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Abstract

In this paper, we give a fixed point theorem for multivalued mappings in a cone b-metric space without the
assumption of normality on cones and generalize some attractive results in recent literature. c©2016 All
rights reserved.
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1. Introduction

The Banach contraction theorem [1] is a very popular tool in solving existence problems of fixed points
and plays an important role in several branches of mathematics. Nadler [9] gave its set-valued form in his
classical paper on multivalued contractions. He used the concept of Hausdorff metric which is defined by

H(A,B) = max{sup
y∈B

d(y,A), sup
x∈A

d(x,B)}

for A,B ∈ CB(X) and d(x,B) = inf
y∈B

d(x, y), where CB(X) denotes the collection of all nonempty closed

bounded subsets of X.
Kikkawa and Suzuki [6] gave a generalization of Nadle’s fixed point theorem and proved the following

theorem:
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Theorem 1.1 ([6]). Define a strictly decreasing function ϕ : [0, 1) → (12 , 1] such that ϕ(t) =
1

1 + t
. Let

(X, d) be a complete metric space and T : X → CB(X) be a multivalued mapping. Assume that there exists
a ∈ [0, 1) such that

ϕ(a)d(x, Tx) ≤ d(x, y)⇒ H(Tx, Ty) ≤ ad(x, y)

for all x, y ∈ X. Then there exists v ∈ X such that v ∈ Tv.

In 2009, Mot and Petrusel [8], presented the result of [6] for locally contractive mappings, in the context
of complete metric spaces.

Huang and Zhang [3] introduced the concept of cone metric space as a generalization of a metric space.
Rezapour and Hamlbarani [10] generalized the results of [3] for the case of a cone metric space without the
normality in cone. Many authors worked on it (see [5]). Cho et al. [2] invented the Hausdorff distance
function on cone metric spaces and generalized the result of [7] for multivalued mappings.

In this article we give a generalization of Theorem 1.1 to the case of cone b-metric spaces by using
Hausdorff distance function. Finally, we give an example to support our main theorem.

2. Preliminaries

Let E be a real Banach space and P be a subset of E. By θ we denote the zero element of E. The
subset P of E is called a cone if and only if:

(i) P is closed, nonempty, and P 6= {θ};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ;

(iii) P
⋂

(−P ) = {θ}.

For a given cone P ⊆ E, we define a partial ordering � with respect to P by x � y if and only if
y − x ∈ P ; x ≺ y will stand for x � y and x 6= y, while x � y will stand for y − x ∈ int P , where int P
denotes the interior of P . The cone P is said to be solid if it has a nonempty interior.

Definition 2.1 ([4]). Let X be a nonempty set and r > 1 be a given real number. A function d : X×X → E
is said to be a cone b-metric if the following conditions hold:

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, z) � r[d(x, y) + d(y, z)] for all x, y, z ∈ X.

The pair (X, d) is called a cone b-metric space.

Example 2.2. Let X = R, E = Rn and P = {(x1, x2, ..., xn) ∈ Rn : xi ≥ 0(1 ≤ i ≤ n)}, we define
d : X ×X → E as

d(x, y) = (|x− y|p, a1|x− y|p, ..., an−1|x− y|p),

where ai(i = 1, ..., n− 1) and p > 1 are constants. It is easy to see that (X, d) is a cone b-metric space with
the coefficient r = 2p−1.

Remark 2.3. It is obvious that any cone metric space must be a cone b-metric space. Moreover, cone b-metric
spaces generalize cone metric spaces, b-metric spaces and metric spaces.

Definition 2.4 ([4]). Let (X, d) be a cone b-metric space, x ∈ X, {xn} be a sequence in X. Then

(i) {xn} converges to x whenever for every c ∈ E with θ � c there is a natural number n0 such that
d(xn, x)� c for all n ≥ n0. We denote this by lim

n→∞
xn = x;

(ii) {xn} is a Cauchy sequence whenever for every c ∈ E with θ � c there is a natural number n0 such
that d(xn, xm)� c for all n,m ≥ n0;
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(iii) (X, d) is complete cone b-metric if every Cauchy sequence in X is convergent.

Remark 2.5 ([5]). The results concerning fixed points and other results, in case of cone spaces with non-
normal solid cones, cannot be provided by reducing to metric spaces, because in this case none of the
conditions of Lemmas 1 − 4 in [3] hold. Further, the vector cone metric is not continuous in the general
case, i.e., from xn → x, yn → y it can not follow that d(xn, yn)→ d(x, y).

Lemma 2.6 ([4]). Let (X, d) be a cone b-metric space. The following properties are often used while dealing
with cone b-metric spaces in which the cone is not necessarily normal.

(i) If u � v and v � w, then u� w;

(ii) If θ � u� c for each c ∈ int P , then u = θ;

(iii) If a � b+ c for each c ∈ int P , then a � b;
(iv) If θ � d(xn, x) � bn and bn → θ, then xn → x;

(v) If a � λa, where a ∈ P and 0 < λ < 1, then a = θ;

(vi) If c ∈ int P , θ � an and an → θ, then there exists n0 ∈ N such that an � c for all n > n0.

3. Main result

According to [2], we denote by CB(X) the family of nonempty closed bounded subsets of X, and

s(p) = {q ∈ E : p � q} for p ∈ E,

s(a,B) =
⋃
b∈B

s(d(a, b)) =
⋃
b∈B
{x ∈ E : d(a, b) � x} for a ∈ X and B ∈ CB(X).

For A,B ∈ CB(X), we define

s(A,B) = (
⋂
a∈A

s(a,B)) ∩ (
⋂
b∈B

s(b, A)).

Lemma 3.1. Let (X, d) be a cone b-metric space with a cone P . For x, y ∈ X and y ∈ B ⊆ X, if d(x, y) � a,
then a ∈ s(x,B).

We start with the following lemma and remark which will be used to prove our main result. (in particular
when dealing with cone b-metric spaces in which the cone need not be normal).

Lemma 3.2 ([2, 11]). Let (X, d) be a cone b-metric space and P a cone in Banach space E. Then we have:

(i) Let p, q ∈ E. If p � q, then s(q) ⊂ s(p).
(ii) Let x ∈ X and A ∈ CB(X). If θ ∈ s(x,A), then x ∈ A.

(iii) Let q ∈ P and A,B ∈ CB(X) and a ∈ A. If q ∈ s(A,B), then q ∈ s(a,B).

(iv) For all q ∈ P and A,B ∈ CB(X) we have q ∈ s(A,B) if and only if there exist a ∈ A and b ∈ B such
that d(a, b) � q.

Remark 3.3 ([2]). Let (X, d) be a cone b-metric space. If E = R and P = [0,+∞), then (X, d) is a b-metric
space. Moreover, for A,B ∈ CB(X), H(A,B) = infs(A,B) is the Hausdorff distance induced by d. Also,
s({x}, {y}) = s(d(x, y)) for all x, y ∈ X.

Now, we start with the main result of this paper.

Theorem 3.4. Let (X, d) be a complete cone b-metric space with the coefficient r ≥ 1 and cone P , and
let T : X → CB(X) be a multivalued mapping. If there exists a function ϕ : [0, 1) → (12 , 1] defined by

ϕ(t) =
1

1 + t
, we assume that there exists u ∈ [0, 1) such that

1

ϕ(u)
d(x, y) ∈ s(x, Tx)⇒ ud(x, y) ∈ s(Tx, Ty) (3.1)

for all x, y ∈ X. Then there exists v ∈ X such that v ∈ Tv.
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Proof. Let x0 ∈ X be an arbitrary element. Since Tx0 ∈ CB(X), Tx0 is non-empty, there exists some
x1 ∈ Tx0. Since

d(x0, x1) �
1

ϕ(u)
d(x0, x1), (ϕ(u) ∈ (

1

2
, 1]),

by Lemma 3.1 we have
1

ϕ(u)
d(x0, x1) ∈ s(x0, Tx0).

Thus we get
ud(x0, x1) ∈ s(Tx0, Tx1),

so by Lemma 3.2 (iv), we can take x2 ∈ Tx1 such that

d(x1, x2) � ud(x0, x1).

Now, since

d(x1, x2) �
1

ϕ(u)
d(x1, x2),

again by Lemma 3.1 we have
1

ϕ(u)
d(x1, x2) ∈ s(x1, Tx1).

This implies
ud(x1, x2) ∈ s(Tx1, Tx2),

and again by Lemma 3.2 (iv), there exists some x3 ∈ Tx2 such that

d(x2, x3) � ud(x1, x2).

By induction we get an iterative sequence {xn}n≥0 in X with xn+1 ∈ Txn, such that

d(xn, xn+1) � ud(xn−1, xn).

If xn = xn+1 for some n ∈ N , then T has a fixed point. Assume that xn 6= xn+1, then for all n ∈ N ,

d(xn, xn+1) � ud(xn−1, xn) � u2d(xn−2, xn−1) � · · · � und(x0, x1).

Now for m > n, applying Definition 2.1 (iii) to triple

{xn, xn+1, xm}, {xn+1, xn+2, xm}, · · · , {xm−2, xm−1, xm},

we obtain

d(xn, xm) �r[d(xn, xn+1) + d(xn+1, xm)]

�rd(xn, xn+1) + r2[d(xn+1, xn+2) + d(xn+2, xm)]

� · · ·
�rd(xn, xn+1) + r2d(xn+1, xn+2) + · · ·+ rm−n−1[d(xm−2, xm−1) + d(xm−1, xm)]

�rd(xn, xn+1) + r2d(xn+1, xn+2) + · · ·+ rm−n−1d(xm−2, xm−1) + rm−nd(xm−1, xm).

(3.2)

Since d(xn, xn+1) � und(x0, x1), we get

d(xn, xm) �(run + r2un+1 + ...+ rm−num−1)d(x0, x1)

�run(1 + (ru) + · · ·+ (ru)m−n−1)d(x0, x1)

=
run(1− (ru)m−n)

1− ru
d(x0, x1)→ θ as n→∞.

(3.3)

Now, according to Lemma 2.6 (i) and (vi), we get that for a given θ � c there exists m0 ∈ N such that



Z. Chu, X. J. Huang, X. Y. Liu, J. Nonlinear Sci. Appl. 9 (2016), 3504–3510 3508

d(xm, xn)� c, for all m,n > m0.

This means that {xn} is Cauchy sequence in (X, d). Since (X, d) is a complete cone b-metric space, there
exists v ∈ X such that xn → v. Therefore, for θ � c, there exists k0 ∈ N such that for n ≥ k0 we get

d(v, xn+1)�
c

2r
, and d(xn, v)� c

2r
.

Now we will prove v ∈ Tv. For this let us consider that from (3.1) there exists u ∈ [0, 1) such that

1

ϕ(u)
d(xn, v) ∈ s(xn, Txn)⇒ ud(xn, v) ∈ s(Txn, T v).

By Lemma 3.2 (iii) there exists some xn+1 ∈ Txn such that

ud(xn, v) ∈ s(xn+1, T v) ∈
⋃

x∈Tv

s(d(xn+1, x)),

so there exists some vn ∈ Tv such that

ud(xn, v) ∈ s(d(xn+1, vn)).

It gives
d(xn+1, vn) � ud(xn, v) � d(xn, v).

Now consider

d(v, vn) �r[d(v, xn+1) + d(xn+1, vn)]

�rd(v, xn+1) + rd(xn, v)

� c

2
+
c

2
= c for all n ≥ k0,

(3.4)

which means vn → v, since Tv is closed we have v ∈ Tv. This completes the proof.

Corollary 3.5. Let (X, d) be a complete cone b-metric space with the coefficient r ≥ 1 and cone P , and let
T : X → CB(X) be a multivalued mapping. Assume that there exists u ∈ [0, 1) such that

ud(x, y) ∈ s(Tx, Ty)

for all x, y ∈ X. Then there exists v ∈ X such that v ∈ Tv.

Corollary 3.6 ([6]). Let (X, d) be a complete cone b-metric space with the coefficient r ≥ 1 and cone P ,
and let T : X → CB(X) be a multivalued mapping. Let ϕ : [0, 1)→ (12 , 1] be the strictly decreasing function

defined by ϕ(t) =
1

1 + t
. Assume that there exists a ∈ [0, 1) such that

ϕ(a)d(x, Tx) ≤ d(x, y)⇒ H(Tx, Ty) ≤ ad(x, y)

for all x, y ∈ X. Then there exists v ∈ X such that v ∈ Tv.

Corollary 3.7 ([7]). Let (X, d) be a complete cone b-metric space with the coefficient r ≥ 1 and cone P ,
and let T : X → CB(X) be a multivalued mapping. Assume that there exists u ∈ [0, 1) such that

H(Tx, Ty) ≤ ud(x, y)

for all x, y ∈ X. Then there exists v ∈ X such that v ∈ Tv.

Remark 3.8. Theorem 3.4 is a generalization of Theorem 1.1 of Kikkawa and Suzuk [6] from metric spaces
to cone metric spaces without using normality of P . Moreover, we use the notion s(Tx, Ty) which analogue
the concept H(Tx, Ty) in cone b-metric spaces.



Z. Chu, X. J. Huang, X. Y. Liu, J. Nonlinear Sci. Appl. 9 (2016), 3504–3510 3509

Example 3.9. Let X = [0, 1], E = C1
R[0, 1] with the norm ‖f‖ = ‖f‖∞+‖f ′‖∞ and P = {x ∈ E : x(t) � θ},

where θ(t) = 0 for all t ∈ X, then P is a non-normal cone. Define d : X ×X → E as follows:

(d(x, y))(t) = |x− y|2et.

Let T : X → CB(X) be a multivalued mapping and Tx = [0,
x

30
].

Then (X, d) is a cone b-metric space. In fact, we can get that Definition 2.1 (i) and (ii) are obviously
satisfied. Now, we show Definition 2.1 (iii) are satisfied.

For x, y, z ∈ X, set u = x− z, v = z − y, so x− y = u+ v. From the inequality

(a+ b)2 ≤ 2(a2 + b2) for all a, b ≥ 0,

we have
|x− y|2 = |u+ v|2 ≤ 2(|u|2 + |v|2) = 2(|x− z|2 + |z − y|2),
|x− y|2et ≤ 2(|x− z|2et + |z − y|2et),

which implies that

d(x, y) � r[d(x, z) + d(y, z)] with r = 2 > 1.

We take u =
1

9
∈ [0, 1), then ϕ(u) =

9

10
. Since Tx is non-empty, there exists y ∈ Tx such that

s(x, Tx) = s(d(x, y)) = s(|x− y|2et).

Since

|x− y|2et ≤ 1

ϕ(u)
d(x, y) =

10

9
|x− y|2et,

we get
10

9
|x− y|2et ∈ s(x, Tx).

From Tx = [0,
x

30
], for x < y,

s(Tx, Ty) = s(| x
30
− y

30
|2et).

Since

| x
30
− y

30
|2et ≤ 1

32
|x− y|2et =

1

9
|x− y|2et,

we get
1

9
(|x− y|2et) ∈ s(| x

30
− y

30
|2et).

Therefore, for u =
1

9
∈ [0, 1), we have

1

ϕ(u)
d(x, y) ∈ s(x, Tx)⇒ ud(x, y) ∈ s(Tx, Ty).

Moreover, 0 is the fixed point. Thus all the conditions of Theorem 3.4 are satisfied.
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