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Abstract

Recently, Boikanyo [O. A. Boikanyo, Appl. Math. Comput., 265 (2015), 844–853] constructed an
algorithm for demicontractive operators and obtained the strong convergence theorem for the split common
fixed point problem. In this paper, we mainly consider the viscosity iteration algorithm of the algorithm
Boikanyo to approximate the split common fixed point problem, and we get the generated sequence strongly
converges to a solution of this problem. The main results in this paper extend and improve some results of
Boikanyo [O. A. Boikanyo, Appl. Math. Comput., 265 (2015), 844–853] and Cui and Wang [H. H. Cui, F.
H. Wang, Fixed Point Theory Appl., 2014 (2014), 8 pages]. The research highlights of this paper are novel
algorithms and strong convergence results. c©2016 All rights reserved.
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1. Introduction

In 1994, Censor and Elfving [6] proposed the split feasibility problem (SFP), which is to find a point

x ∈ C, such that Ax ∈ Q,

where C is a nonempty closed convex subset of a Hilbert space H1, Q is a nonempty closed convex subset
of a Hilbert space H2, and A : H1 → H2 is a bounded linear operator.
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To solve this problem, Censor and Elfving [6] introduced the original algorithm in the finite-dimensional
space Rn in 1994,

xn+1 = A−1PQPA(C)Axn, (1.1)

where C and Q are nonempty closed convex subsets of Rn, the bounded linear operator A of Rn is a n× n
matrix and PQ is the orthogonal projection onto the sets onto Q.

But this algorithm (1.1) involves the computation of the inverse A−1 (assuming the existence of the
inverse of A) and thus it does not become popular.

In order to overcome the disadvantage of this algorithm, Byrne [2, 3] introduced the following algorithm:

xn+1 = PC(xn − γA∗(I − PQ)Axn), n ≥ 0,

where 0 < γ < 2/ρ with ρ being the spectral radius of the operator A∗A and PC , PQ denote the orthogonal
projection onto the sets C, Q, respectively.

However, the step size of the CQ algorithm is fixed and related to spectral radius of the operator A∗A,
and the orthogonal projection onto the sets C and Q is not easily calculated usually.

Based on the applications of the SFP in intensity-modulated radiation therapy, signal processing, and
image reconstruction, the SFP has received more and more attention and how to approximate the solutions
of the SFP are studied extensively by so many scholars, see [4, 5, 7, 10, 12, 16–18, 20, 21, 24–27].

In 2009, Censor and Segal [8] proposed the split common fixed point problem (SCFP), which is to find
a point

x ∈ Fix(U), such that Ax ∈ Fix(T ), (1.2)

where U : H1 → H1 and T : H2 → H2, and Fix(U) and Fix(T ) denote the fixed point sets of U and T .
It is obvious to see the SCFP is a particular case of SFP and closely related to SFP.
For solving this problem, the original algorithm for directed operator was introduced by Censor and

Elfving [8] in the following,
xn+1 = U(xn − ρA∗(I − T )Axn), n ≥ 0,

where the step size ρ satisfies 0 < ρ < 2
‖A‖2 , and they proved that the sequence {xn} weakly converges to a

solution of the SCFP (1.2) if the SCFP consists. But the disadvantage of this algorithm is the choice of the
step size ρ, which depends on the norm of operator A. Then, some authors do some improvement studies.
But the improvement mainly focuses on the extension of the operator, such as

In 2010, Moudafi [15] extended to demicontractive mappings.
In 2011, he [14] also extended to quasi-nonexpansive operators.
In 2011, Wang and Xu [20] extended to finitely many directed operators.
The detailed relation of the directed operator, quasi-nonexpansive operator and demicontractive operator

can see Section 3. Also there are some other researchers studied the fixed point theory and its applications
[28].

Until 2014, Cui and Wang [9] proposed the following algorithm, and they proved the sequence {xn}
converges weakly to a solution of the SCFP (1.2),

xn+1 = Uλ(xn − ρnA∗(I − T )Axn), n ≥ 0, (1.3)

where the step size ρn is chosen in the following way,

ρn =

{
(1−τ)‖(I−T )Axn‖2
2‖A∗(I−T )Axn‖2 , Axn 6= T (Axn),

0, otherwise.
(1.4)

The step size of this algorithm ρn does not depend on the the norm of operator A and searches automatic.
In 2015, Boikanyo [1] extended the main results of Cui and Wang [9] and constructed the following

Halpern’s type algorithm for demicontractive operators that converges strongly to a solution of the SCFP
(1.2),

xn+1 = αnu+ (1− αn)Uλ(xn − ρnA∗(I − T )Axn), n ≥ 0, (1.5)



H. M. He, S. Y. Liu, R. D. Chen, X. Y. Wang, J. Nonlinear Sci. Appl. 9 (2016), 5332–5343 5334

and the step size ρn is chosen as (1.4).
Motivated by Boikanyo [1] and Xu [23], in this paper, we construct the viscosity algorithms of (1.5) for

demicontractive operators to approximate the solution of the SCFP (1.2),

xn+1 = αnf(xn) + (1− αn)Uλ(xn − ρnA∗(I − T )Axn), n ≥ 0, (1.6)

and the step size ρn is also chosen as (1.4).
And we prove the sequence {xn} generated by the (1.6) strongly converges to a solution x̂ of the SCFP

(1.2), and the x̂ solves the following variational inequality:

〈x̂− f(x̂), x̂− z〉 ≤ 0, ∀z ∈ S,

where S denotes the set of all solutions of the SCFP (1.2).

2. Preliminaries

Throughout this paper, we use xn ⇀ x to indicate that {xn} converges weakly to x. Similarly, xn → x
symbolizes the sequence {xn} converges strongly to x. N indicates the set of natural numbers.

Some concepts and lemmas will be useful in proving our main results as follows:
Let H be a Hilbert space endowed with the inner product 〈·, ·〉 and norm ‖ · ‖. Then the following

inequality holds
‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H. (2.1)

Definition 2.1. An operator T : H → H is said to be:

(i) nonexpansive if
‖Tx− Ty‖ ≤ ‖x− z‖, ∀x ∈ H;

(ii) quasi-nonexpansive if
‖Tx− z‖ ≤ ‖x− z‖, ∀x ∈ H, ∀z ∈ Fix(T );

(iii) directed if
〈z − Tx, x− Tx〉 ≤ 0, ∀x, y ∈ H, ∀z ∈ Fix(T ); (2.2)

(iv) τ−demicontractive with τ < 1 if

‖Tx− z‖2 ≤ ‖x− z‖2 + τ‖x− Tx‖2, ∀x, y ∈ H, ∀z ∈ Fix(T ).

It is easy to obtain (2.2) is equivalent to

‖z − Tx‖2 + ‖x− Tx‖2 − ‖x− z‖2 ≤ 0, ∀x, y ∈ H, ∀z ∈ Fix(T ).

Remark 2.2. The classes of k-demicontrative operators, directed operators, quasi-nonexpansive operators
and nonexpansive operators are closely related. By Definition 2.1, we easily obtain the following conclusion.

(i) The nonexpansive operator is quasi-nonexpansive operator.

(ii) The quasi-nonexpansive operator is 0−demicontrative operator.

(iii) The directed operator is −1−demicontrative operator.

Definition 2.3. Let T : H → H be an operator, then I−T is said to be demiclosed at zero, if for any {xn}
in H, the following implication holds

xn ⇀ x

(I − T )xn → 0

}
⇒ x = Tx.
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Note that the nonexpansive mappings are demiclosed at zero [11].

Definition 2.4. Let C be a nonempty closed convex subset of a Hilbert space H, the metric (nearest point)
projection PC from H to C is defined as follows.

Given x ∈ H, PCx is the only point in C with the property

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.

Lemma 2.5 ([19]). Let C be a nonempty closed convex subset of a Hilbert space H, PC is a nonexpansive
mapping from H onto C and is characterized as follows.

Given x ∈ H, there holds the inequality

〈x− PCx, x− PCx〉 ≤ 0, ∀y ∈ C.

Lemma 2.6 ([22]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + δn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=1 γn =∞;

(ii) lim sup
n→∞

δn
γn
≤ 0 or

∑∞
n=1 |δn| <∞.

Then lim
n→∞

an = 0.

Lemma 2.7 ([9]). Let A : H1 → H2 be a bounded linear operator and T : H2 → H2 a τ−demicontractive
operator with τ < 1. If A−1Fix(T ) 6=, then

(a) (I − T )Ax− 0↔ A∗(I − T )Ax− 0, ∀x ∈ H1.

(b) In addition, for z ∈ A−1Fix(T )

‖x− ρA∗(I − T )Ax− z‖2 ≤ ‖x− z‖2 − (1− τ)2

4

‖(I − T )Ax‖4

‖A∗(I − T )Ax‖2
, (2.3)

where x ∈ H1, Ax 6= T (Ax) and

ρ :=
1− τ

2

‖(I − T )Ax‖2

‖A∗(I − T )Ax‖2
.

Lemma 2.8 (Maingé [13]). Let U : H1 → H1 be a k−demicontractive operator with k < 1. Denote
Uλ := (1− λ)I + λU for λ ∈ (0, 1− k). Then for any x ∈ H1 and z ∈ Fix(U),

‖Uλx− z‖2 ≤ ‖x− z‖2 − λ(1− k − λ)‖x− Ux‖2. (2.4)

3. Main results

Algorithm 3.1. Choose an initial guess x0 ∈ H1, arbitrarily. Let f be a fixed contraction on Fix(U) with
coefficient α, λ ∈ (0, 1 − τ). Assume that the n-th iterate xn has been constructed. Then the (n + 1)-th
iterate via the following formula

xn+1 = αnf(xn) + (1− αn)Uλ(xn − ρnA∗(I − T )Axn), n ≥ 0, (3.1)

where A∗ is the adjoint of bounded linear operator A and the step size ρn is chosen in the following way.

ρn =

{
(1−τ)‖(I−T )Axn‖2
2‖A∗(I−T )Axn‖2 , Axn 6= T (Axn),

0, otherwise.
(3.2)
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Theorem 3.2. Assume the SCFP (1.2) is consistent (S 6= ∅). If αn ∈ (0, 1) satisfies lim
n→∞

αn = 0 and∑∞
n=0 αn = ∞, then the sequence {xn} generated by explicit algorithm (3.1) converges strongly to a point

x̂ ∈ S, and the x̂ = PSf(x̂), i.e., x̂ satisfies the following variational inequality:

〈x̂− f(x̂), x̂− z〉 ≤ 0, ∀z ∈ S. (3.3)

Proof. The proof is divided into three steps.

Step 1. We show that the sequence {xn} is bounded.
Denote yn := xn − ρnA∗(I − T )Axn, take z ∈ S, it follows from (3.1) that

‖xn+1 − z‖ = ‖αn(f(xn)− z) + (1− αn)(Uλyn − z)‖
≤ αn‖f(xn)− f(z)‖+ (1− αn)‖Uλyn − z‖+ αn‖f(z)− z‖
≤ ααn‖xn − z‖+ (1− αn)‖Uλyn − z‖+ αn‖f(z)− z‖.

(3.4)

• If ρn 6= 0, from (2.3) and (2.4), we can get

‖Uλyn − z‖2 ≤ ‖yn − z‖2 − λ(1− λ− k)‖yn − Uyn‖2

= ‖xn − ρnA∗(I − T )Axn − z‖2 − λ(1− λ− k)‖yn − Uyn‖2

≤ ‖xn − z‖2 −
(1− τ)2

4

‖(I − T )Axn‖4

‖A∗(I − T )Axn‖2

− λ(1− λ− k)‖yn − Uyn‖2.

Thus, we get
‖Uλyn − z‖ ≤ ‖xn − z‖. (3.5)

By applying (3.5) to (3.4), we obtain

‖xn+1 − z‖ ≤ ααn‖xn − z‖+ (1− αn)‖xn − z‖+ αn‖f(z)− z‖
≤ [1− (1− α)αn]‖xn − z‖+ αn‖f(z)− z‖

≤ max{‖xn − z‖,
1

1− α
‖f(z)− z‖}.

(3.6)

By induction, we get

‖xn − z‖ ≤ max{‖x0 − z‖,
1

1− α
‖f(z)− z‖}. (3.7)

Thus, the sequence {xn} is bounded, so is {f(xn)}.
• If ρn = 0, then yn = xn. From (2.4), we can get

‖Uλxn − z‖ ≤ ‖xn − z‖. (3.8)

By applying the inequality (3.8) to (3.4), the process is similar to (3.6), we can get (3.7), i.e., the sequence
{xn} is bounded, so is {f(xn)}.
Step 2. We show that the following inequality holds.

For a solution x̂ of the variational inequality (3.3),

‖xn+1 − x̂‖ ≤ (1− αn)‖xn − x̂‖2 + 2αn〈f(xn)− x̂, xn+1 − x̂〉. (3.9)

• If ρn = 0, from (2.1) and (2.4), we have

‖xn+1 − x̂‖2 ≤ (1− αn)‖Uλxn − x̂‖2 + 2αn〈f(xn)− x̂, xn+1 − x̂〉
≤ (1− αn)[‖xn − x̂‖2 − λ(1− k − λ)‖xn − Uxn‖2]

+ 2αn〈f(xn)− x̂, xn+1 − x̂〉.
(3.10)

So,
‖xn+1 − x̂‖2 ≤ (1− αn)‖xn − x̂‖2 + 2αn〈f(xn)− x̂, xn+1 − x̂〉.

Thus, the inequality (3.9) is obtained.
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• If ρn 6= 0, from (2.1) and (2.3), we have

‖xn+1 − x̂‖2 ≤ (1− αn)‖Uλyn − x̂‖2 + 2αn〈f(xn)− x̂, xn+1 − x̂〉

≤ (1− αn)[‖xn − x̂‖2 −
(1− τ)2

4

‖(I − T )Axn‖4

‖A∗(I − T )Axn‖2
]

− λ(1− αn)(1− k − λ)‖yn − Uyn‖2

+ 2αn〈f(xn)− x̂, xn+1 − x̂〉.

(3.11)

So,
‖xn+1 − x̂‖2 ≤ (1− αn)‖xn − x̂‖2 + 2αn〈f(xn)− x̂, xn+1 − x̂〉.

Thus, the inequality (3.9) is obtained.

Step 3. We show that xn → x̂.
This step of proof is divided into two cases. Denote sn := ‖xn − x̂‖2.

Case 1. Assume that there is a positive integer n0 such that the sequence {sn} is decreasing for all n ≥ n0,
then the sequence {sn} is convergent by the monotonic bounded principle. First, we show that

lim sup
n→∞

〈f(x̂)− x̂, xn − x̂〉 ≤ 0. (3.12)

• If ρn = 0, from (3.10) and the boundedness of {xn} and {f(xn)}, we get

λ(1− k − λ)‖xn − Uxn‖2 ≤ sn − sn+1 + αnK,

where K is a nonnegative real constant such that K ≥ supn∈N{2〈f(xn)− x̂, xn+1 − x̂〉}.
Since the sequence {sn} is convergent, then

‖xn − Uxn‖ → 0, as n→∞. (3.13)

From (3.2), the following holds clearly

‖(I − T )Axn‖ → 0, as n→∞. (3.14)

Based on the boundedness of {xn}, there exists a subsequence {xnk
} of {xn} and xnk

⇀ q such that

lim sup
n→∞

〈f(x̂)− x̂, xn − x̂〉 = lim
k→∞
〈f(x̂)− x̂, xnk

− x̂〉

= 〈f(x̂)− x̂, q − x̂〉.

From (3.13) and the demiclosedness of I − U at zero, we have

q ∈ Fix(U). (3.15)

Since A is bounded linear operator, then A is of weak continuity. Thus

xnk
⇀ q ⇒ Axnk

⇀ Aq, as k →∞.

From (3.14) and the demiclosedness of I − T at zero, then

Aq ∈ Fix(T ). (3.16)

So, q ∈ S by (3.15) and (3.16). Hence, it follows from (3.3) that

lim sup
n→∞

〈f(x̂)− x̂, xn − x̂〉 = 〈f(x̂)− x̂, q − x̂〉 ≤ 0.
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• If ρn 6= 0, from (3.11) and the boundedness of {xn} and {f(xn)}, we get

λ(1− k − λ)‖yn − Uyn‖2 +
(1− τ)2

4

‖(I − T )Axn‖4

‖A∗(I − T )Axn‖2
≤ sn − sn+1 + αnL,

where L is a nonnegative real constant such that L ≥ supn∈N{2〈f(xn)− x̂, xn+1 − x̂〉}.
So, we have

0 ≤ λ(1− k − λ)‖yn − Uyn‖2 ≤ sn − sn+1 + αnL,

and

0 ≤ (1− τ)2

4

‖(I − T )Axn‖4

‖A∗(I − T )Axn‖2
≤ sn − sn+1 + αnL.

It follows from {sn} is convergent that,

‖yn − Uyn‖ → 0, as n→∞, (3.17)

‖(I − T )Axn‖2

‖A∗(I − T )Axn‖
→ 0, as n→∞. (3.18)

Moreover,

‖(I − T )Axn‖ = ‖A‖ · ‖(I − T )Axn‖
‖A‖

= ‖A‖ · ‖(I − T )Axn‖
‖(I − T )Axn‖
‖A‖‖(I − T )Axn‖

≤ ‖A‖ · ‖(I − T )Axn‖
‖(I − T )Axn‖
‖A∗(I − T )Axn‖

= ‖A‖ ‖(I − T )Axn‖2

‖A∗(I − T )Axn‖
.

Hence,
‖(I − T )Axn‖ → 0, as n→∞. (3.19)

So,

‖xn − yn‖ = ρn‖A∗(I − T )Axn‖

=
1− τ

2

‖(I − T )Axn‖2

‖A∗(I − T )Axn‖
→ 0, as n→∞.

(3.20)

For xn → q, then yn → q from (3.20).
From (3.17) and the demiclosedness of I − U at zero, we have

q ∈ Fix(U). (3.21)

From (3.19) and the demiclosedness of I − T at zero, we have

Aq ∈ Fix(T ). (3.22)

So, q ∈ S by (3.21) and (3.22).
Hence, it follows from the variational inequality (3.3) that

lim sup
n→∞

〈f(x̂)− x̂, xn − x̂〉 = 〈f(x̂)− x̂, q − x̂〉 ≤ 0.
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Second, we show that
‖xn+1 − xn‖ → 0 as n→∞. (3.23)

For x ∈ H1, we get Uλx− x = λ(Ux− x) by Uλ := (1− λ)I + λU .
• If ρn = 0, then

‖xn+1 − xn‖ ≤ αn‖f(xn)− xn‖+ (1− αn)‖xn − Uλxn‖
≤ αn‖f(xn)− xn‖+ λ‖xn − Uxn‖.

By (3.13) and the assumption lim
n→∞

αn = 0, (3.23) is obtained.

• If ρn 6= 0, then

‖xn+1 − xn‖ ≤ αn‖f(xn)− xn‖+ (1− αn)‖xn − Uλyn‖
≤ αn‖f(xn)− xn‖+ ‖xn − yn‖+ ‖yn − Uλyn‖
= αn‖f(xn)− xn‖+ ‖xn − yn‖+ λ‖yn − Uyn‖.

Combining (3.17) and (3.20), implies that (3.23) holds.
Third, we show that xn → x̂. By combining (3.12) and (3.23), we get

lim sup
n→∞

〈f(x̂)− x̂, xn+1 − x̂〉 ≤ 0. (3.24)

By applying Lemma 2.6 to the (3.9), and with the assumption of {αn} and (3.24), xn → x̂ can be easily
concluded.
Case 2. Assume that there is not a positive integer n0 such that the sequence {sn} is decreasing for all
n ≥ n0, that is to say, there is a subsequence {ski} of {sk} such that ski < ski+1 for all i ∈ N .

By applying Lemma 2.8, we can define a nondecreasing sequence {mk} ⊂ N such that mk → ∞ as
k →∞ and

smk
≤ smk+1. (3.25)

First, we show that
lim sup
n→∞

〈f(x̂)− x̂, xn − x̂〉 ≤ 0. (3.26)

• If ρmk
= 0, from (3.10), (3.25) and the boundedness of {xn} and {f(xn)}, we get

λ(1− k − λ)‖xmk
− Uxmk

‖2 ≤ smk
− smk+1 + αmk

K

≤ αmk
K,

where K is a nonnegative real constant such that K ≥ supmk∈N{2〈f(xmk
)− x̂, xmk+1 − x̂〉}. So

‖xmk
− Uxmk

‖ → 0, as k →∞. (3.27)

From (3.2), then the following holds clearly.

‖(I − T )Axmk
‖ → 0, as k →∞.

Based on the boundedness of {xmk
}, there exists a subsequence {xmk(l)} of {xmk

} and xmk(l) ⇀ q such
that

lim sup
k→∞

〈f(x̂)− x̂, xmk
− x̂〉 = lim

l→∞
〈f(x̂)− x̂, xmk(l) − x̂〉

= 〈f(x̂)− x̂, q − x̂〉.

So, we have q ∈ S by using the similar proofs in Case 1. Hence, it follows from (3.3) that

lim sup
n→∞

〈f(x̂)− x̂, xmk
− x̂〉 = 〈f(x̂)− x̂, q − x̂〉 ≤ 0.
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• If ρmk
6= 0, from (3.11) and the boundedness of {xmk

} and {f(xmk
)}, we get

λ(1− k − λ)‖ymk
− Uymk

‖2 +
(1− τ)2

4

‖(I − T )Axmk
‖4

‖A∗(I − T )Axn‖2
≤ smk

− smk+1 + αmk
L,

where L is a nonnegative real constant such that L ≥ supk∈N{2〈f(xmk
)− x̂, xmk+1 − x̂〉}.

It follows from (3.25) that

0 ≤ λ(1− k − λ)‖ymk
− Uymk

‖2 ≤ smk
− smk+1 + αmk

L

≤ αmk
L,

and

0 ≤ (1− τ)2

4

‖(I − T )Axmk
‖4

‖A∗(I − T )Axmk
‖2
≤ smk

− smk+1 + αmk
L

≤ αmk
L.

Thus,
‖ymk

− Uymk
‖ → 0, as k →∞, (3.28)

‖(I − T )Axmk
‖2

‖A∗(I − T )Axmk
‖
→ 0, as k →∞.

Moreover,

‖(I − T )Axmk
‖ = ‖A‖ · ‖(I − T )Axmk

‖
‖A‖

= ‖A‖ · ‖(I − T )Axmk
‖ ‖(I − T )Axmk

‖
‖A‖‖(I − T )Axmk

‖

≤ ‖A‖ · ‖(I − T )Axmk
‖ ‖(I − T )Axmk

‖
‖A∗(I − T )Axmk

‖

= ‖A‖ ‖(I − T )Axmk
‖2

‖A∗(I − T )Axmk
‖
.

Hence,
‖(I − T )Axmk

‖ → 0, as k →∞.

So that

‖xmk
− ymk

‖ = ρmk
‖A∗(I − T )Axmk

‖

=
1− τ

2

‖(I − T )Axmk
‖2

‖A∗(I − T )Axmk
‖
→ 0, as k →∞.

(3.29)

For xmk
→ q, then ymk

→ q from (3.29).
So, we have q ∈ S by using the similar proofs in Case 1. Hence, it follows from (3.3) that

lim sup
k→∞

〈f(x̂)− x̂, xmk
− x̂〉 = 〈f(x̂)− x̂, q − x̂〉 ≤ 0

Second, we show that
‖xmk+1 − xmk

‖ → 0 as k →∞. (3.30)

For x ∈ H1, we get Uλx− x = λ(Ux− x) by Uλ := (1− λ)I + λU .
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• If ρmk
= 0, then

‖xmk+1 − xmk
‖ ≤ αmk

‖f(xmk
)− xmk

‖+ (1− αmk
)‖xmk

− Uλxmk
‖

≤ αmk
‖f(xmk

)− xmk
‖+ λ‖xmk

− Uxmk
‖.

By the assumption lim
n→∞

αn = 0, the boundedness of {xn} and {f(xn)}, and (3.27), the (3.30) is obtained.

• If ρmk
6= 0, then

‖xmk+1 − xmk
‖ ≤ αmk

‖f(xmk
)− xmk

‖+ (1− αmk
)‖xmk

− Uλymk
‖

≤ αmk
‖f(xmk

)− xmk
‖+ ‖xmk

− ymk
‖+ ‖ymk

− Uλymk
‖

= αmk
‖f(xmk

)− xmk
‖+ ‖xmk

− ymk
‖+ λ‖ymk

− Uymk
‖.

Combining (3.28) and (3.29), implies that (3.30) holds.
Third, we show that xn → x̂ as n→∞. From (3.26) and (3.30), we get

lim sup
n→∞

〈f(x̂)− x̂, xmk+1 − x̂〉 ≤ 0. (3.31)

Based on the inequality smk
≤ smk+1 for all k ∈ N and (3.9), we get

αmk
smk+1 + (1− αmk

)(smk+1 − smk
) ≤ 2αmk

〈f(x̂)− x̂, xmk+1 − x̂〉.

So,
αmk

smk+1 ≤ 2αmk
〈f(x̂)− x̂, xmk+1 − x̂〉,

that is,
smk+1 ≤ 2〈f(x̂)− x̂, xmk+1 − x̂〉.

Take the limit k →∞, by using (3.31), we obtain

smk+1 → 0 as k →∞.

Thus,
sk → 0 as k →∞,

because sk ≤ smk+1. The proof is completed.

Remark 3.3. The main result of Theorem 3.2 is an extension of Theorem 4.1 of [1]. If we take f(xn) = u in
(3.1), where u ∈ H1 is arbitrary but fixed, this special case will be Theorem 4.1 of [1].

4. Some special cases

In this section, we consider some special cases of Theorem 3.2, base on the relations of k-demicontrative
operators, directed operators, quasi-nonexpansive operators. The details can be seen in Remark 3.3. Then,
the following corollaries are obtained easily.
• Case 1: Let U : H1 → H1 and T : H2 → H2 be quasi-nonexpansive operators, I − U and I − T be
demiclosed at zero.

Corollary 4.1. Assume the SCFP (1.2) is consistent (S 6= ∅). If αn ∈ (0, 1) satisfies lim
n→∞

αn = 0 and∑∞
n=0 αn =∞. Let {xn} be given by the explicit algorithm (3.1), and in the algorithm (3.1), λ ∈ (0, 1) and

ρn =

{ ‖(I−T )Axn‖2
2‖A∗(I−T )Axn‖2 , Axn 6= T (Axn),

0, otherwise.

Then the sequence {xn} converges strongly to a point x̂ ∈ S, and the x̂ = PSf(x̂), i.e., x̂ satisfies the
following variational inequality (3.3).
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• Case 2: Let U : H1 → H1 and T : H2 → H2 be directed operators, I − U and I − T be demiclosed at
zero.

Corollary 4.2. Assume the SCFP (1.2) is consistent (S 6= ∅). If αn ∈ (0, 1) satisfies lim
n→∞

αn = 0 and∑∞
n=0 αn =∞. Let {xn} be given by the explicit algorithm (3.1), and in the algorithm (3.1), λ ∈ (0, 2) and

ρn =

{ ‖(I−T )Axn‖2
‖A∗(I−T )Axn‖2 , Axn 6= T (Axn)

0, otherwise.

Then the sequence {xn} converges strongly to a point x̂ ∈ S, and the x̂ = PSf(x̂), i.e., x̂ satisfies the
following variational inequality (3.3).

• Case 3: Let U : H1 → H1 be a directed operator, T : H2 → H2 a quasi-nonexpansive operator, I −U
and I − T be demiclosed at zero.

Corollary 4.3. Assume the SCFP (1.2) is consistent (S 6= ∅). If αn ∈ (0, 1) satisfies lim
n→∞

αn = 0 and∑∞
n=0 αn =∞. Let {xn} be given by the explicit algorithm (3.1), and in the algorithm (3.1), λ ∈ (0, 1) and

ρn =

{ ‖(I−T )Axn‖2
2‖A∗(I−T )Axn‖2 , Axn 6= T (Axn),

0, otherwise.

Then the sequence {xn} converges strongly to a point x̂ ∈ S, and the x̂ = PSf(x̂), i.e., x̂ satisfies the
following variational inequality (3.3).

• Case 4: Let U : H1 → H1 be a directed operator, T : H2 → H2 a τ−demicontractive operator, I −U and
I − T be demiclosed at zero.

Corollary 4.4. Assume the SCFP (1.2) is consistent (S 6= ∅). If αn ∈ (0, 1) satisfies lim
n→∞

αn = 0 and∑∞
n=0 αn = ∞, then the sequence {xn} generated by explicit algorithm (3.1) converges strongly to a point

x̂ ∈ S, and the x̂ = PSf(x̂), i.e., x̂ satisfies the following variational inequality (3.3).

• Case 5: Let U : H1 → H1 be a quasi-nonexpansive operator, T : H2 → H2 a τ−demicontractive operator,
I − U and I − T be demiclosed at zero.

Corollary 4.5. Assume the SCFP (1.2) is consistent (S 6= ∅). If αn ∈ (0, 1) satisfies lim
n→∞

αn = 0 and∑∞
n=0 αn = ∞, then the sequence {xn} generated by explicit algorithm (3.1) converges strongly to a point

x̂ ∈ S, and the x̂ = PSf(x̂), i.e., x̂ satisfies the following variational inequality (3.3).

5. Conclusions

In this paper, we proposed a novel explicit viscosity iteration algorithm (3.1) and we proved the sequence
{xn} converges strongly to a solution of the split common fixed point problems (1.2). This main result is
an extension of Theorem 4.1 of [1]. The research highlights of this paper are novel explicit algorithms and
strong convergence results. The research of this aspect for SCFP can further continue.
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