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Abstract

In the present paper, we generalize the concept of well-posedness to a generalized hemivariational in-
equality, give some metric characterizations of the α-well-posed generalized hemivariational inequality, and
derive some conditions under which the generalized hemivariational inequality is strongly α-well-posed in
the generalized sense. Also, we show that the α-well-posedness of the generalized hemivariational inequality
is equivalent to the α-well-posedness of the corresponding inclusion problem. c©2016 All rights reserved.
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1. Introduction

In 1966, Tykhonov [28] first introduced a classical notion of well-posedness for a minimization problem,
which plays an important role in the theory of optimization problems. The well-posedness requires the ex-
istence and uniqueness of minimizers and the convergence of every minimizing sequence toward the unique
minimizer. It is clear that the concept of well-posedness is inspired by numerical methods producing opti-
mizing sequences for optimization problems. Because of its importance in optimization problems, various
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kinds of well-posedness for optimization problems have been introduced and studied by many mathemati-
cians in the optimization research field. For more literature on well-posedness for optimization problems,
we refer the readers to [14, 19, 31, 33, 36–38] and the references therein.

Since a differentiable minimization problem is closely related to a variational inequality of differential
type, the concept of well-posedness has been captured by many researchers to study variational inequalities.
By means of Ekeland’s variational principle, Lucchetti and Patrone [21] first introduced the concept of well-
posedness for a variational inequality and proved some related results. Fang et al. [8, 9] generalized two kinds
of well-posedness for a mixed variational inequality problem in Banach space, respectively. They established
some metric characterizations of the two kinds of well-posedness for the mixed variational inequality, showed
the equivalence of the two kinds of well-posedness among the mixed variational inequality problem, its
corresponding inclusion problem and its corresponding fixed point problem, and gave some conditions under
which the two kinds of well-posedness for the mixed variational inequality are equivalent to the existence
and uniqueness of its solution. In recent years, the concept of well-posedness has been generalized to various
kinds of well-posedness for different variational inequalities by many authors. Moreover, they established
the metric characterizations for well-posed variational inequalities, the necessary and sufficient conditions of
well-posedness for variational inequalities, and the links of well-posedness between variational inequalities
and their related problems such as minimization problems, fixed pointed problems and inclusion problems.
We refer the readers there to [4, 13, 15, 18, 27, 29–31, 33] for a wealth of additional information on well-
posedness for variational inequalities.

On the other hand, as an important and useful generalization of variational inequality, hemivariational
inequality was first introduced in order to formulate variational principles involving nonconvex and nons-
mooth energy functions, and investigated by Panagiotopoulos [26] using the mathematical concepts of the
Clarke’s generalized directional derivative and the Clarke’s generalized gradient. The hemivariational in-
equalities have been proved very efficient to describe a variety of mechanical and engineering problems,
e.g., non-monotone semipermeability problems, unilateral contact problems in nonlinear elasticity; see e.g.,
[1, 2, 12, 20, 22, 23, 25, 31–36]. It seems to be natural and easy to generalize the concept of well-posedness
to hemivariational inequalities and most results on well-posedness for variational inequalities should hold
for hemivariational inequalities under some similar conditions. However, it is not the truth. The Clarke’s
generalized directional derivative of a nonconvex and nonsmooth Lipschitz functional in hemivariational
inequalities makes it much difficult. Thus, the literature on well-posedness for hemivariational inequalities
is limit. In 1995, Goeleven and Mentagui [11] first introduced the well-posedness for a hemivariational in-
equality and presented some basic results concerning the well-posed hemivariational inequality. Later, using
the concept of approximating sequence, Xiao et al. [29, 30] defined a concept of well-posedness for a hemi-
variational inequality and a variational-hemivariational inequality. They gave some metric characterizations
for the well-posed hemivariational inequality and the well-posed variational-hemivariational inequality, and
proved the equivalence of well-posedness between the hemivariational inequality and the corresponding in-
clusion problem. However, for the conditions of well-posedness for the hemivariational inequality and the
variational-hemivariational inequality, Xiao et al. [29, 30] only gave a sufficient condition in Euclidean space
Rn. In addition, for other recent works on the well-posedness for variational-hemivariational inequalities;
see also e.g., [3, 5, 37].

Let X be a real reflexive Banach space with its dual X∗. We denote the duality pairing between X and
X∗ by 〈·, ·〉, and the norm of Banach space X by ‖ · ‖. In this paper, we always suppose that F : X → 2X

∗

is a nonempty set-valued mapping from X to X∗, J◦(·, ·) stands for the Clarke’s directional derivative of
the locally Lipschitz functional J : X → R, and f ∈ X∗ is some given element. We consider the following
generalized hemivariational inequality, associated with (F, f, J):

GHVI(F, f, J) : Find x ∈ X such that for some u ∈ F (x),
〈u− f, y − x〉+ J◦(x, y − x) ≥ 0, ∀y ∈ X. (1.1)

In particular, if F = A a single-valued mapping fromX toX∗, then GHVI(F, f, J) reduces to HVI(A, f, J)
considered in Xiao, Huang and Wong [30].
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Inspired by the works mentioned as above, in this paper, we generalize the concept of well-posedness for
the hemivariational inequality to the generalized hemivariational inequality GHVI(F, f, J) which includes
as special cases the hemivariational inequality, the generalized variational inequality and the classical varia-
tional inequality. By using the methods presented in the papers due to Xiao, Huang and Wong [30], Li and
Xia [17] and Ceng and Yao [6], we give some metric characterizations of the α-well-posed generalized hemi-
variational inequality, and derive some conditions under which the generalized hemivariational inequality is
strongly α-well-posed in the generalized sense. We also show that the α-well-posedness of the generalized
hemivariational inequality is equivalent to the α-well-posedness of the corresponding inclusion problem.

2. Preliminaries

In this section, we first recall briefly some useful notions and results in nonsmooth analysis and nonlinear
analysis (see e.g., [7, 22, 36]). Then, we present some definitions of well-posedness for the generalized
hemivariational inequality GHVI(F, f, J). Throughout this paper, we assume that X is a real reflexive
Banach space and the norms of X and its dual X∗ are denoted by the same symbol ‖ · ‖.

Assume that J : X → R is a locally Lipschitz functional, x is a given point and y is a vector in X. The
Clarke’s generalized directional derivative of J at x in the direction y, denoted by J◦(x, y), is defined by

J◦(x, y) = lim sup
z→x λ↓0

J(z + λy)− J(z)

λ
,

by means of which the Clarke’s generalized gradient of J at x, denoted by ∂J(x), is the subset of the dual
space X∗ defined by

∂J(x) = {ξ ∈ X∗ : J◦(x, y) ≥ 〈ξ, y〉, ∀y ∈ X}.

The next proposition provides some basic properties for the Clarke’s generalized directional derivative
and the Clarke’s generalized gradient; see e.g., [7, 22].

Proposition 2.1. Let X be a Banach space, x, y ∈ X and J : X → R a locally Lipschitz functional defined
on X. Then

(i) The function y 7→ J◦(x, y) is finite, positively homogeneous, subadditive and then convex on X;

(ii) J◦(x, y) is upper semicontinuous on X × X as a function of (x, y), i.e., for all x, y ∈ X, {xn} ⊂
X, {yn} ⊂ X such that xn → x and yn → y in X, we have that

lim sup
n→∞

J◦(xn, yn) ≤ J◦(x, y);

(iii) J◦(x,−y) = (−J)◦(x, y);

(iv) For all x ∈ X, ∂J(x) is a nonempty, convex, bounded and weak∗-compact subset of X∗;

(v) For every y ∈ X, one has
J◦(x, y) = max{〈ξ, y〉 : ξ ∈ ∂J(x)};

(vi) The graph of the Clarke’s generalized gradient ∂J(x) is closed in X×(w∗-X∗) topology, where (w∗-X∗)
denotes the space X∗ equipped with weak∗ topology, i.e., if {xn} ⊂ X and {x∗n} ⊂ X∗ are sequences
such that x∗n ∈ ∂J(xn), xn → x in X and x∗n → x∗ weakly∗ in X∗, then x∗ ∈ ∂J(x).

Definition 2.2. Let X be a Banach space with its dual X∗ and F : X → 2X
∗

a nonempty multi-valued
operator from X to X∗. F is said to be monotone, if

〈u− v, x− y〉 ≥ 0, ∀x, y ∈ X,u ∈ F (x), v ∈ F (y).
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Let A1, A2 be nonempty subsets of a normed vector space (X, ‖·‖). The Hausdorff metric H(·, ·) between
A1 and A2 is defined by

H(A1, A2) = max{e(A1, A2), e(A2, A1)},

where e(A1, A2) = supa∈A1
d(a,A2) with d(a,A2) = infb∈A2 ‖a−b‖. Note that [24] if A1 and A2 are compact

subsets in X, then for each a ∈ A1 there exists b ∈ A2 such that

‖a− b‖ ≤ H(A1, A2).

Definition 2.3 ([6]). Let H(·, ·) be the Hausdorff metric on the collection CB(X∗) of all nonempty, closed
and bounded subsets of X∗, which is defined by

H(A,B) = max{e(A,B), e(B,A)}

for A and B in CB(X∗). A nonempty set-valued mapping F : X → CB(X∗) is said to be

(i) H-hemicontinuous, if for any x, y ∈ X, the function t 7→ H(F (x + t(y − x)), F (x)) from [0, 1] into
R+ = [0,+∞) is continuous at 0+;

(ii) H-continuous, if for any ε > 0 and any fixed x0 ∈ X, there exists δ > 0 such that for all y ∈ X with
‖y − x0‖ < δ, one has H(F (y), F (x0)) < ε.

Remark 2.4. Clearly, the H-continuity implies the H-hemicontinuity, but the converse is not true in general.

Definition 2.5 ([16]). Let S be a nonempty subset of X. The measure of noncompactness µ of the set S
is defined by

µ(S) = inf{ε > 0 : S ⊂
n⋃
i=1

Si, diam(Si) < ε, i = 1, 2, ..., n},

where diam(Si) means the diameter of set Si.

In order to obtain our results, the following lemma is crucial to us.

Lemma 2.6 ([10]). Let C ⊂ X be nonempty, closed and convex, C∗ ⊂ X∗ be nonempty, closed, convex and
bounded, ϕ : X → R be proper, convex and lower semicontinuous and y ∈ C be arbitrary. Assume that, for
each x ∈ C, there exists x∗(x) ∈ C∗ such that

〈x∗(x), x− y〉 ≥ ϕ(y)− ϕ(x).

Then, there exists y∗ ∈ C∗ such that

〈y∗, x− y〉 ≥ ϕ(y)− ϕ(x), ∀x ∈ C.

3. Main results

3.1. Well-Posedness of GHVI with Metric Characterizations

Based on the concepts of well-posedness in [3, 4, 6, 17, 29, 30], we introduce some concepts of well-
posedness for the generalized hemivariational inequality GHVI(F, f, J), establish the metric characteriza-
tions and give some conditions under which the generalized hemivariational inequality GHVI(F, f, J) is
strongly α-well-posed in the generalized sense. Let α : X → R+ = [0,+∞) be a convex and continuous
functional with α(tx) = tα(x) ∀t ≥ 0 and ∀x ∈ X.

Definition 3.1. A sequence {xn} ⊂ X is said to be an α-approximating sequence for the generalized
hemivariational inequality GHVI(F, f, J) if there exist un ∈ F (xn), n ∈ N and a nonnegative sequence {εn}
with εn → 0 as n→∞ such that
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〈un − f, y − xn〉+ J◦(xn, y − xn) ≥ −εnα(y − xn), ∀y ∈ X, n ∈ N. (3.1)

In particular, if α(·) = ‖ · ‖ the norm of X, then {xn} is said to be an approximating sequence for the
generalized hemivariational inequality GHVI(F, f, J).

Definition 3.2. The generalized hemivariational inequality GHVI(F, f, J) is said to be strongly (resp.
weakly) α-well-posed if it has a unique solution in X and every α-approximating sequence converges strongly
(resp. weakly) to the unique solution. In particular, if α(·) = ‖ · ‖ the norm of X, then the generalized
hemivariational inequality GHVI(F, f, J) is said to be strongly (resp. weakly) well-posed.

Remark 3.3. It is obvious that, for the generalized hemivariational inequality GHVI(F, f, J), the strong
α-well-posedness implies the weak α-well-posedness, but the converse is not true in general.

Definition 3.4. The generalized hemivariational inequality GHVI(F, f, J) is said to be strongly (resp.
weakly) α-well-posed in the generalized sense if it has a nonempty solution set S in X and every α-
approximating sequence has a subsequence which converges strongly (resp. weakly) to some point of solution
set S.

Remark 3.5. Obviously, for the generalized hemivariational inequality GHVI(F, f, J), the strong α-well-
posedness in the generalized sense implies the weak α-well-posedness in the generalized sense, but the
converse is not true in general.

Remark 3.6. The concepts of strong and weak α-well-posedness for the generalized hemivariational inequality
introduced in this paper are quite different from Definitions 3.1–3.3 in Xiao, Huang and Wong [30].

For any ε > 0, we define the following two sets:

Ωα(ε) = {x ∈ X : ∃u ∈ F (x) s.t.〈u− f, y − x〉+ J◦(x, y − x) ≥ −εα(y − x), ∀y ∈ X},

and
∆α(ε) = {x ∈ X : 〈v − f, y − x〉+ J◦(x, y − x) ≥ −εα(y − x), ∀y ∈ X, v ∈ F (y)}.

Lemma 3.7. Suppose that F : X → 2X
∗

is a nonempty compact-valued mapping which is H-hemicontinuous
and monotone. Then, Ωα(ε) = ∆α(ε) for all ε > 0.

Proof. From the monotonicity of mapping F , it is easy to see the inclusion Ωα(ε) ⊂ ∆α(ε). Now we show
that ∆α(ε) ⊂ Ωα(ε). Indeed, for any x ∈ ∆α(ε), we have

〈v − f, y − x〉+ J◦(x, y − x) ≥ −εα(y − x), ∀y ∈ X, v ∈ F (y).

Given any y ∈ X we define yt = x+ t(y− x) for all t ∈ (0, 1). Replacing y and v by yt and vt in the last
inequality, respectively, we deduce from the positive homogeneousness of the functions y 7→ J◦(x, y) and α
that for each vt ∈ F (yt),

−tεα(y − x) = −εα(t(y − x))
≤ 〈vt − f, t(y − x)〉+ J◦(x, t(y − x))
= t[〈vt − f, y − x〉+ J◦(x, y − x)],

which hence implies that for each t ∈ (0, 1) and each vt ∈ F (yt),

〈vt − f, y − x〉+ J◦(x, y − x) ≥ −εα(y − x). (3.2)

Since F : X → 2X
∗

is a nonempty compact-valued mapping, F (yt) and F (x) are nonempty compact
sets. Hence, by Nadler’s result [24] we know that for each t ∈ (0, 1) and each fixed vt ∈ F (yt) there exists
an ut ∈ F (x) such that ‖vt − ut‖ ≤ H(F (yt), F (x)). Since F (x) is compact, without loss of generality we
may assume that ut → u ∈ F (x) as t→ 0+. Since F is H-hemicontinuous, we obtain that

‖vt − ut‖ ≤ H(F (yt), F (x))→ 0 as t→ 0+,
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which immediately leads to

‖vt − u‖ ≤ ‖vt − ut‖+ ‖ut − u‖ → 0 as t→ 0+. (3.3)

Taking the limit as t→ 0+ in inequality (3.2), we conclude from (3.3) that

〈u− f, y − x〉+ J◦(x, y − x) ≥ −εα(y − x).

Since y ∈ X is arbitrary, it follows that x ∈ Ωα(ε). This completes the proof.

Lemma 3.8. Suppose that F : X → 2X
∗

is a nonempty compact-valued mapping which is H-hemicontinuous
and monotone. Then, ∆α(ε) is closed in X for all ε > 0.

Proof. Let {xn} ⊂ ∆α(ε) be a sequence such that xn → x in X. Then

〈v − f, y − xn〉+ J◦(xn, y − xn) ≥ −εα(y − xn), ∀y ∈ X, v ∈ F (y). (3.4)

It follows from the continuity of the functional α and the upper semicontinuity of Clarke’s generalized
directional derivative J◦(x, y) with respect to (x, y) that

lim
n→∞

α(y − xn) = α(y − x) and lim sup
n→∞

J◦(xn, y − xn) ≤ J◦(x, y − x).

Taking limsup as n→∞ at both sides of (3.4), we have

〈v − f, y − x〉+ J◦(x, y − x) ≥ −εα(y − x), ∀y ∈ X, v ∈ F (y),

which implies that x ∈ ∆α(ε). Thus, ∆α(ε) is closed in X. This completes the proof.

Theorem 3.9. Suppose that F : X → 2X
∗

is a nonempty compact-valued mapping which is H-hemicontinuous
and monotone. Then, GHVI(F, f, J) is strongly α-well-posed if and only if

Ωα(ε) 6= ∅ ∀ε > 0 and diam(Ωα(ε))→ 0 as ε→ 0. (3.5)

Proof. “Necessity”. Suppose that GHVI(F, f, J) is strongly α-well-posed. Then GHVI(F, f, J) has a unique
solution which belongs to Ωα(ε) and so Ωα(ε) 6= ∅ for all ε > 0. If diam(Ωα(ε)) does not converge to 0 as
ε→ 0, then there exist a constant l > 0, a nonnegative sequence {εn} with εn → 0 and xn, yn ∈ Ωα(εn) such
that

‖xn − yn‖ > l, ∀n ∈ N. (3.6)

Since xn, yn ∈ Ωα(εn), both {xn} and {yn} are α-approximating sequences for GHVI(F, f, J). It follows
from strong α-well-posedness of GHVI(F, f, J) that both {xn} and {yn} converge strongly to the unique
solution of GHVI(F, f, J), which is a contradiction to (3.6).

“Sufficiency”. Let {xn} ⊂ X be an α-approximating sequence for GHVI(F, f, J). Then, there exist
un ∈ F (xn), n ∈ N and a nonnegative sequence {εn} with εn → 0 such that

〈un − f, y − xn〉+ J◦(xn, y − xn) ≥ −εnα(y − xn), ∀y ∈ X, n ∈ N, (3.7)

which implies that xn ∈ Ωα(εn). It follows from (3.5) that {xn} is a Cauchy sequence and so {xn} converges
strongly to some point x ∈ X. Since the mapping F is monotone and Clarke’s generalized directional
derivative J◦(x, y) is upper semicontinuous with respect to (x, y), we deduce from (3.7) and the property of
the functional α that for all y ∈ X and v ∈ F (y)

〈v − f, y − x〉+ J◦(x, y − x) ≥ lim sup
n→∞

{〈v − f, y − xn〉+ J◦(xn, y − xn)}

≥ lim sup
n→∞

{〈un − f, y − xn〉+ J◦(xn, y − xn)}

≥ lim sup
n→∞

− εnα(y − xn)

= lim sup
n→∞

− α(εn(y − xn))

= −α(0) = 0.

(3.8)



L.-C. Ceng, Y.-C. Liou, C.-F. Wen, J. Nonlinear Sci. Appl. 9 (2016), 3879–3891 3885

Given any y ∈ X we define yt = x + t(y − x) for all t ∈ (0, 1). Replacing y and v in (3.8) by yt and
vt, respectively, we obtain from the positive homogeneousness of J◦(x, y) with respect to y, that for each
vt ∈ F (yt),

〈vt − f, y − x〉+ J◦(x, y − x) ≥ 0. (3.9)

Since F : X → 2X
∗

is a nonempty compact-valued mapping, F (yt) and F (x) are nonempty compact
sets. Hence, by Nadler’s result [24] we know that for each t ∈ (0, 1) and each fixed vt ∈ F (yt) there exists
an ut ∈ F (x) such that ‖vt − ut‖ ≤ H(F (yt), F (x)). Since F (x) is compact, without loss of generality we
may assume that ut → u ∈ F (x) as t→ 0+. Since F is H-hemicontinuous, we obtain that

‖vt − ut‖ ≤ H(F (yt), F (x))→ 0 as t→ 0+,

which immediately leads to

‖vt − u‖ ≤ ‖vt − ut‖+ ‖ut − u‖ → 0 as t→ 0+.

Taking the limit as t→ 0+ in (3.9), we get

〈u− f, y − x〉+ J◦(x, y − x) ≥ 0.

Since y ∈ X is arbitrary, it follows that x solves GHVI(F, f, J).

To complete the proof of Theorem 3.9, we need only to prove that GHVI(F, f, J) has a unique solution.
Assume by contradiction that GHVI(F, f, J) has two distinct solutions x1 and x2. Then it is easy to see
that x1, x2 ∈ Ωα(ε) for all ε > 0 and

0 < ‖x1 − x2‖ ≤ diam(Ωα(ε))→ 0,

which is a contradiction. Therefore, GHVI(F, f, J) has a unique solution. This completes the proof.

Theorem 3.10. Suppose that F : X → 2X
∗

is a nonempty compact-valued mapping which is H-hemicontinuous
and monotone. Then, GHVI(F, f, J) is strongly α-well-posed in the generalized sense if and only if

Ωα(ε) 6= ∅ ∀ε > 0 and µ(Ωα(ε))→ 0 as ε→ 0. (3.10)

Proof. “Necessity”. Suppose that GHVI(F, f, J) is strongly α-well-posed in the generalized sense. Then the
solution set S of GHVI(F, f, J) is nonempty and S ⊂ Ωα(ε) for any ε > 0. Furthermore, the solution set S of
GHVI(F, f, J) also is compact. As a matter of fact, for any sequence {xn} ⊂ S, it follows from S ⊂ Ωα(ε) for
any ε > 0 that {xn} ⊂ S is an α-approximating sequence for GHVI(F, f, J). Since GHVI(F, f, J) is strongly
α-well-posed in the generalized sense, {xn} has a subsequence which converges strongly to some point of
solution set S. Thus, the solution set S of GHVI(F, f, J) is compact. Now we show that µ(Ωα(ε)) → 0 as
ε→ 0. From S ⊂ Ωα(ε) for any ε > 0, we get

H(Ωα(ε), S) = max{e(Ωα(ε), S), e(S,Ωα(ε))} = e(Ωα(ε), S). (3.11)

Taking into account the compactness of solution set S, we obtain from (3.11) that

µ(Ωα(ε)) ≤ 2H(Ωα(ε), S) = 2e(Ωα(ε), S).

So, to prove µ(Ωα(ε)) → 0 as ε → 0, it suffices to show that e(Ωα(ε), S) → 0 as ε → 0. Assume by
contradiction that e(Ωα(ε), S) 6→ 0 as ε → 0. Then there exist a constant l > 0, a sequence {εn} ⊂ [0,∞)
with εn → 0 and xn ∈ Ωα(εn) such that

xn 6∈ S +B(0, l), (3.12)

where B(0, l) is the closed ball centered at 0 with radius l. Since xn ∈ Ωα(εn), {xn} is an α-approximating
sequence for GHVI(F, f, J). So, there exists a subsequence {xnk

} which converges strongly to some point
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x̂ ∈ S due to the strong α-well-posedness in the generalized sense of GHVI(F, f, J). This is a contradiction
to (3.12). Consequently, µ(Ωα(ε))→ 0 as ε→ 0.

“Sufficiency”. Assume that condition (3.10) holds. By Lemmas 3.7 and 3.8, we obtain that Ωα(ε) is
nonempty and closed for all ε > 0. Observe that

S =
⋂
ε>0

Ωα(ε). (3.13)

Since µ(Ωα(ε)) → 0 as ε → 0, by applying the theorem in [16, p.412], one easily concludes that S is
nonempty and compact with

e(Ωα(ε), S) = H(Ωα(ε), S)→ 0 as ε→ 0. (3.14)

Let {xn} ⊂ X be an α-approximating sequence for GHVI(F, f, J). Then there exist un ∈ F (xn), n ∈ N
and a nonnegative sequence {εn} with εn → 0 such that

〈un − f, y − xn〉+ J◦(xn, y − xn) ≥ −εnα(y − xn), ∀y ∈ X, n ∈ N,

and so xn ∈ Ωα(εn) by the definition of Ωα(εn). It follows from (3.14) that

d(xn, S) ≤ e(Ωα(εn), S)→ 0.

Since the solution set S is compact, there exists x̄n ∈ S such that

‖xn − x̄n‖ = d(xn, S)→ 0. (3.15)

Again from the compactness of solution set S, {x̄n} has a subsequence {x̄nk
} converging strongly to

some x̄ ∈ S. It follows from (3.15) that

‖xnk
− x̄‖ ≤ ‖xnk

− x̄nk
‖+ ‖x̄nk

− x̄‖ → 0,

which implies that {xnk
} converges strongly to x̄. Therefore, GHVI(F, f, J) is strongly α-well-posed in the

generalized sense. This completes the proof.

The following theorem gives some conditions under which the generalized hemivariational inequality is
strongly α-well-posed in the generalized sense in Euclidean space Rn.

Theorem 3.11. Let F : Rn → CB(Rn) be a nonempty H-hemicontinuous and monotone multifunction.
If there exists some ε > 0 such that Ωα(ε) is nonempty and bounded. Then generalized hemivariational
inequality GHVI(F, f, J) is strongly α-well-posed in the generalized sense.

Proof. Suppose that {xn} is an α-approximating sequence for GHVI(F, f, J). Then there exist un ∈
F (xn), n ∈ N and a nonnegative sequence {εn} with εn → 0 as n→∞ such that

〈un − f, y − xn〉+ J◦(xn, y − xn) ≥ −εnα(y − xn), ∀y ∈ Rn, n ∈ N. (3.16)

Let ε > 0 be such that Ωα(ε) is nonempty and bounded. Then there exists n0 such that xn ∈ Ωα(ε) for
all n ≥ n0. So, it follows that {xn} is bounded in Rn by the boundedness of Ωα(ε). Thus, there exists a
subsequence {xnk

} such that xnk
→ x̄ as k → ∞. Since mapping F is monotone and Clarke’s generalized

directional derivative J◦(x, y) is upper semicontinuous with respect to (x, y), it follows from (3.16) and the
property of the functional α that for any y ∈ Rn, v ∈ F (y),

〈v − f, y − x̄〉+ J◦(x̄, y − x̄) ≥ lim sup
k→∞

{〈v − f, y − xnk
〉+ J◦(xnk

, y − xnk
)}

≥ lim sup
k→∞

{〈unk
− f, y − xnk

〉+ J◦(xnk
, y − xnk

)}

≥ lim sup
k→∞

− εnk
α(y − xnk

)

= lim sup
k→∞

− α(εnk
(y − xnk

))

= −α(0) = 0.

(3.17)
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Given any y ∈ Rn we define yt = ty + (1 − t)x̄ = x̄ + t(y − x̄) for all t ∈ (0, 1). Replacing y and v in
(3.17) by yt and vt, respectively, we deduce from the positive homogeneousness of the function y 7→ J◦(x, y)
that for each vt ∈ F (yt)

〈vt − f, y − x̄〉+ J◦(x̄, y − x̄) ≥ 0. (3.18)

Since F : Rn → CB(Rn) is a nonempty compact-valued mapping, F (yt) and F (x̄) are nonempty
compact sets. Hence, by Nadler’s result [24] we know that for each t ∈ (0, 1) and each fixed vt ∈ F (yt) there
exists an ut ∈ F (x̄) such that ‖vt− ut‖ ≤ H(F (yt), F (x̄)). Since F (x̄) is compact, without loss of generality
we may assume that ut → ū ∈ F (x̄) as t→ 0+. Since F is H-hemicontinuous, we obtain that

‖vt − ut‖ ≤ H(F (yt), F (x̄))→ 0 as t→ 0+,

which immediately leads to

‖vt − ū‖ ≤ ‖vt − ut‖+ ‖ut − ū‖ → 0 as t→ 0+.

Taking the limit as t→ 0+ in (3.18), we get

〈ū− f, y − x̄〉+ J◦(x̄, y − x̄) ≥ 0.

Since y ∈ Rn is arbitrary, it follows that x̄ solves GHVI(F, f, J). Therefore, GHVI(F, f, J) is strongly
α-well-posed in the generalized sense. This completes the proof.

Remark 3.12. Lemmas 3.7–3.8 and Theorems 3.9–3.11 improve, extend and develop Lemmas 3.1–3.2 and
Theorems 3.1-3.3 in [30] to a great extent because the generalized hemivariational inequality is more general
than the hemivariational inequality considered in Lemmas 3.1–3.2 and Theorems 3.1–3.3 in [30].

3.2. Relations of Well-Posedness Between GHVI and IP

In this subsection, we introduce the concept of α-well-posedness for the inclusion problem and investigate
the relations between the α-well-posedness of generalized hemivariational inequality and the α-well-posedness
of inclusion problem. In what follows we always assume that T is a nonempty set-valued mapping from the
real reflexive Banach space X to its dual space X∗. The inclusion problem associated with mapping T is
defined by

IP(T ) : find x ∈ X such that 0 ∈ T (x). (3.19)

Definition 3.13. A sequence {xn} ⊂ X is called an α-approximating sequence for inclusion problem IP(T )
if there exist wn ∈ T (xn), n ∈ N and a nonnegative sequence {εn} with ‖wn‖ + εn → 0 as n → ∞, such
that

〈wn, y − xn〉 ≥ −εnα(y − xn), ∀y ∈ X, n ∈ N.

Definition 3.14. We say that IP(T ) is strongly (resp. weakly) α-well-posed if it has a unique solution and
every α-approximating sequence converges strongly (resp. weakly) to the unique solution of IP(T ).

Definition 3.15. We say that IP(T ) is strongly (resp. weakly) α-well-posed in the generalized sense if the
solution set S of IP(T ) is nonempty and every α-approximating sequence has a subsequence which converges
strongly (resp. weakly) to some point of solution set S of IP(T ).

An equivalent multivalued formulation of GHVI(F, f, J) is given by the following lemma.

Lemma 3.16. x ∈ X is a solution of generalized hemivariational inequality GHVI(F, f, J) if and only if x
is a solution of the following inclusion problem

IP(F − f + ∂J) : find x ∈ X such that 0 ∈ F (x)− f + ∂J(x).
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Proof. “Sufficiency”. Let x be a solution of the inclusion problem IP(F−f+∂J). Then, there exist u ∈ F (x)
and ξ ∈ ∂J(x) such that

0 = u− f + ξ.

By multiplying y − x at both sides of the last equality, we obtain, from the definition of the Clarke’s
generalized gradient for locally Lipschitz functional, that

0 = 〈u− f + ξ, y − x〉
≤ 〈u− f, y − x〉+ J◦(x, y − x), ∀y ∈ X,

which implies that x is a solution of GHVI(F, f, J).

“Necessity”. Suppose that x is a solution of GHVI(F, f, J), which means that for some u ∈ F (x),

〈u− f, y − x〉+ J◦(x, y − x) ≥ 0, ∀y ∈ X.

For any w ∈ X, letting y = w + x ∈ X in the last inequality yields

J◦(x,w) ≥ 〈f − u,w〉, ∀w ∈ X.

Thus, by the definition of the Clarke’s generalized gradient for locally Lipschitz functional, f−u ∈ ∂J(x),
which implies that

f ∈ u+ ∂J(x) ⊂ F (x) + ∂J(x),

that is, x is a solution of the inclusion problem IP(F − f + ∂J).

The following two theorems establish the relations between the strong (resp. weak) α-well-posedness of
generalized hemivariational inequality and the strong (resp. weak) α-well-posedness of inclusion problem.

Theorem 3.17. Generalized hemivariational inequality GHVI(F, f, J) is strongly (resp. weakly) α-well-
posed if and only if inclusion problem IP(F − f + ∂J) is strongly (resp. weakly) α-well-posed.

Proof. “Necessity”. Suppose that GHVI(F, f, J) is strongly (resp. weakly) α-well-posed. Then GHVI(F, f, J)
has a unique solution x∗. By Lemma 3.16, x∗ also is the unique solution of inclusion problem IP(F−f+∂J).
Let {xn} be an α-approximating sequence for IP(F−f+∂J). Then there exist wn ∈ F (xn)−f+∂J(xn), n ∈
N and a nonnegative sequence {εn} with ‖wn‖+ εn → 0 as n→∞, such that

〈wn, y − xn〉 ≥ −εnα(y − xn), ∀y ∈ X, n ∈ N.

So, it follows from wn ∈ F (xn)− f + ∂J(xn), n ∈ N that for some un ∈ F (xn), n ∈ N,

J◦(xn, y − xn) ≥ 〈−un + f + wn, y − xn〉, ∀y ∈ X, n ∈ N,

and hence

〈un − f, y − xn〉+ J◦(xn, y − xn) ≥ 〈wn, y − xn〉 ≥ −εnα(y − xn), ∀y ∈ X, n ∈ N, (3.20)

which immediately implies that {xn} is an α-approximating sequence for GHVI(F, f, J). Therefore, it follows
from the strong (resp. weak) α-well-posedness of GHVI(F, f, J) that {xn} converges strongly (resp. weakly)
to the unique solution x∗. So, the inclusion problem IP(F −f +∂J) is strongly (resp. weakly) α-well-posed.

“Sufficiency”. Conversely, suppose that inclusion problem IP(F − f + ∂J) is strongly (resp. weakly)
α-well-posed. Then IP(F −f +∂J) has a unique solution x∗, which together with Lemma 3.16, implies that
x∗ is the unique solution for GHVI(F, f, J). Let {xn} be an α-approximating sequence for GHVI(F, f, J).
Then there exist un ∈ F (xn), n ∈ N and a nonnegative sequence {εn} with εn → 0 as n→∞ such that

〈un − f, y − xn〉+ J◦(xn, y − xn) ≥ −εnα(y − xn), ∀y ∈ X.
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From the fact that
J◦(xn, y − xn) = max{〈h, y − xn〉 : h ∈ ∂J(xn)},

we obtain that there exists a h(xn, y) ∈ ∂J(xn) such that

〈un − f, y − xn〉+ 〈h(xn, y), y − xn〉 ≥ −εnα(y − xn), ∀y ∈ X. (3.21)

By virtue of Proposition 2.1, ∂J(xn) is a nonempty, convex and bounded subset in X∗ which implies
that {un−f +h : h ∈ ∂J(xn)} is nonempty, convex and bounded in X∗. So, it follows from Lemma 2.6 with
ϕ(x) = εnα(x− xn) and (3.21) that there exists a h(xn) ∈ ∂J(xn), which is independent on y, such that

〈un − f, y − xn〉+ 〈h(xn), y − xn〉 ≥ −εnα(y − xn), ∀y ∈ X. (3.22)

For the sake of simplicity we write hn = h(xn). So, it follows from (3.22) that

〈wn, y − xn〉 ≥ −εnα(y − xn), ∀y ∈ X, (3.23)

where wn = un − f + hn for all n ∈ N. It is clear that

wn = un − f + hn ∈ F (xn)− f + ∂J(xn), ∀n ∈ N.

Next we claim that ‖wn‖ → 0 as n→∞, that is, for any ε > 0 there exists an integer N ≥ 1 such that
‖wn‖ < ε for all n ≥ N . As a matter of fact, note that X is a reflexive Banach space, i.e., X = X∗∗. We
denote by J the normalized duality mapping from X∗ to its dual X∗∗(= X) defined by

J (ν) = {x ∈ X : 〈ν, x〉 = ‖ν‖2 = ‖x‖2}, ∀ν ∈ X∗.

Hence, for each n ∈ N there exists j(wn) ∈ J (wn) such that

〈wn, j(wn)〉 = ‖wn‖2 = ‖j(wn)‖2.

Putting y = xn − j(wn) in (3.23), we get

‖wn‖2 ≤ εnα(−j(wn)), ∀n ∈ N. (3.24)

If ‖wn‖ 6→ 0 as n→∞, then there exists ε0 > 0 and for each k ≥ 1 there exists wnk
such that

‖wnk
‖ ≥ ε0.

This together with (3.24) and the property of the functional α, leads to

0 < ε0 ≤ ‖wnk
‖ ≤ εnk

‖wnk
‖
α(−j(wnk

)) = α(−εnk

j(wnk
)

‖wnk
‖

)→ α(0) = 0 as k →∞,

which reaches a contradiction. This means that {xn} is an α-approximating sequence for IP(F − f + ∂J).
Since inclusion problem IP(F − f + ∂J) is strongly (resp. weakly) α-well-posed, we deduce that {xn}
converges strongly (resp. weakly) to the unique solution x∗. Therefore, GHVI(F, f, J) is strongly (resp.
weakly) α-well-posed. This completes the proof.

Theorem 3.18. Generalized hemivariational inequality GHVI(F, f, J) is strongly (resp. weakly) α-well-
posed in the generalized sense if and only if inclusion problem IP(F − f + ∂J) is strongly (resp. weakly)
α-well-posed in the generalized sense.

Proof. The proof is similar to the proof of Theorem 3.17 and so we omit it here.

Remark 3.19. Compared with Theorems 3.4 and 3.5 in [30], our Theorems 3.17 and 3.18 use the generalized
hemivariational inequality GHVI(F, f, J) in place of the hemivariational inequality HVI(A, f, J), the inclu-
sion problem IP(F − f + ∂J) in place of the inclusion problem IP(A − f + ∂J) and the α-well-posedness
(resp. the α-well-posedness in the generalized sense) in place of the well-posedness (resp. the well-posedness
in the generalized sense). All in all, our Theorems 3.17 and 3.18 improve, extend and develop Theorems 3.4
and 3.5 in [30] to a great extent.
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