|Φ′(t)t|2

dt

≤ C|λϕ(r)d|−1.

Lemma 2.5 is proved.

Lemma 2.6 ([3]). Let Φ(t) satisfy (1.2)-(1.3) and y ∈ Rn. Let MΦ,y be the maximal operator defined on
Rn by

MΦ,y(f)(x) = sup
t∈R

∣∣∣2−t ∫ 2t

0
f(x− Φ(r)y)dr

∣∣∣.
Then

‖MΦ,y(f)‖Lp(Rn) ≤ C‖f‖Lp(Rn)

for all 1 < p <∞, where the constant C > 0 is independent of y ∈ Rn.
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Let h, Ω, ρ be as in (1.4). For two suitable functions Φ : R → R and ϕ : R+ → R, one defines the
sequence of measures {σt,Φ,ϕ}t>0 by∫

Rn
f(x)dσt,Φ,ϕ(x) =

1

tρ

∫
t/2<|y|≤t

f(Φ(ϕ(|y|))y′)h(|y|)Ω(y′)

|y|n−ρ
dy.

Applying Lemma 2.6 we have,

Lemma 2.7. Let v ∈ N\{0}, ϕ ∈ F1 or F2 and Φ satisfy (1.2)-(1.3). Suppose that Ω ∈ L1(Sn−1) and
h ∈ ∆γ(R+) for some γ > 1. Then for |1/p− 1/2| < min{1/2, 1/γ′}, there exists C > 0 such that∥∥∥(∑

k∈Z

∫ 2(k+1)v

2kv
|σt,Φ,ϕ ∗ gk|2

dt

t

)1/2∥∥∥
Lp(Rn)

≤ Cv1/2‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|2

)1/2∥∥∥
Lp(Rn)

, (2.8)

where the constant C is independent of µ, Ω, h, but depends on ϕ.

Proof. We shall use the method in the proof of [15, Theorem 7.5]. We only prove the case ϕ ∈ F1 and the
other case is analogous. Since

∆γ(R+) ⊂ ∆2(R+)

for γ ≥ 2, we only prove (2.8) for the case 1 < γ ≤ 2 and |1/p − 1/2| < 1/γ′. By the duality, it suffices to
prove this lemma for

2 < p < 2γ/(2− γ).

Let
γ̃ = γ/(2− γ), q = (p/2)′

and
{gk}k∈Z ∈ Lp(Rn, `2).

Then there exists a nonnegative function f ∈ Lq(Rn) with unit norm such that∥∥∥(∑
k∈Z

∫ 2(k+1)v

2kv
|σt,Φ,ϕ ∗ gk|2

dt

t

)1/2∥∥∥2

Lp(Rn)
=

∫
Rn

∑
k∈Z

∫ 2(k+1)v

2kv
|σt,Φ,ϕ ∗ gk(x)|2dt

t
f(x)dx. (2.9)

By a change of variable and Hölder’s inequality,

|σt,Φ,ϕ ∗ gk(x)|2 =
∣∣∣ ∫ t

t/2

∫
Sn−1

|gk(x− Φ(ϕ(r))y′)||Ω(y′)|dσ(y′)|h(r)|dr
r

∣∣∣2
≤ ‖Ω‖L1(Sn−1)

∣∣∣ ∫ t

t/2

(∫
Sn−1

|gk(x− Φ(ϕ(r))y′)|2|Ω(y′)|dσ(y′)
)1/2
|h(r)|dr

r

∣∣∣2
≤ C‖Ω‖L1(Sn−1)

∫ t

t/2

∫
Sn−1

|gk(x− Φ(ϕ(r))y′)|2|Ω(y′)|dσ(y′)|h(r)|2−γ dr
r
.

It follows that∫
Rn

∫ 2(k+1)v

2kv
|σt,Φ,ϕ ∗ gk(x)|2dt

t
f(x)dx

≤ C‖Ω‖L1(Sn−1)

v−1∑
i=0

∫
Rn

∫ 2kv+i+1

2kv+i−1

∫
Sn−1

|gk(x− Φ(ϕ(r))y′)|2|Ω(y′)|dσ(y′)|h(r)|2−γ dr
r
f(x)dx

≤ C‖Ω‖L1(Sn−1)

v−1∑
i=0

∫
Rn
Mi(f)(x)|gk(x)|2dx,

(2.10)
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where

Mi(f)(x) =

∫
Sn−1

sup
k∈Z

∫ 2kv+i+1

2kv+i−1

|f(x+ Φ(ϕ(r))y′)||h(r)|2−γ dr
r
|Ω(y′)|dσ(y′).

Note that ‖|h|2−γ‖∆γ/(2−γ)(R+) ≤ ‖h‖
2−γ
∆γ(R+)

. MΦ,y′ is defined as in Lemma 2.6 and f̃(x) = f(−x). By

Hölder’s inequality, we conclude that

sup
k∈Z

∫ 2kv+i+1

2kv+i−1

|f(x+ Φ(ϕ(r))y′)||h(r)|2−γ dr
r

≤ C‖h‖2−γ
∆γ(R+)

(
sup
k∈Z

∫ 2kv+i+1

2kv+i−1

|f(x+ Φ(ϕ(r))y′)|(γ̃)′ dr

r

)1/(γ̃)′

≤ C
(

sup
k∈Z

∫ ϕ(2kv+i+1)

ϕ(2kv+i−1)
|f(x+ Φ(r)y′)|(γ̃)′ dr

ϕ−1(r)ϕ′(ϕ−1(r))

)1/(γ̃)′

≤ C(ϕ)
(

sup
k∈Z

∫ ϕ(2kv+i+1)

ϕ(2kv+i−1)
|f(x+ Φ(r)y′)|(γ̃)′ dr

r

)1/(γ̃)′

≤ C(ϕ)

[2 log
cϕ
2 ]+1∑

j=0

(
sup
k∈Z

∫ 2j+1ϕ(2kv+i−1)

2jϕ(2kv+i−1)
|f(x+ Φ(r)y′))|(γ̃)′ dr

r

)1/(γ̃)′

≤ C(ϕ)

[2 log
cϕ
2 ]+1∑

j=0

(
MΦ,y′(|f̃ |(γ̃)′)(x)

)1/(γ̃)′
.

(2.11)

Since q = (p/2)′ > (γ̃)′, by (2.10), Minkowski’s inequality and Lemma 2.9 we have

‖Mi(f)‖Lq(Rn) ≤ C(ϕ)‖Ω‖L1(Sn−1)‖f‖Lq(Rn) ≤ C(ϕ)‖Ω‖L1(Sn−1), (2.12)

where C(ϕ) > 0 is independent of Ω, h, i, µ. It follows from (2.9)-(2.10), (2.12) and Hölder’s inequality that
(2.8) holds 2 < p < 2γ/(2− γ). This completes the proof.

Lemma 2.8. Let v, N ∈ N\{0} and {σt : t > 0} be a family of measures on Rn. Let δ, β > 0, γ 6= 0 and
L : Rn → RN be a linear transformation. Assume that ϕ is a monotonous function satisfying one of the
following conditions:

(a) sup
r>0

ϕ(2r)/ϕ(r) ≥ Dϕ > 1;

(b) sup
r>0

ϕ(r)/ϕ(2r) ≥ Dϕ > 1.

Suppose that there exists C, A > 0 such that

(i) |σ̂t(ξ)| ≤ CAmin{1, |ϕ(t)γL(ξ)|−δ/v, |ϕ(t)γL(ξ)|β/v} for ξ ∈ Rn and t > 0;

(ii) there exist p0 > 1 and C > 0 which are independent of v, A such that∥∥∥(∑
k∈Z

∫ 2(k+1)v

2kv
|σt ∗ gk|2

dt

t

)1/2∥∥∥
Lp0 (Rn)

≤ CAv1/2
∥∥∥(∑

k∈Z
|gk|2

)1/2∥∥∥
Lp0 (Rn)

.

Then for any p ∈ [min{p0, 2},max{p0, 2}], there exist C > 0 which is independent of v, A such that∥∥∥(∫ ∞
0
|σt ∗ f |2

dt

t

)1/2∥∥∥
Lp(Rn)

≤ CAv1/2‖f‖Lp(Rn). (2.13)

Specially, p = 2 if p0 = 2.
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Proof. We only prove (2.13) for the case ϕ satisfying the condition (a), the other case can be obtained
similarly. Let λ = rank(L). By [15, Lemma 6.1], there exist two nonsingular linear transformations R :
Rλ → Rλ and Q : Rn → Rn such that

|RπnλQ(ξ)| ≤ |L(ξ)| ≤ N |RπnλQ(ξ)|, (2.14)

where πnλ is a projection operator from Rn to Rλ. We take a sequence of nonnegative functions {Ψk}k∈Z in
C∞0 (R) such that

supp(Ψk) ⊂ [ϕ(2(k+1)v)−γ , ϕ(2(k−1)v)−γ ],
∑
k∈Z

Ψk(t) = 1,

∣∣∣ dj
dtj

(Ψk(t))
∣∣∣ ≤ Cj |t|−j (j = 1, 2, . . .) for all t > 0 and j ∈ N,

where Cj are independent of k, t. Define the Fourier multiplier operator Sk by

Ŝkf(ξ) = f̂(ξ)Ψk(|RπnλQ(ξ)|). (2.15)

We can write
σt ∗ f(x) =

∑
k∈Z

σt ∗ f(x)χ[2kv ,2(k+1)v)(t)

=
∑
k∈Z

σt ∗
∑
j∈Z

Sj+kf(x)χ[2kv ,2(k+1)v)(t)

=
∑
j∈Z

∑
k∈Z

σt ∗ Sj+kf(x)χ[2kv ,2(k+1)v)(t)

:=
∑
j∈Z

Hj(f)(x, t).

(2.16)

Thus by (2.16) and Minkowski’s inequality we have(∫ ∞
0
|σt ∗ f(x)|2dt

t

)1/2
≤
∑
j∈Z

(∫ ∞
0
|Hj(f)(x, t)|2dt

t

)1/2
:=
∑
j∈Z

Uj(f)(x). (2.17)

Below we only consider the case γ > 0, the case γ < 0 can be obtained similarly. By (2.14), Plancherel’s
theorem and our assumption (i) we have

‖Uj(f)‖2L2(Rn) =

∫
Rn

∫ ∞
0
|Hj(f)(x, t)|2dt

t
dx

=

∫
Rn

∫ ∞
0

∣∣∣∑
k∈Z

σt ∗ Sj+kf(x)χ[2kv ,2(k+1)v)(t)
∣∣∣2dt
t
dx

≤
∫
Rn

∑
k∈Z

∫ 2(k+1)v

2kv
|σ̂t(x)Ψk+j(|RπnλQ(x)|)f̂(x)|2dt

t
dx

≤ C
∑
k∈Z

∫
ϕ(2(k+j+1)v)−γ≤|RπnλQ(x)|≤ϕ(2(k+j−1)v)−γ

∫ 2(k+1)v

2kv
|σ̂t(x)|2dt

t
|f̂(x)|2dx

≤ CA2vB2
j ‖f‖2L2(Rn),

where
Bj = D(2−j)βγ

ϕ χj≥2(j) + χ−1<j<2(j) +D(j+1)δγ
ϕ χj≤−1(j).

Thus we have
‖Uj(f)‖L2(Rn) ≤ CAv1/2Bj‖f‖L2(Rn). (2.18)
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On the other hand, we get from our assumption (ii) and Littlewood-Paley theory that

‖Uj(f)‖Lp0 (Rn) ≤ CAv1/2‖f‖Lp0 (Rn). (2.19)

Then by interpolation between (2.18) and (2.19), for any p ∈ [min{p0, 2},max{p0, 2}], there exists a constant
θp ∈ (0, 1] such that

‖Uj(f)‖Lp(Rn) ≤ CAv1/2B
θp
j ‖f‖Lp(Rn).

Combining this inequality with (2.17) and Minkowski’s inequality yields (2.13) and completes the proof.

3. Proof of Theorem 1.4

In this section we aim to prove Theorem 1.4. We only consider the case ϕ ∈ F1 and the other case is
analogous. By Remark 1.3, there exists a constant Bϕ > 1 such that

Bϕϕ(r/2) ≤ ϕ(r) ≤ cϕϕ(r/2).

Case 3.1. Ω ∈ H1(Sn−1). By Lemma 2.2, to prove Theorem 1.4 for Ω ∈ H1(Sn−1), it suffices to prove
Theorem 1.4 for Ω being H1 regular atom satisfying (2.1)-(2.3). Without loss of generality we may assume
that

supp(Ω) ⊂ B(1, %)
⋂
Sn−1,

where 1 = (1, 0, . . . , 0) ∈ Sn−1. We shall prove the case n ≥ 3, since the proof for n = 2 is essentially the
same (using Lemma 2.4 instead of Lemma 2.3). By Minkowski’s inequality, we can write

Mρ
h,Ω,Φ,ϕ(f)(x) =

(∫ ∞
0

∣∣∣ −1∑
k=−∞

1

tρ

∫
2kt<|y|≤2k+1t

f(x− Φ(ϕ(|y|))y′)h(|y|)Ω(y)

|y|n−ρ
dy
∣∣∣2dt
t

)1/2

≤
−1∑

k=−∞

(∫ ∞
0

∣∣∣ 1

tρ

∫
2kt<|y|≤2k+1t

f(x− Φ(ϕ(|y|))y′)h(|y|)Ω(y)

|y|n−ρ
dy
∣∣∣2dt
t

)1/2

≤ (1− 2−σ)−1
(∫ ∞

0
|σt ∗ f(x)|2dt

t

)1/2
,

(3.1)

where σt is defined by ∫
Rn
f(x)dσt(x) =

1

tρ

∫
t/2<|y|≤t

f(Φ(ϕ(|y|))y′)h(|y|)Ω(y′)

|y|n−ρ
dy.

For ξ 6= 0, we choose a rotation O such that

O(ξ) = |ξ|1.

Let O−1 be the inverse of O. By the change of variables, it is easy to check that

σ̂t(ξ) =
1

tρ

∫ t

t/2

∫
Sn−1

Ω(O−1(y′))e−2πiΦ(ϕ(r))|ξ|1·y′dσ(y′)h(r)
dr

r1−ρ .

For simplicity in our argument, we set b(y′) = Ω(O−1(y′). Note that b(·) is H1 regular atom with satisfying
(2.1)-(2.3). By a change of variable we have

σ̂t(ξ) =
1

tρ

∫ t

t/2

∫
R
Fb(s)e

−2πiΦ(ϕ(r))|ξ|sdsh(r)
dr

r1−ρ ,

where Fb(·) is the function defined in Lemma 2.3. Let

A(s) = r(ξ′)Fb(r(ξ
′)(s+ ξ′1/r(ξ

′)).

By Lemma 2.3, we know that supp(A) ⊂ (−2, 2), ‖A‖∞ < C (C is independent of s and %) and
∫
RA(s)ds = 0.
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After changing variables we have

σ̂t(ξ) =
1

tρ

∫ t

t/2

∫
R
A(s)e−2πiΦ(ϕ(r))|L%(ξ)|sdsh(r)e−2πiΦ(ϕ(r))ξ1 dr

r1−ρ , (3.2)

where L%(ξ) is as in Lemma 2.3. By a change of variable, Hölder’s inequality and Lemma 2.5,

|σ̂t(ξ)| ≤ C‖h‖∆γ(R+)

(∫ t

t/2

∣∣∣ ∫
R
A(s)e−2πiΦ(ϕ(r))|L%(ξ)|sds

∣∣∣γ′ dr
r

)1/γ′

≤ C
(∫ ϕ(t)

ϕ(t/2)

∣∣∣ ∫
R
A(s)e−2πiΦ(r)|L%(ξ)|sds

∣∣∣2 dr

ϕ−1(r)ϕ′(ϕ−1(r))

)1/max{2,γ′}

≤ C(ϕ)
(∫ ϕ(t)

ϕ(t/2)

∣∣∣ ∫
R
A(s)e−2πiΦ(r)|L%(ξ)|sds

∣∣∣2dr
r

)1/max{2,γ′}

≤ C(ϕ)
(∫ ϕ(t)

ϕ(t/2)

∫∫
R×R

A(s)A(u)e−2πiΦ(r)|L%(ξ)|(s−u)dsdu
dr

r

)1/(2γ′)

≤ C(ϕ)
(∫∫

R×R
|A(s)A(u)|

∣∣∣ ∫ ϕ(t)

ϕ(t/2)
e−2πiΦ(r)|L%(ξ)|(s−u)dr

r

∣∣∣dsdu)1/(2γ′)

≤ C(ϕ)
(∫ 2

−2

∫ 2

−2
min{1, (|ϕ(t)dL%(ξ)||s− u|)−1}dsdu

)1/(2γ′)

≤ C(ϕ)|ϕ(t)dL%(ξ)|−1/(4γ′)
(∫ 2

−2

∫ 2

−2
|s− u|−1/2dsdu

)−1/(2γ′)

≤ C(ϕ)|ϕ(t)dL%(ξ)|−1/(4γ′).

(3.3)

The last inequality follows from the inequality(∫ 2

−2

∫ 2

−2
|s− u|−1/2dsdu

)−1/(2γ′)
≤ C.

On the other hand, by (1.2), (3.2) and the properties of A(·) we have

|σ̂t(ξ)| =
∣∣∣ 1

tρ

∫ t

t/2

∫
R
A(s)(e−2πiΦ(ϕ(r))|L%(ξ)|s − 1)dsh(r)e−2πiΦ(r)ξ1 dr

r1−ρ

∣∣∣
≤ C

∫ t

t/2

∫
R
|A(s)|min{1, |Φ(ϕ(r))|L%(ξ)|s|}ds|h(r)|dr

r

≤ C min{1, |ϕ(t)dL%(ξ)|, |ϕ(t/2)dL%(ξ)|}
≤ C min{1, |ϕ(t)dL%(ξ)|}.

(3.4)

Moreover, it follows from Lemma 2.7 that∥∥∥(∑
k∈Z

∫ 2(k+1)

2k
|σt ∗ gk|2

dt

t

)1/2∥∥∥
Lp(Rn)

≤ C‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|2

)1/2∥∥∥
Lp(Rn)

(3.5)

holds for |1/p − 1/2| < min{1/2, 1/γ′}. Taking L(ξ) = L%(ξ) and v = 1, by (3.1), (3.3)-(3.5) and Lemma
2.8, we can get Theorem 1.4 for Ω being H1 regular atom satisfying (2.1)-(2.3). This completes the proof
of Theorem 1.4 for Ω ∈ H1(Sn−1).
Case 3.2. Ω ∈ L(log+ L)1/2(Sn−1). Let Ω ∈ L(log+ L)1/2(Sn−1) and satisfy (1.1). Employing the
notation in [5], let Eµ = {y′ ∈ Sn−1 : 2µ < |Ω(y′)| ≤ 2µ+1} for µ ∈ Z and E0 = {y′ ∈ Sn−1 : |Ω(y′)| < 2}.
Set ΛΩ = {µ ∈ N : σ(Eµ) > 2−4µ} and for µ ≥ 1,

Ωµ(y′) = Ω(y′)χEµ(y′)− σ(Sn−1)−1

∫
Eµ

Ω(y′)dσ(y′),
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and Ω0(y′) = Ω(y′)−
∑

µ∈ΛΩ
Ωµ(y′). It is easy to check that∫

Sn−1

Ωµ(y′)dσ(y′) = 0, for µ ∈ Λµ ∪ {0}; (3.6)

‖Ω0‖L1(Sn−1) ≤ C, ‖Ωµ‖L1(Sn−1) ≤ C‖Ω‖L1(Eµ), for µ ∈ ΛΩ; (3.7)

‖Ω0‖L2(Sn−1) ≤ C, ‖Ωµ‖L2(Sn−1) ≤ C22µ‖Ω‖L1(Eµ), for µ ∈ ΛΩ; (3.8)

Ω(y′) =
∑

µ∈ΛΩ∪{0}

Ωµ(y′); (3.9)

∑
µ∈ΛΩ∪{0}

(µ+ 1)1/2‖Ω‖L1(Eµ) ≤ C‖Ω‖L(log+ L)1/2(Sn−1). (3.10)

By Minkowski’s inequality and (3.9), we have

Mρ
h,Ω,Φ,ϕ(f)(x)

≤
∑

µ∈ΛΩ∪{0}

Mρ
h,Ωµ,Φ,ϕ

(f)(x)

=
∑

µ∈ΛΩ∪{0}

(∫ ∞
0

∣∣∣ −1∑
k=−∞

1

tρ

∫
2kt<|y|≤2k+1t

f(x− Φ(ϕ(|y|))y′)Ωµ(y′)h(|y|)
|y|n−ρ

dy
∣∣∣2dt
t

)1/2

≤
∑

µ∈ΛΩ∪{0}

−1∑
k=−∞

(∫ ∞
0

∣∣∣ 1

tρ

∫
2kt<|y|≤2k+1t

f(x− Φ(ϕ(|y|))y′)Ωµ(y′)h(|y|)
|y|n−ρ

dy
∣∣∣2dt
t

)1/2

≤ (1− 2−σ)−1
∑

µ∈ΛΩ∪{0}

(∫ ∞
0
|τµ,t ∗ f(x)|2dt

t

)1/2
,

(3.11)

where τµ,t is defined by∫
Rn
f(x)dτµ,t(x) =

1

tρ

∫
t/2<|y|≤t

f(Φ(ϕ(|y|))y′)h(|y|)Ωµ(y′)

|y|n−ρ
dy.

By (3.10)-(3.11) and Minkowski’s inequality, to prove Theorem 1.4 for Ω ∈ L(log+ L)1/2(Sn−1), it suffices
to show that ∥∥∥(∫ ∞

0
|τµ,t ∗ f |2

dt

t

)1/2∥∥∥
Lp(Rn)

≤ C(µ+ 1)1/2‖Ω‖L1(Eµ)‖f‖Lp(Rn) (3.12)

for |1/p− 1/2| < min{1/2, 1/γ′} and µ ∈ ΛΩ ∪ {0}. Here the constant C > 0 is independent of Ωµ, µ.
We first estimate the following

|τ̂µ,t(ξ)| ≤ C‖Ω‖L1(Eµ) min
{

1, |ϕ(t)dξ|1/(1+µ), |ϕ(t)dξ|−1/(8γ′(µ+1))
}
. (3.13)

The constant C > 0 is independent of µ, Ωµ. By a change of variable and Hölder’s inequality,

|τ̂µ,t(ξ)| =
∣∣∣ 1

tρ

∫ t

t/2

∫
Sn−1

e−2πiΦ(ϕ(r))y′·ξΩµ(y′)dσ(y′)h(r)
dr

r1−ρ

∣∣∣
≤ C

∫ t

t/2

∣∣∣ ∫
Sn−1

e−2πiΦ(ϕ(r))y′·ξΩµ(y′)dσ(y′)
∣∣∣|h(r)|dr

r

≤ C‖h‖∆γ(R+)

(∫ t

t/2

∣∣∣ ∫
Sn−1

e−2πiΦ(ϕ(r))y′·ξΩµ(y′)dσ(y′)
∣∣∣γ′ dr

r

)1/γ′

≤ C‖Ωµ‖max{1−2/γ′,0}
L1(Sn−1)

(∫ t

t/2

∣∣∣ ∫
Sn−1

e−2πiΦ(ϕ(r))y′·ξΩµ(y′)dσ(y′)
∣∣∣2dr
r

)1/max{2,γ′}
.

(3.14)
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Invoking Lemma 2.5, by a change of variable, Hölder’s inequality and (3.8) we have∫ t

t/2

∣∣∣ ∫
Sn−1

e−2πiΦ(ϕ(r))y′·ξΩµ(y′)dσ(y′)
∣∣∣2dr
r

=

∫ ϕ(t)

ϕ(t/2)

∣∣∣ ∫
Sn−1

e−2πiΦ(r)y′·ξΩµ(y′)dσ(y′)
∣∣∣2 dr

ϕ−1(r)ϕ′(ϕ−1(r))

≤ C(ϕ)

∫ ϕ(t)

ϕ(t/2)

∣∣∣ ∫
Sn−1

e−2πiΦ(r)y′·ξΩµ(y′)dσ(y′)
∣∣∣2dr
r

= C(ϕ)

∫ ϕ(t)

ϕ(t/2)

∫∫
Sn−1×Sn−1

e−2πiΦ(r)(y′−θ)·ξΩµ(y′)Ωµ(θ)dσ(y′)dσ(θ)
dr

r

≤ C(ϕ)

∫∫
Sn−1×Sn−1

∣∣∣ ∫ ϕ(t)

ϕ(t/2)
e−2πiΦ(r)(y′−θ)·ξ dr

r

∣∣∣|Ωµ(y′)Ωµ(θ)|dσ(y′)dσ(θ)

≤
∫∫

Sn−1×Sn−1

min{1, |ϕ(t)dξ · (y′ − θ)|−1}|Ωµ(y′)Ωµ(θ)|dσ(y′)dσ(θ)

≤ ‖Ωµ‖2L2(Sn−1)

(∫∫
Sn−1×Sn−1

min{1, |ϕ(t)dξ · (y′ − θ)|−2}dσ(y′)dσ(θ)
)1/2

≤ C24µ‖Ω‖2L1(Eµ)|ϕ(t)dξ|−1/4,

(3.15)

where the last inequality follows from∫∫
Sn−1×Sn−1

|ξ′ · (y′ − θ)|−1/2dσ(y′)dσ(θ) <∞.

It follows from (3.7) and (3.14)-(3.15) that

|τ̂µ,t(ξ)| ≤ C24µ/max{2,γ′}‖Ω‖L1(Eµ)|ϕ(t)dξ|−1/max{8,4γ′}. (3.16)

By a change of variable and Hölder’s inequality, we get from (3.6)-(3.7), (1.2) and the fact that Bϕϕ(r/2) ≤
ϕ(r) ≤ cϕϕ(r/2) that

|τ̂µ,t(ξ)| =
∣∣∣ 1

tρ

∫ t

t/2

∫
Sn−1

(e−2πiΦ(ϕ(r))y′·ξ − 1)Ωµ(y′)dσ(y′)h(r)
dr

r1−ρ

∣∣∣
≤ C‖Ωµ‖L1(Sn−1)

∫ t

t/2
min{1, |Φ(ϕ(r))ξ|}|h(r)|dr

r

≤ C‖Ω‖L1(Eµ) min{1, |ϕ(t)dξ|, |ϕ(t/2)dξ|}
≤ C‖Ω‖L1(Eµ) min{1, |ϕ(t)dξ|}.

(3.17)

Combining (3.16) with (3.17) yields (3.13). Applying Lemma 2.7 and (3.7) we have∥∥∥(∑
k∈Z

∫ 2(k+1)(µ+1)

2k(µ+1)

|τµ,t ∗ gk|2
dt

t

)1/2∥∥∥
Lp(Rn)

≤ C(µ+ 1)1/2‖Ω‖L1(Eµ)

∥∥∥(∑
k∈Z
|gk|2

)1/2∥∥∥
Lp(Rn)

. (3.18)

Equation (3.12) follows form (3.13), (3.18) and Lemma 2.8. �

4. Additional results

As applications of our main results, we consider the corresponding parametric Marcinkiewicz integral
operators Mρ,∗

h,Ω,Φ,ϕ,λ and Mρ
h,Ω,Φ,ϕ,S related to the Littlewood-Paley g∗λ-function and the area integral S,

respectively, which are interesting themselves and are defined by

Mρ,∗
h,Ω,Φ,ϕ,λ(f)(x) :=

(∫∫
Rn+1

+

( t

t+ |x− y|

)nλ∣∣∣ 1

tρ

∫
|y|≤t

h(|y|)Ω(y′)

|y|n−ρ
f(x− Φ(ϕ(|y|))y′)dy

∣∣∣2dydt
tn+1

)1/2
,
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where λ > 0 and Rn+1
+ = Rn × R+;

Mρ
h,Ω,Φ,ϕ,S(f)(x) :=

(∫∫
Γ(x)

∣∣∣ 1

tρ

∫
|y|≤t

h(|y|)Ω(y′)

|y|n−ρ
f(x− Φ(ϕ(|y|))y′)dy

∣∣∣2dydt
tn+1

)1/2
,

where Γ(x) = {(y, t) ∈ Rn+1
+ : |x− y| < t}.

Our results can be formulated as follows.

Theorem 4.1. Let λ > 1 and Φ, ϕ, Ω be as in Theorem 1.4. Suppose that h ∈ ∆γ(R+) for some γ > 1 and
δ = max{2, γ′}. Then for 2 ≤ p < 2δ/(δ − 2) we have

‖Mρ,∗
h,Ω,Φ,ϕ,λ(f)‖Lp(Rn) ≤ C(λ, n, ρ,Φ, ϕ)‖f‖Lp(Rn), (4.1)

‖Mρ
h,Ω,Φ,ϕ,S(f)‖Lp(Rn) ≤ C(n, ρ,Φ, ϕ)‖f‖Lp(Rn). (4.2)

The proof of Theorem 4.1 is based on the following lemma.

Lemma 4.2. Let λ > 1. Then there exists a constant C(n, λ) > 0 such that for any nonnegative locally
integrable function g on Rn,∫

Rn
(Mρ,∗

h,Ω,Φ,ϕ,λ(f)(x))2g(x)dx ≤ C(n, λ)

∫
Rn

(Mρ
h,Ω,Φ,ϕ(f)(x))2M(g)(x)dx, (4.3)

where M is the usual Hardy-Littlewood maximal operator on Rn.

Proof. By the definition of Mρ,∗
h,Ω,Φ,ϕ,λ we have∫

Rn
(Mρ,∗

h,Ω,Φ,ϕ,λ(f)(x))2g(x)dx

=

∫
Rn

∫∫
Rn+1

+

( t

t+ |x− y|

)nλ∣∣∣ 1

tρ

∫
|y|≤t

h(|y|)Ω(y′)

|y|n−ρ
f(x− Φ(ϕ(|y|))y′)dy

∣∣∣2dydt
tn+1

g(x)dx

≤
∫
Rn

∫ ∞
0

∣∣∣ 1

tρ

∫
|y|≤t

h(|y|)Ω(y′)

|y|n−ρ
f(x− Φ(ϕ(|y|))y′)dy

∣∣∣2dt
t

×
(

sup
t>0

1

tn

∫
Rn

( t

t+ |x− y|

)nλ
g(x)dx

)
dy

(4.4)

for λ > 1. Since,

sup
t>0

1

tn

∫
Rn

( t

t+ |x− y|

)nλ
g(x)dx

≤ sup
t>0

1

tn

(∫
|x−y|<t

( t

t+ |x− y|

)nλ
g(x)dx+

∞∑
j=1

∫
2j−1t≤|x−y|<2jt

( t

t+ |x− y|

)nλ
g(x)dx

)
≤ sup

t>0

1

tn

(∫
|x−y|<t

g(x)dx+
∞∑
j=1

(2j−1)−nλ
∫
|x−y|<2jt

g(x)dx
)

≤ C(n)M(g)(y) + 2nλ
∞∑
j=1

2−n(λ−1)j sup
t>0

1

(2jt)n

∫
|x−y|<2jt

g(x)dx

≤ C(n, λ)M(g)(y),

which together with (4.4) yields (4.3).
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Proof of Theorems 4.1. First we prove (4.1). For 2 ≤ p < 2δ/(δ − 2), by the duality we have

‖Mρ,∗
h,Ω,Φ,ϕ,λ(f)‖2Lp(Rn) = sup

‖g‖Lq(Rn)≤1

∫
Rn

(Mρ,∗
h,Ω,Φ,ϕ,λ(f)(x))2g(x)dx,

where q = (p/2)′ and the supremum is taken over all g satisfying ‖g‖Lq(Rn) ≤ 1. By the Lp bounds for M ,
Hölder’s inequality, Lemma 4.2, and Theorem 1.4, we get

‖Mρ,∗
h,Ω,Φ,ϕ,λ(f)‖2Lp(Rn) ≤ C(n, λ) sup

‖g‖Lq(Rn)≤1

∫
Rn

(Mρ
h,Ω,Φ,ϕ(f)(x))2M(g)(x)dx

≤ C(n, λ)‖Mh,Ω,Φ,%(f)‖2Lp(Rn)

≤ C(n, λ, ρ,Φ, ϕ)‖f‖2Lp(Rn), 2 ≤ p < 2δ/(δ − 2).

Thus (4.1) holds. On the other hand, one can easily check that

Mρ
h,Ω,Φ,ϕ,S(f)(x) ≤ 2nλ/2Mρ,∗

h,Ω,Φ,ϕ,λ(f)(x).

Combining this with (4.1) yields (4.2) and completes the proof of Theorem 4.1. �
Finally, we give some further comments about our results. The exponent 1/2 in L(log+ L)1/2(Sn−1) of

Theorem 1.4 can’t be replaced by any smaller number (see [4, 21]). The exponent 1/2 in B
(0,−1/2)
q (Sn−1) of

Corollary 1.5 can’t be replaced by any larger number which is restricted in (1/2, 1) (see [1]). We also note
that our main results are new even in the special case: ϕ(t) = t and h(t) = ρ = 1.
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