
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 4257–4262

Research Article

Spectral analysis of a selfadjoint matrix-valued
discrete operator on the whole axis

Elgiz Bairamov, Yelda Aygar∗, Serifenur Cebesoy

University of Ankara, Faculty of Science, Department of Mathematics, 06100, Ankara, Turkey.

Communicated by M. Eslamian

Abstract

The spectral analysis of matrix-valued difference equations of second order having polynomial-type Jost
solutions, was first used by Aygar and Bairamov. They investigated this problem on semi-axis. The main aim
of this paper is to extend similar results to the whole axis. We find polynomial-type Jost solutions of a second
order matrix selfadjoint difference equation to the whole axis. Then, we obtain the analytical properties
and asymptotic behaviors of these Jost solutions. Furthermore, we investigate continuous spectrum and
eigenvalues of the operator L generated by a matrix-valued difference expression of second order. Finally,
we get that the operator L has a finite number of real eigenvalues. c©2016 All rights reserved.
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1. Introduction

The problems of spectral theory of differential equations have been intensively investigated by several
authors [4, 8, 13–16, 18]. In [13], the author showed that the Sturm–Liouville equation

− y′′ + q(x)y = λ2y, x ∈ R+ := [0,∞) (1.1)

has a bounded solution satisfying the condition

lim
x→∞

y (x, λ)e−iλx = 1, λ ∈ C+ := {λ ∈ C : Imλ ≥ 0} ,
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which is called Jost solution of the equation (1.1), where λ is a spectral parameter and q is a real-valued
function. The modeling of certain problems in engineering, physics, economics, control theory and other
areas has led to a rapid development of the theory of difference equations. The spectral analysis of discrete
equations has also been applied to the solutions of classes of nonlinear discrete equations and Toda lattices
[9, 17]. Furthermore, there are a lot of studies about the spectral analysis of selfadjoint and nonselfadjoint
difference equations [1–3, 5–7, 11, 19]. All of the above mentioned papers deal with difference equations
with scalar coefficients except [5, 19]. But spectral analysis of selfadjoint matrix-valued difference equations
with polynomial-type Jost solutions on the whole axis has not been used yet.

Let Cυ is a υ-dimensional (υ < ∞) Euclidian space and denote by `2(R,Cυ) the Hilbert space of
all matrix sequences Y = {Yn} (Yn ∈ Cυ, n ∈ Z) such that

∑∞
−∞ ||Yn||

2
Cυ < ∞ with the inner product

〈Y,Z〉 =
∑∞
−∞(Yn, Zn)Cυ , where ||.||Cυ and (., .)Cυ express the matrix norm and inner product in Cυ,

respectively. We introduce the difference operator L generated in `2(R,Cυ) by the matrix difference equation

An−1Yn−1 +BnYn +AnYn+1 = λyn, n ∈ Z, (1.2)

where {An} and {Bn} are linear operators (matrices) acting in Cυ, n ∈ Z and λ is a spectral parameter.
Throughout the paper, we will assume that An = A?n, Bn = B?

n (n ∈ Z) and detAn 6= 0, where ? denotes
the adjoint operator. Further, we can obtain the following Jacobi matrix by using the operator L

(J)ij =



Bi if i = j,

Ai−1 if i = j + 1,

Ai if i = j − 1,

0 otherwise,

where 0 is the zero matrix in Cυ and i, j ∈ Z. It is clear that L is a selfadjoint operator which a is discrete
analogue of the matrix-valued Sturm–Liouville operator generated in L2 (−∞,∞). So, L is called matrix-
valued discrete operator. The paper is organized as follows: In Section 2, we get the polynomial-type Jost
solutions of (1.2), and investigate analytical properties and asymptotic behaviors of them. In Section 3,
using the properties of the Jost solutions, we obtain eigenvalues and continuous spectrum of L. Moreover,
we prove that the operator L has a finite number of real eigenvalues, under the condition

∞∑
−∞
|n| (||I −An||+ ||Bn||) <∞, (1.3)

where I denotes the identity matrix in Cυ.

2. Jost Functions

Suppose that the sequences of matrices {An} and {Bn} , n ∈ Z satisfy (1.3). Let E(z) := {En(z)} and
F (z) := {Fn(z)}, n ∈ Z denote the matrix solutions of the equation

An−1Yn−1 +BnYn +AnYn+1 = (z + z−1)Yn, n ∈ Z, (2.1)

under the conditions
lim
n→∞

Yn(z)z−n = I, z ∈ D0 := {z : |z| = 1} ,

and
lim

n→−∞
Yn(z)zn = I, z ∈ D0,

respectively. The solutions E(z) and F (z) are bounded, and are called the Jost solutions of (2.1).



E. Bairamov, Y. Aygar, S. Cebesoy, J. Nonlinear Sci. Appl. 9 (2016), 4257–4262 4259

Theorem 2.1. Assume (1.3). Then, for z ∈ D0 and n ∈ Z, (2.1) has the solutions En(z) and Fn(z) having
representations

En(z) = Tnz
n

[
I +

∞∑
m=1

Knmz
m

]
, (2.2)

and

Fn(z) = Rnz
−n

[
I +

m=−1∑
−∞

Mnmz
−m

]
, (2.3)

respectively, where Tn, Rn, Knm and Mnm are expressed in terms of {An} and {Bn} by

Tn =

∞∏
p=n

A−1p , (2.4)

Kn1 = −
∞∑

p=n+1

T−1p BpTp, (2.5)

Kn2 = −
∞∑

p=n+1

T−1p BpTpKp1 +
∞∑

p=n+1

T−1p

(
I −A2

p

)
Tp, (2.6)

Kn,m+2 =
∞∑

p=n+1

T−1p

(
I −A2

p

)
TpKp+1,m −

∞∑
p=n+1

T−1p BpTpKp,m+1 +Kn+1,m, (2.7)

for m ∈ Z+,

Rn =

p=n−1∏
−∞

A−1p , (2.8)

Mn,−1 = −
p=n−1∑
−∞

R−1p BpRp, (2.9)

Mn,−2 = −
p=n−1∑
−∞

R−1p BpRpMp,−1 +

p=n−1∑
−∞

R−1p
(
I −A2

p−1
)
Rp, (2.10)

Mn,m−2 =

p=n−1∑
−∞

R−1p
(
I −A2

p−1
)
RpMp−1,m −

p=n−1∑
−∞

R−1p BpRpMp,m−1 +Mn−1,m, (2.11)

for m ∈ Z−.

Proof. If we put E(z) and F (z) into (2.1), then we have

An−1Tn−1z
n−1

[
I +

∞∑
m=1

Kn−1,mz
m

]
+BnTnz

n

[
I +

∞∑
m=1

Knmz
m

]

+An

{
Tn+1z

n+1

[
I +

∞∑
m=1

Kn+1,mz
m

]}

= Tnz
n+1

[
I +

∞∑
m=1

Knmz
m

]
+ Tnz

n−1

[
I +

∞∑
m=1

Knmz
m

]
and

An−1Rn−1z
−n+1

[
I +

m=−1∑
−∞

Mn−1,mz
−m

]
+BnRnz

−n

[
I +

m=−1∑
−∞

Mnmz
−m

]
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+AnRn+1z
−n−1

[
I +

m=−1∑
−∞

Mn+1,mz
−m

]

= Rnz
−n+1

[
I +

m=−1∑
−∞

Mnmz
−m

]
+Rnz

−n−1

[
I +

m=−1∑
−∞

Mnmz
−m

]
,

respectively. Using these equations, we get Tn, Rn as convergent products and Knm, Mnm as convergent
series, under the condition (1.3).

Theorem 2.2. Under the assumption (1.3), the following inequalities hold

||Knm|| ≤ C1

∞∑
p=n+[|m2 |]

(||I −Ap||+ ||Bp||) ,m ∈ Z+, (2.12)

||Mnm|| ≤ C2

p=n+[|m2 |]∑
−∞

(||I −Ap||+ ||Bp||) ,m ∈ Z−, (2.13)

where
[∣∣m

2

∣∣] is the integer part of m
2 , while C1 and C2 are positive constants.

Proof. Using (2.4)–(2.7) and (2.8)–(2.11), we can get the proof by mathematical induction.

Corollary 2.3. It follows from (2.2), (2.3) and Theorem 2.2 that En(z) and Fn(z) have analytic continuation
from D0 to {z : |z| < 1} \ {0}.

Theorem 2.4. Assume (1.3). Then the Jost solutions satisfy the following asymptotic equations for z ∈
D := {z : |z| ≤ 1} \ {0}

En(z) = zn [I + o(1)] , n→∞ (2.14)

Fn(z) = z−n [I + o(1)] , n→ −∞. (2.15)

Proof. The proof of (2.14) was given in [5]. If we use (2.8) and (2.13), we can write

lim
n→−∞

Rn = I (2.16)

and
m=−1∑
−∞

Mnmz
−m = o(1), z ∈ D, n→ −∞. (2.17)

Using (2.3), (2.16), and (2.17), we get (2.15) for z ∈ D.

3. Continuous and Discrete Spectra of L

Theorem 3.1. If the condition (1.3) is satisfied, then σc(L) = [−2, 2], where σc(L) denotes the continuous
spectrum of L.

Proof. Let us introduce the difference operators L0 and L1 generated in `2(R,Cυ) by the difference expres-
sions

l0(Y ) = Yn−1 + Yn+1

and
l1(Y ) = (An−1 − I)Yn−1 +BnYn + (An − I)Yn+1,
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respectively. We can also define the following Jacobi matrices

(J0)ij =

{
I i = j + 1, i = j − 1,

0 otherwise,

(J1)ij =



Bi i = j,

Ai − I i = j − 1,

Ai−1 − I i = j + 1,

0 otherwise,

corresponding to the operators L0 and L1, respectively, where i, j ∈ Z. It is obvious that L = L0 + L1 and
L0 is a selfadjoint operator. Also, it is known that σ(L0) = σc(L0) = [−2, 2], (see [5]). It follows from (1.3)
that the operator L1 is compact in `2(R,Cυ) (see [12]). Then, using the Weyl theorem (see [10]) on compact
perturbation, we obtain σc(L) = σc(L0) = [−2, 2]. This completes the proof.

Now, we denote the solution of the equation

Un−1An−1 + UnBn + Un+1An = (z + z−1)Un, n ∈ Z,

satisfying the condition
lim

n→−∞
Un(z)zn = I, z ∈ D0,

by G(z) := {Gn(z)}. It is clear that G(z) is the adjoint matrix of F (z). Let us introduce f(z) :=
detW [E(z), G(z)], where W [E(z), G(z)] denotes the wronskian of the solutions E(z) and G(z) which is
defined by W [E(z), G(z)] = Gn−1An−1En −GnAn−1En−1. The set of all eigenvalues of L we denote by

σd(L) =
{
λ ∈ C : λ = z + z−1, z ∈ (−1, 0) ∪ (0, 1), f(z) = 0

}
.

Since σd(L) and σc(L) are disjoined sets, we can get

σd(L) ⊂ (−∞,−2) ∪ (2,∞). (3.1)

Definition 3.2. The multiplicity of a zero of the function f is called the multiplicity of the corresponding
eigenvalue of L.

Theorem 3.3. Under the condition (1.3), the operator L has a finite number of real eigenvalues.

Proof. Since the operator L is selfadjoint, its eigenvalues are real. To complete the proof, we have to show
that the function f has finitely many zeros. Using (3.1), we get that the limit points of the set of all
eigenvalues of L could not be different from ±2, ±∞. Since λ = z + z−1, the limit points of the set of all
eigenvalues of L could be ±∞ only in the case of z = 0. But it contradicts the fact that the operator L
is bounded, so we cannot consider 0 as a zero of the function f . On the other hand, for z = ±1, the limit
points of the set of all eigenvalues could be ±2. But from operator theory and Theorem 3.1, the eigenvalues
of selfadjoint operators are not the elements of its continuous spectrum. Because of this reason, we also
cannot consider z = ±1 as zeros of the function f , i.e., the set of all eigenvalues of the operator L has
not any limit points. Finally, the set of zeros of the function f in D is finite, by the Bolzano–Weierstrass
theorem.
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