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Abstract

In this paper, a constraint shifting homotopy method for solving fixed point problems on nonconvex sets
is proposed and the existence and global convergence of the smooth homotopy pathways is proved under
some mild conditions. Compared with the previous results, the newly proposed homotopy method requires
that the initial point needs to be only in the shifted feasible set not necessarily in the original feasible
set, which relaxes the condition that the initial point must be an interior feasible point. Some numerical
examples are also given to show the feasibility and effectiveness of our method. c©2016 All rights reserved.
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1. Introduction and Preliminaries

The well known Brouwer fixed point theorem says: if Ω ⊂ Rn is a bounded closed and convex set,
F : Ω → Ω is a continuous self-mapping, then F has a fixed point in Ω. To computing the Brouwer fixed
point, in 1976, Kellogg et al. [4] presented a homotopy method of a twice continuous differentiable mapping
and gave its constructive proof in a convex set. In 1978, Chow et al. [3] constructed the following homotopy
for computing Brouwer fixed point in convex set:

(1− t)(x− F (x)) + t(x− x0) = 0, (1.1)
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which is used by many authors to compute fixed points and solutions of nonlinear systems.
In 1996, to relax the convex condition, Yu and Lin [12] first constructed a combined homotopy for

computing Brouwer fixed points in nonconvex bounded sets Ω = {x : gi(x) ≤ 0, i = 1, 2, . . . ,m} as follows:

H(w, t) =

 (1− t)(x− F (x) +
m∑
i=1
∇gi(x)yi) + t(x− x0)

Y g(x)− tY 0g(x0)

 , (1.2)

where (x0, y0) ∈ Ω0 × Rm++, yi ≥ 0, t ∈ [0, 1], Y and Y 0 denote the diagonal matrices whose ith diagonal

element are yi and y0i respectively, and the strict feasible set Ω0 = {x : gi(x) < 0, i = 1, 2, . . . ,m}. Existence
and convergence of a smooth homotopy pathway were proven under the nonemptiness and boundedness of
Ω0, full column rank of the matrix {∇gi(x), i ∈ I(x)} for any x ∈ ∂Ω, where I(x) = {i ∈ {1, 2, . . . ,m} :
gi(x) = 0}, and the so called normal cone condition (NCC): for any x ∈ ∂Ω = Ω\Ω0, {x+

∑
i∈I(x) yi∇gi(x) :

yi ≥ 0, i ∈ I(x)} ∩ Ω = {x}.

In 2003, Lin, Yu and Zhu [5] constructed a modified combined homotopy for computing Brouwer fixed
points in nonconvex bounded sets Ω = {x : gi(x) ≤ 0, i = 1, 2, . . . ,m} as follows:

H(w, t) =

 (1− t)(x− F (x) +
m∑
i=1

ξi(x)yi) + t(x− x(0))

Y g(x)− tY (0)g(x(0))

 , (1.3)

where ξi(x) ∈ Rn, i = 1, 2, . . . ,m is a system of C2 mappings. Existence and convergence of a smooth

homotopy pathway were proven under the nonemptiness and boundedness of Ω0, positive linear independence
of ξi(x), i = 1, . . . ,m, and the quasi normal cone condition (QNCC) which is weaker than NCC: ∀x ∈ ∂Ω,
{x+

∑
i∈I(x)

yiξi(x) : yi ≥ 0, i ∈ I(x) and
∑

i∈I(x)
yi > 0} ∩ Ω = {x}.

In 2008, Su and Liu [7] proposed a modified combined homotopy interior point method for computing
Brouwer fixed point in a broader class of nonconvex bounded sets with both inequality and equality con-
straints. In 2013, Zhu, Yu and Shang [14] proposed a modified combined homotopy method for computing
fixed point of a self-mapping in a general unbounded nonconvex sets under much weaker pseudo cone condi-
tion. However, these combined homotopy methods require the initial point must be an interior point of the
original feasible set. In 2015, Su and Qian [8] generalized the combined homotopy interior point method to
solve Brouwer fixed point problems in nonconvex unbounded sets and presented a modified combined ho-
motopy method to enlarge the chosen scope of initial points. But, the required weak normal cone condition
can’t be satisfied at the boundary of the original constraint set, and hence the equivalent condition of the
existence for the fixed point can’t hold.

As it is known that fixed point problem is an importantly research field in the nonlinear analysis,
especially the algorithm construction of computing the fixed point has attracted many attentions and lots
of results have appeared, see e.g., [2, 9–11, 13]. Therefore, the aim of this paper is to proposed a new
globally convergent algorithm for computing fixed point of self-mapping. Inspired by the existed results,
to relax the required condition that the initial point must be a interior point of the original feasible set, a
constraint shifting combined homotopy method for computing fixed point on nonconvex sets is presented
and the existence and global convergence of the smooth homotopy pathways is proved under some mild
conditions.

In Section 2, an equivalent condition of the existence of fixed point will be given and some lemmas
from differential topology which will be used for proving the main result will be presented. In Section 3, a
constraint shifting combined homotopy is constructed and the existence and global convergence of a smooth
path from any given initial point in shifted feasible set to a fixed point of any twice continuous differentiable
self-mapping will be proved. In section 4, some numerical examples will be given to show the feasibility and
effectiveness of the proposed method.
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2. Preliminaries

Throughout the paper, the closed subset Ω is defined as follows:

Ω = {x ∈ Rn : gi(x) ≤ 0, i = 1, 2, . . . ,m}, (2.1)

where gi(x) are all twice continuous differential functions. Let g = (g1, . . . , gm)T , Y = diag(y), ∇gi(x)T =
∂gi(x)
∂x , Rm+ and Rm++ be the nonnegative and positive orthant of Rm.

Yu and Lin [12] proved the following theorem which is an importantly equivalent condition of the existence
for fixed point:

Theorem 2.1. If Ω is defined as (2.1) and the following conditions hold:

(YL1) Ω0 is nonempty and Ω is bounded;

(YL2) ∀x ∈ ∂Ω, {5gi(x), i ∈ B(x)} is a matrix of full row rank;

(YL3) for any x ∈ ∂Ω, {x+
∑

i∈B(x) yi∇gi(x) : yi ≥ 0, i ∈ B(x)}∩Ω = {x} where B(x) = {i ∈ {1, . . . ,m} :
gi(x) = 0} denotes the active index set at x. Then, for any continuous differentiable mapping F : Ω→
Ω, x ∈ Ω is a fixed point of F (x) in Ω iff there exists a vector y ∈ Rm+ , such that (x, y) is a solution
of system:

x− F (x) +∇g(x)y = 0,
Y g(x) = 0, g(x) ≤ 0, y ≥ 0.

(2.2)

In this paper, a shifted constraint function will be constructed as g̃i(x, t) = gi(x)− tαz0i , which is three
times continuous differentiable, i = 1, 2, . . . ,m, where t ∈ [0, 1], α ∈ R+, and z0 ∈ Rm+ .

For the sake of convenience, denote Ω(t) = {x ∈ Rn : g̃i(x, t) ≤ 0, i = 1, 2, . . . ,m, z ∈ Rn+}, Ω(t)0 = {x ∈
Rn : g̃i(x, t) < 0, i = 1, 2, . . . ,m, z ∈ Rn+}, ∂Ω(t) = Ω(t) \ Ω(t)0, and I(t, x) = {i ∈ {1, . . . ,m} : g̃i(x, t) =
0, z ∈ Rm++}. For fixed z0 ∈ Rm++, α ∈ R+ and any t ∈ [0, 1], let Ω(t)0 be the connecting set of strictly
feasible set.

To prove our main result, the following assumptions will be used.

Assumption 2.2.

(A1) (Slater’s condition) There exists a z0 ∈ Rm++ and α ∈ R+, so that for any t ∈ [0, 1], Ω(t)0 is nonempty
and Ω(t) is bounded;

(A2) for any x ∈ ∂Ω(t), the matrix {5gi(x) : i ∈ I(t, x), t ∈ [0, 1]} is full row rank;

(A3) for any t ∈ [0, 1], the normal cone of Ω(t) at any x ∈ ∂Ω(t) only meets Ω(t) at x, i.e., for any x ∈ ∂Ω(t),

{x+
∑

i∈I(t,x)

yi∇gi(x) : yi ≥ 0, i ∈ I(t, x)} ∩ Ω(t) = {x}. (2.3)

Remark 2.3. When the parameter t = 0, the conditions (A1)-(A3) of Assumption 2.2 are the same as
conditions (YL1)-(YL3), so the Theorem 2.1 still holds under the Assumption 2.2. Hence, the proof on the
equivalent condition of the existence for fixed point is the same as [12] and is omitted here under Assumption
2.2 as t = 0.

The following lemmas from differential topology will be used in the next section. Let U ⊂ Rn be an
open set and φ : U → Rp be a Cα (α > max{0, n− p}) mapping; we say that y ∈ Rp is a regular value for
φ if

Range[∂φ(x)/∂x] = Rp, ∀ ∈ φ−1(y).

Lemma 2.4 ([6]). Let V ⊂ Rn, U ⊂ Rm be open sets, and let φ : V × U → Rk be a Cα mapping, where
α > max{0,m − k}. If 0 ∈ Rk is a regular value of φ, then for almost all a ∈ V , 0 is a regular value of
φa = F (a, ·).
Lemma 2.5 ([6]). Let φ : U ⊂ Rn → Rp be a Cα (α > max{0, n − p}). If 0 is a regular value of φ, then
φ−1(0) consists of some (n− p) dimensional Cα manifolds.
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3. Main Result

In this paper, to solve the system (2.2), for any given z0 ∈ Rm++ and α ∈ R+, a constraint shifting
homotopy equation is constructed as follows:

H(w, t) =

(
(1− t)(x− F (x) + yT∇g̃(x, t)) + t(x− x0)

Y g̃(x, t)− tY 0g̃(x0, 1)

)
= 0, (3.1)

where w = (x, y) ∈ Rn+m, (x0, y0) ∈ Ω(1)0 ×Rm++.
When t = 0, the homotopy equation H(w, 0) = 0 becomes the system (2.2).
When t = 1, the homotopy equation H(w, 1) = 0 becomes:

x− x0 = 0,
Y (g(x)− z0)− Y 0(g(x0)− z0) = 0.

It is obvious that the homotopy equation H(w, 1) = 0 has a unique solution w = w0.
For a given x0 ∈ Ω(1)0, the zero-set of homotopy equation (3.1) is denoted as follows:

H−1(0) = {(w, t) ∈ Ω(1)0 ×Rm+ × (0, 1] : H(w, t) = 0}. (3.2)

Theorem 3.1. Suppose that Ω is defined as (2.1). Let Assumption 2.2 holds and gi(x), i = 1, 2, . . . ,m be
C3 functions, then for any twice continuous differentiable mapping F : Rn → Rn satisfying F (Ω) ⊂ Ω, we
have

(1) (Existence of the fixed point) F(x) has at least a fixed point in Ω;

(2) (Homotopy method for computing the fixed point) For almost all w0 = (x0, y0) ∈ Ω(1)0 × Rm++, the
homotopy equation (3.1) determines a smooth curve Γ ⊂ Ω(t)0 × (0, 1] starting from (w0, 1). When
t → 0, the limit set T × 0 ⊂ Ω(0) × 0 of Γ is nonempty, and the x component of any point in T is a
fixed point of F (x) in Ω.

Proof. For a fixed z0 ∈ Rm++, let H(w,w0, t) be the same map with H(w, t) but taking x0 as a variate. We
use H ′(w,w0, t) denote the Jacobian matrix of H(w,w0, t), then

H ′(w,w0, t) = (
∂H(w,w0, t)

∂w
,
∂H(w,w0, t)

∂w0
,
∂H(w,w0, t)

∂t
).

For any w0 ∈ Ω(1)0 ×Rm++ and t ∈ (0, 1], we have

∂H(w,w0, t)

∂w0
=

(
−tI 0

−tY 0∇g(x0)T −tG̃(x0)

)
,

where I is an identity matrix and G̃(x(0)) = diag(g̃1(x
0, 1), . . . , g̃m(x0, 1)) = diag(g1(x

0)− z01 , . . . , gm(x0)−
z0m). By a simple calculation, we obtain that

|∂H(w,w0, t)

∂w0
| = (−1)m+ntm+nΠm

i=1(gi(x
0)− zi0).

From x0 ∈ Ω(1)0, we have gi(x
0)− zi0 < 0, i = 1, . . . ,m, and hence |∂H(w,w0,t)

∂w0 | 6= 0.
Therefore, 0 is a regular value of H(w,w0, t). By the Lemma 2.4 (the parameterized Sard theorem),

for almost all w0 ∈ Ω(1)0 × Rm++, 0 is a regular value of H(w, t) : Ω(t)0 × Rm++ × (0, 1] → Rn+m. By the
Lemma 2.5, H−1(0) consists of some smooth curves. Since H(w0, 1) = 0, there must be a smooth curve,
which says Γ in H−1(0) starting from (w0, 1). And by the classification theorem of one-dimensional smooth
manifolds, i.e., a one-dimensional smooth manifold is diffeomorphic to a unit circle or a unit interval, Γ must
be diffeomorphic to a unit circle or a unit interval (0, 1].
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Since the matrix
∂H(w0, w0, 1)

∂w0
=

(
I 0

Y 0∇g(x(0))T G̃(x0)

)
is nonsingular, where G̃(x0) = diag(gi(x

0)−zi0), we have that Γ isn’t diffeomorphic to a unit circle. That is,
Γ is diffeomorphic to a unit interval (0, 1]. When t→ 0, Γ must terminate in or approach to the boundary
of ∂(Ω(t)0 ×Rm+ × (0, 1]).

Let (w∗, t∗) = (x∗, y∗, t∗) be a limit point of Γ when t→ 0, only the following three cases are possible:

(i) (w∗, t∗) ∈ Ω(1)×Rm++ × {1};

(ii) (w∗, t∗) ∈ ∂(Ω(1)0 ×Rm+ )× (0, 1];

(iii) (w∗, t∗) ∈ Ω0 ×Rm+ × {0};

Since the equation H(w0, 1) = 0 has only one solution w0 in Ω(1)0, case (i) is impossible.
If case (ii) happens, there must exist a sequence of {(wk, tk)} ⊂ Γ such that ‖xk‖ → ∞ or g̃i(x

k, tk) =
gi(x

k) − tαk zi
0 → 0 for some 1 ≤ i ≤ m. Because Ω(t)0 (t ∈ (0, 1]) and (0, 1] are all bounded, there

exists a sequence of points {(wk, tk)} ⊂ (w, t) such that |(wk, tk)| → ∞ and a nonempty binding set
I∗(t∗, x

∗) ⊂ {1, . . . , m}, such that xk → x∗, tk → t∗, yki → y∗i for i /∈ I∗(t∗, x
∗) and yki → ∞ for

i ∈ I∗(t∗, x∗).
From the second equation of (3.1), we have

Y k(g(xk)− tαk z0) = tkY
(0)(g(x0)− z0).

Hence, we get I∗(t∗, x
∗) ⊂ I(t∗, x

∗).
From the first equation of (3.1) and ∇g̃(xk, tk) = ∇g(xk), we have

(1− tk)(xk − F (xk) +∇g(xk)yk) + tk(xk − x(0)) = 0. (3.3)

And only the following two subcases are possible: (a) t∗ = 1; (b) t∗ ∈ [0, 1).
(1) When t∗ = 1, rewrite (3.3) as∑

i∈I(1,x∗)

(1− tk)∇gi(xk)yki + xk − x0 = (1− tk)[−
∑

i/∈I(1,x∗)

yki∇gi(xk)

− (xk − F (xk)) + xk − x0].
(3.4)

Since xk ∈ Ω(1) and {yk}, i /∈ I(1, x∗) are bounded, when k →∞, the equation (3.4) becomes

lim
k→∞

[
∑

i∈I(1,x∗)

(1− tk)∇gi(xk)yki + xk − x(0)] = 0. (3.5)

From xk → x∗ as k →∞, (3.5) becomes

x0 =
∑

i∈I(1,x∗)

lim
k→∞

((1− tk)yki )∇gi(x∗) + x∗, (3.6)

which contradicts with the condition (A3) of Assumption 2.2.
(2) When t∗ < 1, rewrite (3.3) as

(1− tk)(xk − F (xk) +
∑

i/∈I(t∗,x∗)∇gi(x
k)yki ) + tk(x

k − x0)
+(1− tk)

∑
i∈I(t∗,x∗)∇g

k
i (xk)yki = 0.

(3.7)

As k →∞, since Ω(t) and yki →∞ for i /∈ I(t∗, x
∗) are bounded, then the first and second parts of equation

(3.7) are bounded. But yki →∞ for i ∈ I(t∗, x
∗) as k →∞, the third part in the left-hand side of equation

(3.7) tends to infinity. The equation (3.7) is impossible.
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Thus, by the discussion of (1) and (2), we get Γ is a bounded curve in Ω(1)0 ×Rm++ × (0, 1]. Therefore,
case (ii) is impossible.

In conclusion, (iii) is the only possible case, hence w∗ is a solution of (3.1), and by Theorem 2.1, x∗ is a
fixed point of F (x) in Ω.

The proof is complete.

4. Numerical test

In this section, we will give some numerical examples to numerically trace the smooth curve Γ. By
Theorem 3.1, the homotopy (3.1) generates a smooth curve Γ for almost all (w0, t) ∈ Ω(1)0 × Rm++ × (0, 1]
as t → 0, one can find a fixed point of F (x) in Ω. Letting s be the arc length of Γ, we can parameterize Γ
with respect to s, i.e.

H(w(s), t(s)) = 0,
w(0) = w0, t(0) = 1,

(4.1)

By differentiating (4.1), we can get

H ′(w(s), t(s))

(
ẇ
ṫ

)
= 0,

w(0) = w0, t(0) = 1,
(4.2)

where H ′ is the derivative of H. The smooth curve Γ is the same as the solution curve of the initial value
problem to ordinary differential equations (4.2). The numerical path-tracing of the homotopy path Γ can
be implemented by the predictor-corrector procedure, some detailed discussions on the predictor-corrector
algorithms and the convergence can be seen, e.g., [1, 12, 15].

In the following examples, the parameters in homotopy (3.1) are chosen as z0 = (2, 2), α = 0.1 and the
termination tolerance is ε = 10−6.

Example 4.1. To find a fixed point of self-mapping:

F (x) = (−x1 −
1

2
,−x2)T ,

and the constraint set is

Ω = {(x1, x2) ∈ R2 : x21 + x22 ≤ 1, (x1 − 1)2 + x22 ≥ 1}.

In this example, the initial points are chosen as x0 = (1, 1) and x0 = (0.8,−0.6), which are not in the
original feasible set. By the homotopy equation (3.1), we can get the unique fixed point (-0.25,0). The
detailed homotopy tracing pathway see Figure 1.
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Figure 1: The homotopy tracing pathway of Example 4.1
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Example 4.2. To find a fixed point of self-mapping:

F (x) = (x1,−x2)T ,

and the constraint set is
Ω = {(x1, x2) ∈ R2 : x21 + x22 ≤ 4, x22 ≥ x1 − 1}.

In this example, the initial points are chosen as x01 = (2,−0.6) and x02 = (1, 2), which are not in the
original feasible set. By the homotopy equation (3.1), we can get the fixed point (0.4024,0) and (-0.9451,0),
respectively. The detailed homotopy tracing pathway see Figure 2.
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Figure 2: The homotopy tracing pathway of Example 4.2
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