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1. Introduction

In 1942, Menger [9] initiated the study of PM-spaces and then Sehgal and Bharucha-Reid [14] followed
Menger’s line of research by using the notion of probabilistic q-contraction. They proved a unique fixed point
result, which is an extension of the celebrated Banach’s contraction principle [1]. For interested reader, a
comprehensive study of fixed point theory in the probabilistic metric setting can be found in the book of
Hadz̆ić and Pap [6]. Recently, Choudhury and Das [2] gave a generalized unique fixed point theorem by
using an altering distance function which was originally introduced by Khan et al. [7]. This extension of
altering distance function is called φ-function, and has been further used in many related literatures [3, 10].

Dutta et al. [4] defined nonlinear generalized contractive type mapping involving ψ-contractive mapping
and proved their theorems for such kind of mappings in the setting of G-complete Menger PM-spaces. Then
Kutbi et al. [8] weakened the notion of ψ-contraction mapping and established some fixed point theorems
in G-complete Menger PM-spaces. Later Samet et al. [12] introduced α-ψ-type contractive mapping in
metric spaces, while Gopal et al. [5] introduced the notion of α-ψ-type contractive mapping and established
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corresponding fixed point theorems. In 2006, Mustafa and Sims [11] introduced the concept of generalized
metric space. After then, many fixed point results have been obtained by many authors. Moreover, Zhou
et al. [15] defined the notion of generalized probabilistic metric space as a generalization of PM-spaces and
established corresponding fixed point theorems.

In this paper, motivated by the idea of Samet et al. [12] and α-ψ-type contractive mapping in PM-spaces,
we weaken the notion of α-ψ-type contractive mapping and establish some fixed point theorems in complete
PGM-spaces. Finally, an example is given to support our main results.

2. Preliminaries

In this section, we recall some definitions and theorems which will be needed in the next section.
Throughout this paper, let R = (−∞,+∞), R+ = [0,+∞), and N+ be the set of all positive integers.
A mapping F : R→ R+ is called a distribution function if it is non-decreasing and left-continuous with

sup
t∈R

F (t) = 1 and inf
t∈R

F (t) = 0.

We shall denote by D the set of all distribution functions. A special distribution function H of D is
defined by

H(t) =

{
0, t ≤ 0,
1, t > 0.

Definition 2.1 ([13]). A binary operation T : [0, 1] × [0, 1] → [0, 1] is called a t-norm if the following
conditions are satisfied:

(1) T (a, b) = T (b, a) and T (a, T (b, c)) = T (T (a, b), c), for all a, b, c ∈ [0, 1];

(2) T is continuous;

(3) T (a, 1) = a for all a ∈ [0, 1];

(4) T (a, b) ≥ T (c, d), whenever a ≥ c and b ≥ d, for a, b, c, d ∈ [0, 1].

From the definition of T , it follows that T (a, b) = min{a, b} for all a, b ∈ [0, 1]. The following are three
basic continuous t-norms:

(1) The minimum t-norm, defined by TM (a, b) = min{a, b};

(2) The product t-norm, defined by TP (a, b) = ab;

(3) The Lukasiewicz t-norm, defined by TL(a, b) = max{a+ b− 1, 0}.

These t-norms are related in this way: TL ≤ TP ≤ TM .

Definition 2.2 ([13]). A Menger probabilistic metric space (briefly, Menger PM-space) is a triplet (X,F, T ),
where X is a nonempty set, T is a continuous t-norm and F is a mapping from X×X into D+ (Fx,y denote
the value of F at the pair (x, y)) satisfying the following conditions:

(PM-1) Fx,y(t) = H(t) for all x, y ∈ X and t > 0 if and only if x = y;

(PM-2) Fx,y(t) = Fy,x(t) for all x, y ∈ X and t > 0;

(PM-3) Fx,z(t+ s) ≥ ∆(Fx,y(t), Fy,z(s)) for all x, y, z ∈ X and t, s ≥ 0.

Definition 2.3 ([13]). Let (X,F, T ) be a PM-space. Then

(1) a sequence {xn} in X is said to be convergent to a point x ∈ X, if for every ε > 0 and 0 < λ < 1 there
exists a positive integer N such that Fxn,x(ε) > 1− λ whenever n ≥ N ;
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(2) a sequence {xn} in X is called a Cauchy sequence if for every ε > 0 and λ > 0 we can find a positive
integer N such that Fxn,xm(ε) > 1− λ whenever m,n ≥ N ;

(3) a Menger PM-space is said to be complete if every Cauchy sequence is convergent to a point in X;

(4) the sequence {xn} in X is said to be a G-Cauchy sequence if lim
n→∞

Fxn,xn+m(t) = 1 for each m ∈ N
and t > 0;

(5) the space (X,F, T ) is called G-complete if every G-Cauchy sequence in X is convergent.

According to [13], the (ε, λ)-topology in Menger PM-space (X,F, T ) is introduced by the family of
neighbourhoods Nx of a point x ∈ X given by Nx = {Nx(ε, λ) : ε > 0, λ ∈ (0, 1)} where Nx(ε, λ) = {y ∈ X :
Fx,y(ε) > 1− λ}. The (ε, λ)-topology is a Hausdorff topology.

Definition 2.4 ([15]). The 3-tuple(X,G∗, T ) is called a Menger probabilistic G-metric space (briefly,PGM-
space), where X is a nonempty set, T is a continuous t-norm and G∗ is a mapping from X ×X ×X into D
(G∗x,y,z denotes the value of G∗ at the pair (x, y, z)) satisfying the following conditions:

(PGM-1) G∗x,y,z(t) = 1 for all x, y, z ∈ X and t > 0 if and only if x = y = z;

(PGM-2) G∗x,x,y(t) ≥ G∗x,y,z(t) for all x, y, z ∈ X with z 6= y and t > 0;

(PGM-3) G∗x,y,z(t) = G∗z,x,y(t) = G∗y,x,z(t) = · · · (symmetry in all three variables);

(PGM-4) G∗x,y,z(t+ s) ≥ T (G∗x,a,a(t), G
∗
a,y,z(s)) for all x, y, z, a ∈ X and t, s ≥ 0.

Example 2.5 ([15]). Let (X,F, T ) be a PM-space. Define a function G∗ : X ×X ×X → R+ by

G∗x,y,z(t) = min{Fx,y(t), Fy,z(t), Fx,z(t)}

for all x, y, z ∈ X and t > 0. Then (X,G∗, T ) is a PGM-space.

For more examples of PGM-space, please refer to Zhou et al. [15].

Definition 2.6 ([15]). Let (X,G∗, T ) be a PGM-space. Then

(1) a sequence {xn} in X is said to be convergent to a point x ∈ X, if for any ε > 0 and 0 < λ < 1, there
exists a positive integer Nε,λ such that G∗x,xn,xn(ε) ≥ 1− λ whenever n > Nε,λ;

(2) a sequence {xn} in X is said to be a Cauchy sequence, if for any ε > 0 and λ > 0 we can find a
positive integer Nε,λ such that G∗xn,xm,xl(ε) ≥ 1− λ whenever m,n, l ≥ Nε,λ;

(3) a PGM-space is said to be complete if every Cauchy sequence is convergent to a point in X.

Definition 2.7 ([16]). Let (X,G∗, T ) be a PGM-space. Then the following statement are equivalent:

(1) the sequence {xn} is a Cauchy sequence;

(2) for all ε > 0 and 0 < λ < 1, there exists M such that G∗xn,xm,xm(ε) ≥ 1− λ for all n,m > M .

Remark 2.8. Let (X,G∗, T ) be a PGM-space. Then a sequence {xn} is said to be a Cauchy sequence if
lim
n→∞

G∗xn,xn+m,xn+m
(t) = 1 for each m ∈ N+, and t > 0.

Definition 2.9 ([15]). Let (X,G∗, T ) be a PGM-space and x0 be any point in X. For every ε > 0 and
0 < λ < 1, an(ε, λ)-neighborhood of x0 is the set of all points y ∈ X for which G∗x0,y,y(ε) ≥ 1 − λ and
G∗y,x0,x0(ε) ≥ 1− λ. We write Nx0(ε, λ) = {y ∈ X:G∗x0,y,y(ε) ≥ 1− λ, G∗y,x0,x0(ε) ≥ 1− λ}.

Theorem 2.10 ([15]). Let (X,G∗, T ) be a Menger PGM-space. Then (X,G∗,T) is a Hausdorff space in the
topology induced by the family {Nx0(ε, λ)} of (ε, λ)-neighborhoods.
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Definition 2.11 ([15]). A function φ : R+ → R+ is said to be a φ-function if it satisfies the following
conditions:

(1) φ(t)=0 if and only if t = 0;

(2) φ(t) is strictly monotone increasing and φ(t)→∞ as t→∞;

(3) φ is left continuous in (0,∞);

(4) φ is continuous at 0.

In the sequel, the class of all φ-function will be denoted by Φ.

Definition 2.12 ([16]). Let (X,G∗, T ) be a PGM-space. If the mapping f : X → X be a given mapping
and α : X ×X ×X × (0,∞)→ R+ be a function, we say that f is generalized α-admissible if

α(x, y, z, t) ≥ 1⇒ α(fx, fy, fz, t) ≥ 1 for all t > 0 and x, y, z ∈ X.

3. Main results

In this section, we denote by Ψ the class of all non-decreasing functions ψ : R+ → R+ such that ψ is
continuous at point 0, ψ(0) = 0 and ψn(an)→ 0 whenever an → 0 as n→∞.

Theorem 3.1. Let (X,G∗, T ) be a PGM-space, and f : X → X be a mappings, we say that f is an α-ψ-type
contractive mapping, if there exist two functions α : X ×X ×X × (0,∞) → R+ and ψ ∈ Ψ satisfying the
following inequality:

α(x, y, z, t)(
1

G∗fx,fy,fz(φ(ct))
− 1) ≤ ψ(

1

G∗x,y,z(φ(t))
− 1), (3.1)

where x, y, z ∈ X, c ∈ (0, 1), φ ∈ Φ, ψ ∈ Ψ and all t > 0 such that G∗x,y,z(φ(t)) > 0.

Theorem 3.2. Let (X,G∗, T ) be a complete PGM-space. If the mapping f : X → X is an α-ψ-type
contractive mapping satisfying the following conditions:

(1) f is a generalized α-admissible mapping;

(2) there exists x0 ∈ X, such that α(x0, fx0, fx0, t) ≥ 1, for all t > 0;

(3) if {xn} is a sequence in X such that α(xn, xn+1, xn+1, t) ≥ 1 for all t > 0 and all n ∈ N, and xn → x
as n→∞, then α(xn, x, x, t) ≥ 1 for all t > 0 and all n ∈ N.

Then f has a fixed point in X.

Proof. Take an arbitrary point x0 ∈ X and α(x0, fx0, fx0, t) ≥ 1, for all t > 0. Define a sequence {xn} in
X by xn+1 = fxn for n ∈ N+. suppose that xn+1 6= xn for n ∈ N+(otherwise f has trivially a fixed point).
Then, by using the fact that f is α-admissible, we have

α(x0, fx0, fx0, t) = α(x0, x1, x1, t) ≥ 1⇒ α(fx0, fx1, fx1, t) = α(x1, x2, x2, t) ≥ 1,

By induction, we get
α(xn, xn+1, xn+1, t) ≥ 1 for t > 0 and n ∈ N+.

From the properties of φ, there exists t > 0 such that G∗xn,xn+1,xn+1
(φ(t)) > 0 for n ∈ N+. Obviously,

G∗xn,xn+1,xn+1
(φ( tc)) > 0 and G∗xn,xn+1,xn+1

(φ(ct)) > 0 for c ∈ (0, 1) and n ∈ N+. Therefore Theorem 3.1
gives that
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1

G∗x1,x2,x2(φ(t))
− 1 =

1

G∗fx0,fx1,fx1(φ(t))
− 1

≤α(x0, x1, x1, t)(
1

G∗fx0,fx1,fx1(φ(t))
− 1)

≤ψ(
1

G∗x0,x1,x1(φ( tc))
− 1).

Repeating the above procedure successively n times, we obtain

1

G∗xn,xn+1,xn+1
(φ(t))

− 1 ≤ ψn(
1

G∗x0,x1,x1(φ( t
cn ))

− 1).

In general, if we repeat the above step with r < n, we get

1

G∗xn,xn+1,xn+1
(φ(crt))

− 1 ≤ ψn−r( 1

G∗xr,xr+1,xr+1(φ( crt
cn−r ))

− 1). (3.2)

Since ψn(an)→ 0, whenever an → 0, from (3.2), we deduce that

lim
n→∞

G∗xn,xn+1,xn+1
(φ(crt)) = 1 for all r > 0. (3.3)

Now, let ε > 0 be given, there exists r ∈ N+ such that φ(crt) ≤ ε. Therefore, from (3.3), we obtain

lim
n→∞

G∗xn,xn+1,xn+1
(ε) ≥ lim

n→∞
G∗xn,xn+1,xn+1

(φ(crt)) = 1. (3.4)

On the other hand, we know that

G∗xn,xn+p,xn+p
(ε) ≥T (G∗xn,xn+1,xn+1

(
ε

p
), G∗xn+1,xn+p,xn+p

(
(p− 1)ε

p
))

≥T (G∗xn,xn+1,xn+1
(
ε

p
), T (G∗xn+1,xn+2,xn+2

(
ε

p
) · · · (G∗xn+p−1,xn+p,xn+p

(
ε

p
)) · · · ).

Letting n→∞ and making use of (3.4), for any integer p, we get

lim
n→∞

G∗xn,xn+p,xn+p
(ε) = 1 for every ε > 0.

It follows that {xn} is a Cauchy sequence. Since (X,G∗, T ) is a complete PGM-space, there exists u ∈ X
such that xn → u as n→∞. Moreover, we get

G∗fu,u,u(ε) ≥ T (G∗fu,xn+1,xn+1
(
ε

2
), G∗xn+1,u,u(

ε

2
)). (3.5)

Next, using the properties of φ, there exists s > 0, such that φ(s) < ε
2 . Since xn → u, as n → ∞, then

there exists n0 ∈ N+, such that
G∗u,xn,xn(φ(s)) > 0 for all n > n0.

Therefore, for n > n0, we obtain

1

G∗fu,xn+1,xn+1
( ε2)
− 1 ≤ 1

G∗fu,fxn,fxn(φ(s))
− 1

≤α(u, xn, xn,
s

c
)

1

G∗fu,fxn,fxn(φ(s))
− 1

≤ψ(
1

G∗u,xn,xn(φ( sc ))
− 1).
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Since ψ is continuous at 0 and ψ(0) = 0, we obtain

lim
n→∞

G∗fu,xn+1,xn+1
(
ε

2
) = 1. (3.6)

Finally, from (3.5) and (3.6), we get G∗fu,u,u(ε) = 1 for every ε > 0. Thus fu = u. This completes the
proof.

Theorem 3.3. For all x, y, z ∈ X and for t > 0, there exists z ∈ X such that α(z, x, x, t) ≥ 1 and
α(z, y, y, t) ≥ 1. Adding this condition to the hypotheses of Theorem 3.1, we obtain the uniqueness of the
fixed point.

Proof. Let u, v ∈ X be two fixed points of f , that is u = fu and v = fv. Now, from the condition, there
exists z ∈ X, such that

α(z, u, u, t) ≥ 1 and α(z, v, v, t) ≥ 1. (3.7)

Since f is generalized α-admissible, we get

α(fnz, u, u, t) ≥ 1 and α(fnz, v, v, t) ≥ 1 for n ∈ N and t > 0. (3.8)

Then, using (3.1) and (3.8), we obtain

1

G∗fnz,u,u(φ(ct))
− 1 =

1

G∗
f(fn−1z),fu,fu

(φ(ct))
− 1

≤α(fn−1z, u, u, t)
1

G∗
f(fn−1z),fu,fu

(φ(ct))
− 1

≤ψ(
1

G∗
fn−1z,u,u

(φ(t))
− 1).

Repeating the above procedure successively n times, we obtain

1

G∗fnz,u,u(φ(ct))
− 1 ≤ ψn(

1

G∗z,u,u(φ( t
cn−1 ))

− 1.

Finally, letting n→∞, we obtain fnz → u. A similar argument shows that fnz → v as n→∞. Thus
u = v. This completes the proof.

Taking α(x, y, z, t) = 1 in Theorem 3.2, we obtain the following corollary.

Corollary 3.4. Let (X,G∗, T ) be a complete PGM-space and f : X → X be a mapping satisfying the
following inequality:

1

G∗fx,fy,fz(φ(ct))
− 1 ≤ ψ(

1

G∗x,y,z(φ(t))
− 1), (3.9)

where x, y, z ∈ X, c ∈ (0, 1), φ ∈ Φ, ψ ∈ Ψ and t > 0 such that G∗x,y,z(φ(t)) > 0. Then f has a unique fixed
point in X.

From Example 2.5 and Theorem 3.1 we get the following corollary.

Corollary 3.5 ([4]). Let (X,F, T ) be a G-complete PM-space and f : X → X be a mapping satisfying the
following inequality:

1

Ffx,fy(φ(ct))
− 1 ≤ ψ(

1

Fx,y(φ(t))
− 1), (3.10)

where x, y ∈ X, c ∈ (0, 1), φ ∈ Φ, ψ ∈ Ψ and t > 0 such that Fx,y(φ(t)) > 0. Then f has a unique fixed
point in X.
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Proof. Define G∗x,y,z(t) = min{Fx,y(t), Fy,z(t), Fx,z(t)} for all x, y, z ∈ X and t > 0. Example 2.5 shows
that (X,G∗, T ) is a PGM-space. Since G∗xn,xn+m,xn+m

(t) = Fxn,xn+m(t) and lim
n→∞

Fxn,xn+m(t) = 1 implies

lim
n→∞

G∗xn,xn+m,xn+m
(t) = 1 for each m ∈ N+ and t > 0. Thus (X,G∗, T ) is a complete PGM-space.

Now we show that f satisfies the inequality of Corollary 3.4.

1

G∗fx,fy,fz(φ(ct))
− 1 =

1

min{Ffx,fy(φ(ct)), Ffy,fz(φ(ct)), Ffx,fz(φ(ct))}
− 1

=max{ 1

Ffx,fy(φ(ct))
− 1,

1

Ffy,fz(φ(ct))
− 1,

1

Ffx,fz(φ(ct))
− 1}

≤max{ψ(
1

Fx,y(φ(t))
− 1), ψ(

1

Fy,z(φ(t))
− 1), ψ(

1

Fx,z(φ(t))
− 1)}

≤ψ(
1

min{Fx,y(φ(t)), Fy,z(φ(t)), Fx,z(φ(t))}
− 1)

=ψ(
1

G∗x,y,z(φ(t))
− 1),

this implies f satisfies all the hypotheses of Corollary 3.4. Thus f has a unique fixed point. This completes
the proof.

Taking ψ(t) = t in Corollary 3.4, we obtain the following corollary.

Corollary 3.6. Let (X,G∗, T ) be a complete PGM-space, f : X → X be a given mapping satisfying

G∗x,y,z(φ(t)) ≤ G∗fx,fy,fz(φ(ct)),

where x, y, z ∈ X, φ ∈ Φ and t > 0. Then f has a unique fixed point in X.

Taking φ(t) = t
c in Corollary 3.6, we obtain the following corollary.

Corollary 3.7 ([5]). Let (X,G∗, T ) be a complete PGM-space, f : X → X be a given mapping satisfying

G∗x,y,z(
t

c
) ≤ G∗fx,fy,fz(t),

where x, y, z ∈ X, c ∈ (0, 1), and t > 0. Then f has a unique fixed point in X.

Corollary 3.8. Let (X,G∗, T ) be a complete PGM-space and f : X → X be a mapping satisfying the
following inequality:

1

G∗fx,fy,fz(φ(ct))
− 1 ≤ ψ(

2

G∗x,y,y(φ(t)) +G∗y,z,z(φ(t))
− 1),

where x, y, z ∈ X, c ∈ (0, 1), φ ∈ Φ, ψ ∈ Ψ and all t > 0 such that G∗x,y,z(φ(t)) > 0. Then f has a unique
fixed point in X.

Proof. Since G∗x,x,y(t) ≥ G∗x,y,z(t) for all x, y, z ∈ X with z 6= y and t > 0, we get

G∗x,y,z(t) ≤ min{G∗x,y,y(t), G∗y,z,z(t)} ≤
G∗x,y,y(t) +G∗y,z,z(t)

2
.

Then
1

G∗fx,fy,fz(φ(ct))
− 1 ≤ ψ(

2

G∗x,y,y(φ(t)) +G∗y,z,z(φ(t))
− 1) ≤ ψ(

1

G∗x,y,z(φ(t))
− 1).

This implies that f satisfies all the hypotheses of Corollary 3.4. Thus f has a unique fixed point in X. This
completes the proof.
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As an application of Theorems 3.1 and 3.2, we prove the following common fixed point theorem for a
finite family of mappings which runs as follows.

Theorem 3.9. Let (X,G∗, T ) be a complete PGM-space, {fi}mi=1 be a finite family of self-mappings defined
on X and denote f = f1f2f3 · · · fm. If f : X → X satisfies all the hypotheses of Theorems 3.1 and 3.2,
then the family {fi}mi=1 has a unique common fixed point provided that fifj = fjfi whenever i 6= j, with
i, j ∈ {1, 2, · · · ,m}.

Proof. Notice that all the hypotheses of Theorems 3.1 and 3.2 are satisfied in respect of the mapping f ,
therefore there exists a unique x ∈ X such that fx = x. Now

f(fix) =((f1f2f3 · · · fm)fi)x

=(f1f2f3 · · · fm−1)((fmfi)x) = (f1f2f3 · · · fm−1)(fmfix)

= · · ·
=f1fi(f2f3 · · · fmx)

=fif1(f2f3 · · · fmx) = fi(fx) = fix,

which shows that fix is also a fixed point of f . Since x is the unique fixed point of f , therefore fix = x and
hence x is also a fixed point of all mappings fi for i ∈ {1, 2, · · · ,m}.

By setting f1 = f2 = · · · = fm = g in Theorem 3, we obtain the following fixed point theorem for mth
iteration of a mapping g.

Corollary 3.10. Let (X,G∗, T ) be a complete PGM-space and g : X → X be a mapping such that {gm}
satisfies all the hypotheses of Theorems 3.1 and 3.2. Then g has a unique fixed point.

4. An example

Example 4.1. Let X = [0, 1] and Q+ be the set of all positive rational numbers. T (a, b) = min{a, b} for
all a, b ∈ X. Define a function G∗ : X ×X ×X → D+ as:

G∗x,y,z(t) =
t

t+G(x, y, z)
(4.1)

for all x, y, z ∈ X and G(x, y, z) = |x−y|+ |y−z|+ |z−x|. Obviously, (X,G∗, T ) is a complete PGM-space.
Let f : X → X be a mapping defined by fx=1

3 sinx and φ ∈ Φ by φ(x) = x
c , and ψ ∈ Ψ by

ψ(x) =

{
x if s ∈ Q+;
x
2 otherwise.

Now we show that f satisfies all the hypotheses of Theorem 3.1.

1

G∗fx,fy,fz(φ(ct))
− 1 =

G(fx, fy, fz)

t

=
| sinx− sin y|+ | sin y − sin z|+ | sin z − sinx|

3t

≤|x− y|+ |y − z|+ |z − x|
3t

=
G(x, y, z)

t
≤ ψ(

1

G∗x,y,z(φ(t))
− 1).

Thus f has a unique fixed point. The fixed point is u = 0.
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Define the function α : X ×X ×X × (0,∞)→ R+ by

α(x, y, z, t) =

{
1 if x, y, z ∈ [0, 1];

0 otherwise.
(4.2)

Now, let x, y, z ∈ X, and α(x, y, z, t) ≤ 1 for t > 0. This shows that x, y, z ∈ [0, 1] and by the definitions
of f and α, we have

fx ∈ [0, 1], fy ∈ [0, 1], fz ∈ [0, 1] and α(fx, fy, fz, t) = 1 for all t > 0,

that is, f is generalized α-admissible.
Then, there exists x0 ∈ X such that α(x0, fx0, fx0, t) ≤ 1 for t > 0. Indeed for x0 = 1, we have

α(1, f(1), f(1), t) = 1.
Next, let {xn} be a sequence in X such that α(xn, xn+1, xn+1, t) ≤ 1 for t > 0 and n ∈ N+. Since xn → x

as n → ∞, this shows that xn, x ∈ [0, 1] and α(xn, x, x, t) ≤ 1 for t > 0 and n ∈ N+. Thus, Theorems 3.1
and 3.2 are applicable.

Finally, f has a fixed point in X. The fixed point is 0.
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