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Abstract

In this paper, we discover two novel integral identities for twice differentiable functions. Under the utility
of these identities, we establish some generalized inequalities for classical integrals and Riemann-Liouville
fractional integrals of the Hermite-Hadamard type via functions whose derivatives absolute values are MT-
convex. At the end, we present applications for special means and several error approximations for the
trapezoidal formula. (©2016 All rights reserved.
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1. Introduction

A real-valued function ¢ : I C R — R is said to be convex on the interval I if the inequality

Ptz + (1 —thw) <tg(2) + (1 — t)p(w) (1.1)

holds for all z,w € I and t € [0,1]. ¢ is said to be concave on I if the inequality given in holds in the
reverse direction.

A number of important inequalities have been obtained for the class of convex functions, when the idea
of convexity was introduced more than a hundred years ago. But among those one of the most prominent
inequality is the Hermite-Hadamard inequality. It can be stated more appropriately like (see [11]):
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If the function ¢ : I — R is convex on I, then the double inequality

holds for all ¢,d € I with ¢ < d. If the function ¢ is concave on I, then both the inequalities in hold
in the reverse order. It gives an estimate from both sides of the mean, that is, from above and below of
the mean value of a convex function and ensures the integrability of any convex function too. It is also a
matter of great interest and one has to note that some of the classical important inequalities for means can
be obtained from the Hermite-Hadamard inequality under the utility of peculiar convex functions ¢. These
inequalities for convex functions play a crucial role in analysis as well as in other areas of pure and applied
mathematics.

The following important result is due to Dragomir and Agarwal related to the right hand side of .

Theorem 1.1 ([]). Let I C R be an interval and ¢ : I° — R be a differentiable function on I°. Then

o(c) + ¢(d) (d—c)(|¢'(c) + |¢'(d)])
2 —c/ o(z 8 ’

if e,d € I° with ¢ < d and |¢'| is convex on [c,d], where and in what follows I° denotes the interior of I.

Before writing the Hermite-Hadamard inequality for fractional integrals, we first recall the definition of
fractional integrals [10} 21].

Let n > 0,d >c >0 and ¢ € L[c,d]. Then the left-sided and right-sided Riemann-Liouville fractional
integrals J. ¢ and J_¢ of order 7 are defined by

To(:) = s [G= 9 olds (2> 0
and .
_L S—Z 1 z
T00) = 7 / (s (= < d),

respectively, where I'(n) is the Gamma function given by

F(n):/ e “u du.
0

It is also important to note that J% ¢(z) = J)_¢(z) = ¢(z), and the fractional integral shrinks to the
classical integral in the case of n = 1.
Sarikaya et al. [22] established the Hermite-Hadamard’s inequalities for fractional integrals as follows.

Theorem 1.2 ([22]). Let d > ¢ >0 and ¢ : [¢,d] = RT be a convex function and ¢ € L[c,d]. Then
+d (n+1 + o(d
6 (7)< 50 et + I oc0)] < 292D,

In [29] (see also [26H28]), Tung and Yidirim defined the so-called MT-convex function as follows.
A nonnegative function ¢ : I — R is said to be MT-convex on the interval I if the inequality

NG 1—s
N T W

d(sz+ (1= s)w) <

p(w)

holds for all z,w € I and s € (0,1).
The following important Theorem for the class of MT-convex functions also can be found in the
literature [29].
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Theorem 1.3 ([29]). Let ¢ be an MT-convex function on the interval I and c¢,d € I with ¢ < d. Then

C d d )
¢< ;d> : dic/c O 7o)z < Ao,

if ¢ € Lic,d], where 7(z) = \/(d — z)(z — ¢)/(d —
Liu et. al. [I8] presented Theorems and for the class of MT-convex functions as follows.

Theorem 1.4 ([18]). Let ¢,d € I withc < d and f: 1 C [0,00) = R be a differentiable function on I such
that ¢ € Lle,d]. If |¢'|? is MT-convex on [c,d] with ¢ > 1, p~t =1 — ¢! and |¢'(2)] < K for z € [c,d),
then the inequality

’¢ —Z;ﬂ:f)()(z—c _c/¢

holds for each z € [c,d].
Theorem 1.5 ([18]). Let ¢,d € I withc < d and ¢ : I C [0,00) = R be a differentiable function on I such
that ¢’ € Lle,d]. If |¢'|? is MT-convex on [c,d] with ¢ > 1, and |¢'(2)| < K for z € [¢,d], then

‘qza —z>+¢()(z—c)_dlc/cdd,(u)duSI{@H%r Ja(z = 0+ (d - 2)?

)?
d—c) (d—c)
Kr[(z—c)*+ z)?]
4(d — c)

/a [(z—c)?+(d—2)?
‘ 1+p)1/p (7>1 [ (dtc) ]

for each z € [c,d].

For more recent results, extensions, generalizations and refinements concerning to Hermite-Hadamard
inequality can be found in the literatures [IH3], [5H9, T2H17, 19, 201 23-25] B30].

In this paper, we discover two novel integral identities for twice differentiable functions. We use these
identities to establish some general inequalities for functions whose second derivatives absolute values are
MT-convex. These general inequalities give us some new estimates for the right-hand side of classical
integrals and Riemann-Liouville fractional integrals inequalities of Hermite-Hadamard type. At the end, we
give applications for some means and error estimates for the trapezoidal formula.

2. Hermite-Hadamard type inequalities for MT-Convex functions via classical integrals

Before starting our main results we write the following hypotheses which will be utilized throughout the
paper.

H;: Suppose that I C R is an interval, ¢ : I — R is twice differentiable on I°, ¢,d € I° with ¢ < d and
¢" € Lle,d|.

Hs: Suppose that H; holds and |¢”| is MT-convex on [c, d] such that |¢”(2)| < K for z € [c, d].
Hs: Suppose that H; holds, ¢ > 1 and |¢”|? is MT-convex on [¢, d] with |¢”(2)| < K for z € [¢,d].
Hy: Suppose that Hy holds for I C [0,00) and 1 > 0.

Hs: Suppose that Hy holds and |¢”| is MT-convex on [c, d] such that |¢”(2)| < K for z € [c, d].
Heg: Suppose that Hy holds, ¢ > 1 and |¢”|? is MT-convex on ¢, d] with |¢”(z)| < K for z € [¢,d].

For simplicity we take the function A as

¢'(2) (2 — ©)* — (d — 2)*) +2¢(d)(d — 2) +2¢(c)(2 — ¢)

A(z) = 2d—0) :

(z € [e,d]).
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To give the main results of this section, we need to prove the following Lemma

Lemma 2.1. The identity

1 d (z—c)? 1 o )
_d—c/c ¢(u)du_2<d_c)/0 (1—5%) ¢"(sc+ (1 —s)z)ds

_ )3 gt
;Céd - l) /0 (1= 5%) ¢"(sd + (1 - 5)2)ds

_l’_

holds under the hypothesis Hy.

Proof. 1t follows from the integration by parts and changes of variables that

;d—_cg /0 (1= ) (so+ (1— 5)2)ds + é‘(i d__zi;’ /0 - 52) &' (sd+ (1 — 5)2)ds
e [P e (2 - s [Cotman)]
*éfd_—zg[ = +2<<d¢—(dz>2 - <d—z>3/z otuyin)|
1 d
T d—c Plu

c

Now we start to prove our main results.
Theorem 2.2. Under the hypothesis Ha, the inequality given below

‘ d-c /Cd ¢(U)du‘ < 5K7T[(23—2(cc);’_+c§d — 2)%]

is valid for all z € [c,d].

Proof. Tt follows from the MT-convexity of |¢”| and Lemma together with the elementary properties of
Euler Beta function that

_c/qﬁ )du

(z = o)

§2(d_0>/ (1— 52) [¢"(sc+ (1— s)2 )yds+

0

(2—6)3 ! _ g2 \/g (e
< E29 [ - [+ o] ds
(d_z)g ! \/g 1 B 1
P [ e [l e as

/ (1 8?) 6" (sd + (1 — 5)2)|ds

2(d —c) 2y/1—s
. K[(z —46(); + ()d — 2)3] /1 <31/2(1 )2 P21 = )2 g2 12 2 3>1/2> ds
s )
_ 5Km[(z—¢)® + (d — 2)?]
N 32(d — c) '
O

Remark 2.3. Let z = (¢ + d)/2. Then Theorem ﬂ leads to

¢>(c) e / " ‘_ 5K7r§c218 0
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Theorem 2.4. Suppose that the hypothesis Hz holds. If p,q > 1 such that p~' = 1—q~ !, then the inequality

’ =i (3)" (5 2>F<P+1>>”p (2 =0 + (d— )"

2I'(p 4+ 3/2) 2(d—c)
takes place for each z € [c,d].

Proof. Making use of Lemma and the well-known Holder inequality, we get

st [ wad s ([ 0-re) ([ 1wero-nara)”
+;C(ld_2§ </01 (1-5%)"d )Up (/ | ¢"(sd+ (1~ s)z )|qu)1/q.

It follows from the MT-convexity of |¢”|? and boundedness of |¢”(z)| that

2\/f \f 2
! " q ! \[ " q 1—s 4 q Kirx
[t - sayas < | [Qﬁw» R <z>\}dss s

It is not difficult to verify that

Therefore, the required conclusion follows easily from the above inequalities and identity. O

Remark 2.5. Let z = (¢ + d)/2. Then, Theorem leads to

c q 1/p
A [oma <1 () e (SRR

Theorem 2.6. Suppose that the hypothesis Hg is true, then the inequality
1/q 1-1/q 3 3
2 (z—c¢)>+(d—2)
Jdu| < K -
20 /<z> < (%) (G) [y

is valid for each z € [c,d].
Proof. It follows from Lemma [2.1] and the well-known Holder inequality that

‘ _C/¢ )du

z—c — 23 !
é(d ))/ (1S)|¢”(SC+(1S>Z)|d8+g§d—l)/0 (1*82)|¢"(Sd+(1—5)z)|ds

S
(d— 2)3 ! 2 1=t ! 2\ | 1 Va
+2(d—c) </0 (1—s)ds> (/0 (1—5%) ¢ (sd+(1—s)z)|qu> .

IN

IN
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From the MT-convexity of |¢”|? and |¢"(z)| < K on [c, d] we clearly see that

! L1 —s%)ys (1—-35%)1-s 5Kim
1 _ 2 /! + 1 o qd < / |:( // q + A S PV q:| d < ,
[ =i ses - 9apas < [ LD g EEEPA= g as < 20
! Lra —s?)y/s (1—-52)/1—s 5Kr
1— 2 U d 1— a4 </ ( /! d)|e U q:| ds <
[t - gapas< [ 57D g B g p] as < 2
Note that
1 1-1/q o\ 1-1/a
(/ (1-— 52)ds> = <) .
0 3
Therefore, Theorem follows from the above inequalities and identity. O

Remark 2.7. By choosing z = (¢ + d)/2 in Theorem we get

(c) + ¢(d) se\ M9 2\ 79 (d — ¢)?
‘ : /¢ du<K(16> (3) B

3. Hermite-Hadamard type inequalities for MT-convex functions via fractional integrals

In this section we present new Hermite-Hadamard type inequalities for MT-convex functions. For this
purpose we first establish fractional integral identity in the following lemma.
For simplicity we denote the function A by

i P (=" = (d=2)") + (n+ 1)(c)(z — )" + (n+ 1)e(d) (d — 2)”
Az) = — .
(n+1)(d—-¢)

Lemma 3.1. Under the hypothesis Hy, the following identity is valid

A - T g o2) + 77 0(2)
_ (z —)m*? ! _ s ¢ (s — $)2)ds (d —2)"t? ! _ g1 ¢ (s — $)2)ds
_(77+1)(d—c)/0 (1= s") ¢(sc+ (1= 5)2)d +<,7+1)(d_c)/0 (1= ") ¢ (sd + (1= )2)ds.

Proof. By integration by parts and then by changing of variables, we obtain

1 ! c
/0 (1= 57 ¢(se 4+ (1 - 5)z)ds = 22 ("J_l)j;g ) _ (F(n +)3+)2 T 6(2). (3.1)

Z—C

Similarly,

1 !z
/0 (1- s”“) " (sd+ (1 —s)z)ds = —§£ i + (n(;_l)zgd) - (5(17:_)77222 JI_o(2). (3.2)

Now multiplying (3.1)) by (z — ¢)""2[(n+1)(d — ¢)] and (3.2) by (d — 2)"*?/[(n+1)(d — ¢)] and then adding
we get the desired result. O

Remark 3.2. Lemma [3.1] shrinks to Lemma [2.1] by setting n = 1.

Theorem 3.3. If the hypothesis Hy is true, then inequality

(n+1)

Kl(z=o™2 4+ (d=2)"* [ T(n+3/2)L(1/2)
d—c

A@) - 20+ 1)(d— o) T(n+2)

[T o(2) + T 6(2)] | <

holds for all z € [c,d].
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Proof. Tt follows from Lemma [3.1f and the MT-convexity of |¢”| that
AG) -~ G2 o) + I 002)
5 — )2
(n(ﬂ)(” [/ 1= s™[¢"(sc + (1 — 5)2 )|ds]
_ +2
(Z B C)n+2 ! - 877+1 \/g " c 11
T )/0 - [wm“b @1+ S W] o
(d B Z)TI+2 ! _ $n+1 \/ 1/ \/ "
=g J, 0 [ e e a
—¢)Jo
+ 2([;(—65 1—)@7]%) /1(1 _ g1 <31/2(1 _ s)_1/2 4 3_1/2(1 _ 3)1/2> ds
—o) J
_ K[(z ;(;):j“j;(—d(d —)Z)nH] /1(1 — s <31/2(1 _ 3)71/2 I 371/2(1 _ 8)1/2> ds
- 0
B SCEb UL P TR R UES T WUE)
N 2(n+1)(d—¢) I'(n+2) ’
O

Remark 3.4. Let z = (¢ + d)/2. Then Theorem |3.3| leads to

‘(d—c)"l ¢(c)+¢(d) T(n+1) [ 7o <c+d) +J3¢<c—;d>]'

2 2 (d—c)

. 2(77[—(1— ; <d;c>”+1 [w_ I(n J;(i/i)l;)(lm)} ‘

Remark 3.5. By putting n = 1 in Theorem we obtain the inequality given in Theorem
Theorem 3.6. Suppose that the hypothesis Hg holds and p,q > 1 such that p~' =1 — ¢!, then

D (10t + 73002

< Elz =" + (d — 2)"*?] <z)1/q ( L(L+p)T(1/(n+1)) )”p
- (n+1)(d—rc) 2 n+DT(T+p+1/(n+1))

A(z) —

for all z € [c,d].

Proof. As in Theorem making use of Lemma [3.1] and the Holder inequality again, we have

A - gD (et + 73000
5 +2
< (77(+1 2k / 11— 5T |6 (sc + (1 — s)z2)|ds
+2
+ (77(?_277/ 11— sTHY|¢" (sd + (1 — s)2)|ds
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+m</01(1_3n+1) >1/p</ 16" (sd + (1 — )z )|qu>l/q.

It follows from the MT-convexity of |¢”|? and |¢"(z)] < K that

! " ! \[ " " o
[ ierse s @ -sapas < [ jaron+ Y 0l as =

Tl @ + 16" ()] < SK°.

Similarly,
1
/ 8" (sd + (1 — s)2)|%ds < qu.
0

Note that

/1 (1— s ds = Jo (L= sps!/@FV7Nds  T(1+p)T1/(n+ 1)
0 n+1 m+ 1)1 +p+1/(n+1)]

Therefore, Theorem follows easily from the above inequalities and identity. O
Remark 3.7. Letz = (¢ + d)/2 in Theorem Then we have

‘(d;)’?‘l ¢(c);¢(d) - F(gzjcl)) [ s (c+d> +Jg_¢<a~|2—d>H

K [(d—c\" ymn\1/a L(L+pT(/(n+1) "7
()6 (R )

Remark 3.8. Taking n = 1 in Theorem then we get the inequality in Theorem

Theorem 3.9. If the hypothesis Hg is true, then the inequality

'N@_%ﬁghﬁa@+ﬁ¢wﬂ

<K <77+1> e <7T _ T+ 3/2)F(1/2))1/q [(z — (C)"+2 +(d — 2)"2

n+2 2 2I'(n + 2) n+1)(d—c)

is valid for each z € [c,d).

Proof. Making use of the Hélder inequality and Lemma we have

’A(z) - P(d"jcl) [ (2) + J;?aﬁ(z)]‘
2z —¢)1t2 !
- (n(+1)<)c:—c)/0 (1= ") 10" (sc + (1~ s)2)lds
(d—2)m*?

' +1
I ST — g ”S — ) ds
+(77+1)(d—c)/0 (1 ) ¢"(sd + (1 = s5)2)|d

- (n(i_l)% (/01(1 _ Sn+1)d8>1_1/q </01 (1= 1) |¢" (sc+ (1 s)z)\qu> v

e () ([ e e )
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It follows from the MT-convexity of |¢”|? and |¢"(z)] < K on z € [¢,d] that

! I q (1- 577+1)\f 10 \Ig (1— 577+1) 1—s 4 q
[a=siter 1 - s < [ [ op+ LSO gy

S?AuﬂWNWM—@W+NWbW@“
K1 PT__I%n—%3/2)F(1/2)]'

2 I'(n+2)
Similarly,
! " q ! (1- s"t1 \NE q (1- 577+1) L—s 4 q
[ra-smigsa s q - < [ O g COME= 2 ) as

< I;/ s"Jrl 1/2(1—(9)71/24-871/2(1—8)1/2) ds
N R L]
2 (n+2) '
Note that -1/ )
1 ~1/q 1-1/q
1
([ - ()
0 n+2
Therefore, Theorem [3.9] follows easily from the above inequalities and identity. O

Remark 3.10. Let z = (¢ + d)/2. Then Theorem [3.9|leads to

mwww_d;[%MM<ffcrrwmmmmvwcwﬁkwc—jw.

2 “p+1\2  2h(n+2) n+2 2

Remark 3.11. In Theorem if we put n = 1, then we get Theorem

4. Applications to special means

In this section we present applications of our main results obtained in Section [2] to the following special
means.
(1) The arithmetic mean

d
A= Ale,d) = T (c.d>0);
(2) The logarithmic mean
d—c
L(c,d) = ——— d,c,d > 0);
(C7 ) logd—logc (C# , G, > )7

(3) The generalized logarithmic mean

dn+1 _ Cn+1

1/n
Ly(c,d) = |:(CZC)M:| (neZ\{-1,0}, ¢,d>0,c#d).

The following two propositions are valid in the light of the above results.
Proposition 4.1. Let ¢,d € RT with ¢ < d and n > 3 be a positive integer. Then the inequalities

5Kn(d— c)?

A", d™) — L (e, d)| <
A a) - e ) < 5
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(p+ 1>r<1/2>>1/” (4o

|A(c",d") — L (c,d)| < K (2>1/q < 2T'(p + 3/2)

(", d) — L7 (e, d)| < K <?g>1/q <§>1_1/‘1 (d—gc)2

and

hold for all ¢ > 1
Proof. Let z > 0 and ¢(z) = z". Then the desired results follow directly from Remarks and O

Proposition 4.2. Let ¢,d € RT with ¢ < d. Then the inequalities

s — C 2
A ) — LN e, d) < BT
1/p
A a) - LN e <K (5) (P(;F/(?i(g/;;)) (d— c)?
and
o\ e 1=1/4 (g _ )2
A d ) — LY e d)| < K (‘1’6) @) (d - )

are valid for all ¢ > 1.

Proof. Let z > 0 and ¢(z) = 1/z. Then the desired results follow directly from Remarks and
22 O

Remark 4.3. In the above propositions we have used the fact that every positive convex function is a
MT-convex function [2§].

5. Applications to error estimates for trapezoidal formula

Let p = {21, 22, .., 2n}, 2 € [c,d], i = 1,n with ¢ = 20, 2, = d and 2; < z;41 for i = 1,n.
Then the well known quadrature formula for the partition p is

/ oz D)+ e(6,p),

where

Zit1 — %)

nzlqs'zz +¢ Zz-‘rl)(
=0

denotes the trapezoidal formula and e(¢, p) represents the error approximation associated to it.

1

Proposition 5.1. Let the hypothesis Hg holds and p,q > 1 such that p~' =1 — ¢!, then we have

T\ (T(1/20(p+1)\ /"=
|€(¢>,p)\ <K (5) <2F(p—|—3/2)) ; (Zi+1 - 21)3.

Proof. We consider the subintervals [z;, zi+1] (¢ = 0,n — 1) of the partition p and make use of Remark

we have
=K <g)1/q (F(Qlf/(?i(g/;)l))l/p (zit1 — 2)%,

P(2i) + ¢(zit1) f:ﬂ o(z)dz

2 Zivl — Zi
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n—1

/Cd P(z)dz — T(qﬁ,p)’ = {/:“ o)z — W (2141 — Zi)}
o(z

=0 77

= B

IN

(21:+1 - Zz’)3

< (7) (Faare e 0y

2T(p + 3/2) 2

Proposition 5.2. Under the hypothesis Hg, the following inequality holds

5% 1/q 2 171/(1 l (ZiJrl — Zi)s

=0

Proof. Proceeding on the same lines like in the Proposition [5.1], we can prove the inequality in Proposition
by making use of Remark O
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