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Abstract

A modified iterative algorithm is presented based on the semi-implicit midpoint rule. Strong convergence
analysis is demonstrated. Our method gives a unified framework related to the implicit midpoint rule. Our
results improve and extend the corresponding results in the literature. (©2016 All rights reserved.
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1. Introduction

The purpose of the paper is to construct iterative methods for finding the fixed points of nonexpan-
sive mappings. Fixed point methods for nonexpansive mappings have been studied extensively by many
researchers due to its applications in engineering and natural science. Especially, the following fixed point
methods have attracted so much attention.

Browder’s method ([3]): for fixed u € C,

xp =tu+ (1 —t)Tay,
where ¢t € (0,1). Mann’s method ([14]):

Tpt1 = apZpn + (1 —an)Txy, n >0,
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where «;, € (0,1). Ishikawa’s method ([12]):

Yn = QpTpn + (1 - an)Ta:ru
Tn4+1 = /ann + (1 - 6n)Tyn7n > 07

where «;, and f3,, are in (0,1). Halpern’s method ([11]):
Tnt1 = aqu+ (1 — ay)Tx,, n >0,
where u € C' is a fixed point and «,, € (0,1). Moudafi’s viscosity method ([16]):
Tyl = 0nQ(xn) + (1 — ap)Tzn, n >0,
where @ : C' — C'is a contraction and «;, € (0,1). Modified Mann’s method ([13]):

UYn = QpTp + (1 - an)T$na
Tn+l = ﬁnu + (1 - ﬁn)yn,n > 0.

Many researchers demonstrated the convergence results of the above methods and their variant forms.
Related references, please refer to [2, 4H9, 15, 17, 18, 2T], 23H30, B2, 33]. Very recently, in [1I] and [22], the
authors presented the following semi-implicit midpoint rule for nonexpansive mappings:

Ty + X
Tpi1 = (1 — an)zn + anT<”2n+1>

. >0, (1.1)

and

n>0, (1.2)

)

Tnt1 = anQ(xn) + (1 — an)T<$n+2xn+1>

where oy, € (0,1) and @ is a contraction. Further, Yao, Shahzad and Liou [31] introduced the following
semi-implicit midpoint method:

Ty + X
Tnr1 = anQ(xy) + Bnn + 'ynT<n2”+1> ,n>0. (1.3)

Motivated and inspired by the above works, the purpose of the paper is to construct the following unified
iterative algorithm for finding the fixed points of nonexpansive mappings

Tn4+1 = anQ(xn) + ann + '}/nT((Snl‘n + (1 - 5n)$n+1)7 n > 0.

We prove that the above algorithm converges strongly to a fixed point of nonexpansive mappings 7.

2. Preliminaries

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively. Let C' be a nonempty
closed convex subset of H. A mapping T : C — C is said to be nonexpansive if

[Tz =Tyl < [l —yll

for all z,y € C. We use Fiz(T) to denote the set of fixed points of T
A mapping @Q : C' — C is said to be contractive if there exists a constant o € (0, 1) such that

1Q(z) = Q) < allz -y

for all x,y € C. In this case, Q) is called a-contraction.
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Lemma 2.1 ([10]). Let C be a nonempty closed convex subset of a Hilbert space H, and let T : C' — C' be
a nonexpansive mapping with Fix(T) # (. Assume that {y,} is a sequence in C such that y, — x' and
(I —T)y, — 0. Then zt € Fiz(T).

Lemma 2.2 ([19]). Let {z,} and {y,} be bounded sequences in a Banach space E and {f,} be a sequence
in [0,1] with 0 < liminf,_,~ B, < limsup,,_,. Bn < 1. Suppose that x,+1 = (1 — Bp)xn + Bnzn for alln >0

and limsup,,_, - (|zn+1 — 2nl| = |Tnt1 — xnl|) < 0. Then lim, o0 ||z — xn|| = 0.
Lemma 2.3 ([20]). Let {an}nen be a sequence of non-negative real numbers satisfying the following relation:
an+1 < (1 —ap)an + apnop, + 6, n >0,
where
(i) {an}tnen C [0,1] and >°07 | ap = 005
(#) limsup,, . on < 0;
(iii) S, 6, < 0o.

Then lim,,_ o anp = 0.

3. Main results

Throughout, we assume that H is a real Hilbert space and C' C H is a nonempty closed convex set. Let
T : C — C be a nonexpansive mapping with its fixed points set being nonempty, that is, Fiz(T) # (). Let
Q@ : C — C be an a-contraction.

Now, we firstly present the following unified iterative algorithm.

Algorithm 3.1. For given xo € C arbitrarily, let the sequence {x,,} be generated iteratively by the manner
Tnt+1 = anQ(xn) + ann + fYnT((san:n + (1 - 5n)xn+1)7 n > 07 (31)

where {a,} C (0,1), {8} € [0,1), {7} C (0,1) and {6} C [k1,k2] C (0,1) are four sequences satisfying
Qn + B +vn =1 for allm > 0.

Remark 3.2. Equation (3.1)) is well-defined. As a matter of fact, for fixed u € C, we can define a mapping
z— Tyr = aQ(u) + fu+~T(6u+ (1 —d)z),Vr € C.

Then, we have
[Tz = Tuyll = YT (0w + (1 = 0)x) = T(du+ (1 = )y)|
< (L =dlz -yl
This means Ty, is a contraction with coefficient (1 — d)y € (0,1). Hence, Algorithm is well-defined.
Next, we show the boundedness of the sequence {z}.

Proposition 3.3. The sequence {x,} generated by is bounded.
Proof. Let 2* € Fiz(T). From , we get
[n1 — Zﬁ” = [an(Q(zn) — Q(zﬁ)) + O‘n(Q(zﬁ) - zﬁ) + B (@ — Zﬁ)
+ (T (6nzn + (1 = 6n)Tny1) — Zﬁ)”
< an]|Q(an) = Q)| + anllQ(zF) = 2| + Ballzn — |
+ Y| T (0n2n + (1 — 6p)2pt1) — ZuH
< apallzn, — Zﬁ” + an||Q(zﬁ) - Zﬁ” + Bllzn — Zﬂ”
+ YnOnl|n — Zﬁ” + (1 = dn)l|Tnt1 — Zﬁ”



Y. Yu, C.-F. Wen, J. Nonlinear Sci. Appl. 9 (2016), 3719-3726 3722

From the last inequality, we obtain

B IO L e ol e e X X TN TR < S TA NS
Tn AR Ty — 27| + z z
i s e B N (e LGOS
_ [y (A =-ajom : (1-ao, 1 L
1

< max{ |z, — 2], EHQM) — 2|}

By induction, we deduce

1
n — 2¥[| < maxc{lwo — 2F[l, T——[1Q(=F) — 2F[I}-

This indicates that {x,} is bounded. This completes the proof. O
Next, we state the following theorem

Theorem 3.4. Assume {a,}, {Bn} and {v,} satisfy the conditions

(C1) : limy oo ay = 0;
(€2): ¥ gan =

(C3) : Timy, o0 12225222 = 0;
(C4) : Timy o n=bnztl — g
(C5) : liminf, ’y:: > 0.

Then the sequence {xy} generated by (3.1) converges strongly to ¢ = PFM(T)Q(q).

Proof. Set zp = 79%-Q(2zn) + (1 — 72%-)T'zy for all n. By [21], we have that the sequence {z,} converges

strongly to ¢ = Ppiy1)Q(q) provided lim, oo, = 0. Note that the sequences {7} and {2,} are all
bounded. We can rewrite y,, as

Zn = anQ(2zn) + Bnzn + YT zn,n > 0.
First, we note that

211 — 2l = lon(Q(2r) — Q(21)) + Bn(Tn — 2n) + V(T (0nn + (1 = 6)Tng1) — Tzn)||
< anallry — zul| + Balltn — 2all + YadnllTn — 20|l + Y0 (1 = 0n)l|Tns1 — 2n-

It follows that

1—a)a
fonis =zl < 1= L % )
1—oa)a
< 1= T o = sl + = 20
It is easily seen that if > "7 (o, = 0o and limy, 00 w = 0, then we get lim, o0 ||Tnt1 — 20| = 0 by

Lemma [2.3] Consequently, z, — ¢ = Pp7Q(q providned limy, 00 @y = 0.
(T)

llzn—zn—1ll
Qn

Next, we estimate . As a matter of fact, we have

20 = 2n—1l = lan(Q(2n) — Q(2n-1)) + (an — an-1)Q(2n-1) + Bn(2n — 2n-1)
+ (Bn = Bn-1)2n-1+ ¥ (Tzn — Tzn-1) + (yn — Yu-1)Tzn-1|
< (aan + Bn + ) |lzn — 2n-1ll + [an — a1 |[|Q(2n-1) ||
+ 1Bn = Bn-1lllzn—1ll + |7 — Yn-1[IT2n-1]|-



Y. Yu, C.-F. Wen, J. Nonlinear Sci. Appl. 9 (2016), 3719-3726 3723

Hence,
Hzn - Zn71|| |an - an71| |ﬁn - Bn71|
< _ Tz, —_— _ Tz, 1]|).
2l < S Q) + Il + =2 | + Tz
Since lim,—oo % = lim,—oo w"_aiﬂ%”*” = 0, we derive that lim, W = 0. Therefore,
limy, o0 |41 — 2nl| = 0 and thus z, — ¢ = Ppjy1)Q(q). This completes the proof. O

Theorem 3.5. Assume {a,} satisfies (C1) and (C2), {Bn} and {0,} satisfies
(C1) : limy 00 atpy = 0;
(C2): Y02ty = 00;
(C6) : 0 < liminf, o0 By < limsup,_, Bn < 1;
(C7) : limpsoo(Bur1 — Bn) = 0;
(C8) : limy—y00(Opt+1 — 0p) = 0.

Then the sequence {x,} generated by (3.1) converges strongly to ¢ = Priy1)Q(q)-

Proof. From Proposition we can choose a constant M such that

sup{ (125 + 1o ) (IR + 17+ (1= 8 + ol ) b < 01

n

Set y, = % for all n > 0. Thus, we have

Tn4+2 — BnJrlanrl Tl — BrnTn

Yntt = = 1 — Bt L= fn
_ o 1Q@ng1) + (1 — ang1 = B )T (Ont12nt1 + (1 = dng1)Tni2)
1= Bnt1
B anQ(xn) + (1 — an — Bn)T(6nzpn + (1 — 0p)Tpy1)
1-— Bn
_ Qpt1 B
1 Bt (Q(zn+1) — Qzn))
+ L= i)‘n_Jrlﬂ:anJrl (T(5n+1xn+1 + (1 - 5n-i-l)xn-i-Q) - T(énxn + (1 - 5n):1:n+1))
On+t1 On
(2 ) (@Uen) = Tt + (1= o))

It follows that

On41 + Op
1-— 6n+1 1-— 5n

1 —apt1 — Bnt1
1 et nt (5n+1||ffn+1 - 9Un|| + (1 - 5n+1)||ffn+2 - 96n+1||)
- Bn+1

HMH—%ms< )@@@—ﬂ%%+u—@mwnu

. 5 (3.2)
— Qpt1 — 1
+ s s ’571-&-1 - 571‘(“5%” + Hﬂ?n+1||)
1-— Bn-‘rl
oo
7"“”anrl — .
1 - Bny1

From (3.1)), we have

Tn12 — Tnp1ll = lant1(Q(@nr1) — Q(xn)) + (ny1 — an)Q(wy)
+ Bn-‘rl(xn—i-l - xn) + (/Bn—i-l - /Bn)(xn - T((Snxn + (1 - 5n)xn+1))
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+ V41 (T (Ont1Zn41 + (1 = Sng1)Tnr2) — T(6nxn + (1 = 6n)Tn11))

+ (an — any1)T (6nzn + (1 - 5n)xn+1)H
< aopi1l|Tnt1 — Toll + (ant1 + ) |Q(@n) | + Boti|Tns1 — @nl|

+ Yt 10nt1l|Tnt1 — |l + (1 = nt1) |2n42 — Zna )

+ Ynt1l0n+1 = On| (|20l + [[Znt1]]) + (e + ant ) [T (0nzn + (1 = 0p)2pt1) |
+ |Bnt1 = Bulllzn — T(0nzn + (1 — 6p)2nt1)-

It follows that
. (1 - a)ant
I = Yng1(1 = 6ng1

Qn+t1 + Qn
)|l + 1T (0nxy + (1 — 6p)zn
ot O (1Q(w) |+ 1Tz + (1= Su)aen) ) s
+ |ﬁn+1 - 6n| + |6n+l - 5n|
1- ’Yn-i-l(l - 5n+1)

< HxTH-l - .TnH + M(an + On41 + ‘Bn—&-l - 6n| + ‘5n+1 - 5n|)

Substitute (3.3]) into (3.2) to get

[Zn+2 — Tl < |1 ) Zn+1 — znl

(len = T(0nzn + (1 = p)ans+1) || + 2all + [[#n1])

(1 —a)ani

||£L'n+1 - l'nH + 3M(an+1 + ap + |Bn+1 - ﬁn| + ’5n+1 - 5n|)
1 — Bnt1

||yn+1 - yn” <|1-

Hence,
lm sup([[yn1 = ynll = [Zns1 — 2n])) <0.
n—oo

This together with Lemma [2.2] implies that

lim |y, — zn|| = 0.
n—oo
Note that
Tp4+1 — Tn
Yn — Tn = ﬁ
n
So,
lim ||zp+1 — 2, = 0. (3.4)
n—o0

Again, from (3.1)), we have

|2 — Tanl| < [l — Tptall + [[Tn41 — Tan|
< zn = 2ngall + onl|Q(@n) — Tan|| + Bullon — Tan||
+ ")/n(l - (5n)H$n - mn—i—lH'

It follows that

@ 1+v(1—946
Jon = Tall < 122 Qon) = Trall 4+ 2= 00d g,
This together with (C1) and (3.4]) imply that
lim ||z, — Tz,| = 0. (3.5)
n—oo
Next, we prove that
limsup(q — Q(q),q — xn) <0, (3.6)
n—oo

where ¢ € Fiz(T) is the unique fixed point of the contraction Pp;,1@, that is, ¢ = Py Q(q)-
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Since {x,} is bounded, there exists a subsequence {z,} of {z,} such that {z,,} converges weakly to a
point & and
lim sup(Ppiy1)Q(q) — Q(q); Priz(1)Q(q) — Tn)
= Z.lifono(PFix(T)Q(Q) - Q(q), PFm;(T)Q(Q) — Tp,)-

By Lemma [2.1f and (3.5]), we deduce & € Fiiz(T'). Therefore,

lim sup(PFm(T)Q(CJ) - Q(q), PFi.I(T)Q(Q) — Tn)

= il_iglo<PFmT)Q(Q) - Q(g), PFix(T)Q(Q) — Tp,)
= <PFiac(T)Q(Q) - Q(q), PFix(T)Q(Q) — )
<0.

Finally, we prove that x,, — ¢. From (3.1]), we have

[Zn+1 — QH2 = an(Q(zn) — Q(q), Tn+1 — q) + an(Q(q) — ¢, Tny1 — )
+ V(T (Onxn + (1 — 0p)Tp+1) — ¢ Tnt1 — q)
+ Bn(Tn — ¢, Tnt1 — q)
< anallzn = ql[|znsr — qll + on(Q(q) — ¢ Tny1 — @)
+ MmOnllzn —gll + (1 = 0n)[zn1 — gl zns1 —
+ Bullzn — allll a1 — 4l

1-— 1-9,) —(1—-0a)a 1+ (1-9, —(1-aa
<ol 0oy, ey IEU =0 ZUZ ey, e
+ an(Q(q) — ¢ Tny1 — q)-
It follows that 21 )
2 — an 2
Tpy1 —q|” < |1 - Tn — q
20, '
+ —q,x —q).
1 =91 =96,)+ (1 —a)ay, O e
Applying Lemma and (3.6)) to (3.8) to deduce that x, — ¢. This completes the proof. O
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