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Abstract

In this paper, we consider a ratio-dependent predator-prey system with multiple delays where the dy-
namics are logistic with the carrying capacity proportional to prey population. By choosing the sum τ
of two delays as the bifurcation parameter, the stability of the positive equilibrium and the existence of
Hopf bifurcation are investigated. Furthermore, the direction of Hopf bifurcation and the stability of the
bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem
for functional differential equations. Finally, some numerical simulations are carried out for illustrating the
theoretical results. c©2016 All rights reserved.
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1. Introduction

The study of the dynamics of a predator-prey system is one of the dominant subjects in ecology and
mathematical ecology due to its universal existence and importance. As to our knowledge, delay differential
equations exhibit much more complicated dynamics than ordinary differential equations since a time delay
could cause a stable equilibrium to become unstable and cause the populations to fluctuate. Thus, time
delays of one type or another have been incorporated into mathematical models of population dynamics due
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to maturation time, capturing time or other reasons. In the last decades, many authors have explored the
dynamics of systems with time delay and many interesting results have been obtained [4, 5, 11–18, 20, 23, 24].

Recently, Zhou et al. [25] considered the following system{
dN(t)
dt = r1N(t)− εP (t)N(t),

dP (t)
dt = P (t)(r2 − θ P (t)

N(t)),
(1.1)

where r1, r2, ε and θ are positive constants. N(t) and P (t) can be interpreted as the densities of prey
and predator populations at time t, respectively. Zhou et al. first studied the stability conditions of the
equilibrium point for the system and then by introducing so called Allee effect [3, 6, 7] in different forms,
they investigated the impact of this effect on the dynamics of this predator-prey system.

In system (1.1), there is no delay. In [1], Celik incorporated the delay into the system, then system (1.1)
becomes {

dN(t)
dt = r1N(t)− εP (t)N(t),

dP (t)
dt = P (t)(r2 − θP (t−τ)

N(t) ),
(1.2)

where τ ≥ 0 denotes the delay time for the predator density. In system (1.2) predator density is logistic
with time delay and the carrying capacity proportional to prey density.

In [2], Celik analyzed the following ratio-dependent delayed predator-prey system{
dN(t)
dt = r1N(t)− εP (t)N(t),
dP (t)
dt = P (t)(r2 − θ P (t)

N(t−τ)),
(1.3)

where τ ≥ 0 denotes the delay time for the prey density.
Inspired by system (1.2) and system (1.3), we easily obtained that besides the hunting delay for predator

to prey, it is reasonable to incorporate delays into the prey density in the denominator of the ratio in the
dynamics of predator and the predator density in the numerator. Based on this fact, we analyse the following
more complicated ratio-dependent predator-prey system with multiple delays{

dN(t)
dt = r1N(t)− εP (t− τ1)N(t),
dP (t)
dt = P (t)(r2 − θ P (t−τ)

N(t−τ2)),
(1.4)

where τ1 ≥ 0 denotes the hunting delay of predator to prey, τ2 ≥ 0 denotes the delay time for the prey
density, and τ ≥ 0 is the delay time for the predator density. We address the question how the time
delay in predator density of ratio in the dynamics of predator affects the dynamical properties. Another
interesting question is that what the effect is if the time delay not only be incorporated into prey density in
the denominator of the ratio in the dynamics of predator but also be incorporated into the predator density
in the numerator? Shall these delays destabilize the equilibrium and change the dynamical behavior of the
system (1.4)? So the aim of this paper is to study the dynamical behavior of system (1.4), for which we
investigate the stability of delayed Leslie-Gower predator-prey system (1.4) and analyse how the time delay τ
effects the dynamics of this system. We would like to mention that the bifurcation in a predator-prey system
with a single or multiple delays had been investigated by many researchers [9, 10, 19, 21, 22]. However, to
the best of our knowledge, for this case, few results for system (1.4) have been obtained. Therefore, the
research of this paper is worth considering.

This paper is organized as follows. In Section 2, we obtain the existence of the positive equilibrium. By
analyzing the characteristic equation of the linearized system at positive equilibrium, we discuss the stability
of the positive and the existence of the Hopf bifurcations occurring at the positive equilibrium. In Section
3, the formula determining the direction of the Hopf bifurcation and the stability of bifurcating periodic
solutions on the center manifold are obtained by using the normal form theory and the center manifold
theorem due to Hassard et al. [8]. In order to verify our theoretical prediction, some numerical simulations
are also included in Section 4.
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2. Stability of positive equilibrium and existence of local Hopf bifurcations

For convenience, we introduce new variables x(t) = N(t), y(t) = P (t−τ1), and assume that τ = τ1+τ2,
so that system (1.4) can be written as the following system with a single delay:{

dx(t)
dt = r1x(t)− εx(t)y(t),
dy(t)
dt = y(t)(r2 − θ y(t−τ)x(t−τ)).

(2.1)

The positive equilibrium of the system (2.1) is E∗ := (x∗0, y
∗
0), where x∗0 = r1θ

r2ε
and y∗0 = r1

ε . To study the
stability of the positive equilibrium E∗, we first use the linear transformation ũ1(t) = x(t) − x∗0, ũ2(t) =
y(t)− y∗0, where ũ1(t)� 1 and ũ2(t)� 1, for which system (2.1) yields{

dũ1(t)
dt = (x∗0 + ũ1(t))(r1 − ε(y∗0 + ũ2(t))),

dũ2(t)
dt = (y∗0 + ũ2(t))(r2 − θ

y∗0+ũ2(t−τ)
x∗0+ũ1(t−τ)

).
(2.2)

By linearizing the system (2.2) around (0, 0) and using relations r1 − εy∗0 = 0 and r2 − θ
y∗0
x∗0

= 0, lead the

following system {
dũ1(t)
dt = −εx∗0ũ2(t),

dũ2(t)
dt = θ(

y∗0
x∗0

)2ũ1(t− τ)− θ( y
∗
0
x∗0

)ũ2(t− τ).
(2.3)

The characteristic equation of system (2.3) is

λ2 + θ(
y∗0
x∗0

)e−λτλ+ θε
(y∗0)2

x∗0
e−λτ = 0. (2.4)

Let a = θ(
y∗0
x∗0

) > 0 and b = θε
(y∗0)

2

x∗0
> 0, the Eq. (2.4) becomes

λ2 + ae−λτλ+ be−λτ = 0. (2.5)

Lemma 2.1. The two roots λ1,2 = −a±
√
a2−4b
2 of system (2.5) with τ = 0 is asymptotically stable.

Next, we examine when the characteristic equation has pairs of purely imaginary roots. For τ > 0, if
iω(ω > 0) is a root of (2.5), then ω should satisfy the following equations

− ω2 + aωsin(ωτ) + bcos(ωτ) = 0,

aωcos(ωτ)− bsin(ωτ) = 0.
(2.6)

Thus

sin(ωτ) =
aω3

a2ω2 + b2
, cos(ωτ) =

bω2

a2ω2 + b2
. (2.7)

Squaring and adding both the equations of (2.6), we have

a2ω6 + (b2 − a4)ω4 − 2a2b2ω2 − b4 = 0. (2.8)

Let z = ω2, a1 = a2, b1 = b2 − a4, c1 = −2a2b2, d1 = −b4, Eq. (2.8 becomes

a1z
3 + b1z

2 + c1z + d1 = 0. (2.9)

Since d1 < 0, it is easy to see that the Eq. (2.9) has one positive root z0, then Eq. (2.8) has a positive real
root ω0 =

√
z0. From Eq. (2.7), we have

tan(ωτ) =
a

b
ω. (2.10)

Define

τk =
1

ω0
(arctan(

aω0

b
) + kπ), k = 0, 1, 2, · · ·. (2.11)

Therefore, Eq. (2.5) has a pair of imaginary roots ±iω0.
Let λk(τ) = αk(τ) + iωk(τ) be the root of Eq. (2.5) near τ = τk satisfying αk(τk) = 0, ωk(τk) =

ω0, (k = 0, 1, 2, · · · ). Then we have the following transversality condition.
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Lemma 2.2. dReλk(τ)
dτ > 0

Proof. Differentiating both sides of Eq. (2.5) with respect to τ , we get

2λ
dλ

dτ
+ ae−λτ

dλ

dτ
+ aλe−λτ (−τ dλ

dτ
− λ) + be−λτ (−τ dλ

dτ
− λ) = 0,

that is

(
dλ

dτ
)−1 =

2λ+ ae−λτ − aλτe−λτ − bτe−λτ

aλ2e−λτ + bλe−λτ

=
2λ+ ae−λτ

aλ2e−λτ + bλe−λτ
− τ

λ

=
2λ+ ae−λτ

−λ3
− τ

λ
.

Thus

Re(
dλ

dτ
)−1|λ=iω0 = Re(

2(iω0) + a(cos(ω0τk)− isin(ω0τk))

−(iω0)3
− τk
iω0

)

=
a2ω2

0 + 2b2

ω2
0(a2ω2

0 + b2)
> 0.

This completes the proof of Lemma 2.2.

Summarizing the above results, we have the following theorem on stability and Hopf bifurcation of system
(2.1).
Theorem 2.3. For system (2.1),
(i) If τ ∈ [0, τ0), then the equilibrium E∗ : (x∗0, y

∗
0) of system (2.1) is asymptotically stable.

(ii) If τ > τ0, then the equilibrium E∗ : (x∗0, y
∗
0) of system (2.1) is unstable.

(iii) τk, (k = 0, 1, 2, · · · ) are Hopf bifurcation values for system (2.1).

3. Direction of Hopf bifurcations and stability of bifurcating periodic solutions

In the previous section, we have already obtained that, under certain conditions, the system (2.1)
can undergo Hopf bifurcation at the positive equilibrium E∗ : (x∗0, y

∗
0) when τ takes some critical values

τ = τk, (k = 0, 1, 2, · · · ). In this section, by employing the normal form theory and the center manifold
Theorem introduced by Hassard et al. [8], we shall present the formula determining the direction of the
Hopf bifurcation and the stability of bifurcating periodic solutions of (2.1).

Let ui(t) = ũi(τt), τ = τk+µ, µ ∈ R, then µ = 0 is the Hopf bifurcation value for system (2.1), dropping
the bars for simplification of notations, system (2.1) becomes the following functional differential equation
in C = C([−1, 0], R2),

u̇(t) = Lµ(ut) + f(µ, ut), (3.1)

where u(t) = (u1(t), u2(t))
T ∈ R2, and Lµ : C → R2, f : R× C → R2 are given by

Lµ(φ) = (τk + µ)

(
0 N
0 0

)(
φ1(0)
φ2(0)

)
+ (τk + µ)

(
0 0
G S

)(
φ1(−1)
φ2(−1)

)
, (3.2)

and

f(µ, φ) = (τk + µ)

(
a11φ1(0)φ2(0)

a21φ
2
1(−1) + a22φ1(−1)φ2(0) + a23φ1(−1)φ2(−1) + a24φ2(0)φ2(−1)

)
, (3.3)

where

N = −εx∗0, G = θ(
y∗0
x∗0

)2, S = −θ(y
∗
0

x∗0
), a11 = −ε,

a21 = −θ (y∗0)2

(x∗0)
3
, a22 =

θy∗0
(x∗0)

2
, a23 =

θy∗0
(x∗0)

2
, a24 =

−θ
x∗0
.
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By the Riesz representation Theorem, there exists a function η(θ, µ) of bounded variation for θ ∈ [−1, 0],
such that

Lµ(φ) =

∫ 0

−1
dη(θ, µ)φ(θ) for φ ∈ C. (3.4)

In fact,we can choose

η(θ, µ) = (τk + µ)

(
0 N
0 0

)
δ(θ) + (τk + µ)

(
0 0
G S

)
δ(θ + 1), (3.5)

where δ is the Dirac delta function. For φ ∈ C([−1, 0], R2), define

A(µ)φ =

{
dφ(θ)
dθ , θ ∈ [−1, 0),∫ 0
−1 dη(s, µ)φ(s), θ = 0,

and

R(µ)φ =

{
0, θ ∈ [−1, 0),
f(µ, φ), θ = 0.

Then system (3.1) is equivalent to
u̇t = A(µ)ut +R(µ)ut, (3.6)

where ut(θ) = u(t+ θ) for θ ∈ [−1, 0]. For ψ ∈ C1([0, 1], (R2)∗), define

A∗ψ(s) =

{
−dψ(s)

ds , s ∈ (0, 1],∫ 0
−1 ψ(−t)dη(t, 0), s = 0,

and a bilinear inner product

〈ψ(s), φ(θ)〉 = ψ̄(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, (3.7)

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. By the discussion in Section 2, we know
that ±iω0τk are eigenvalues of A(0). Hence, they are also eigenvalues of A∗. We first need to compute the
eigenvectors of A(0) and A∗ corresponding to iω0τk and −iω0τk respectively. Suppose q(θ) = (1, q1)

T eiω0τkθ

is the eigenvector of A(0) corresponding to iω0τk, then A(0)q(0) = iω0τkq(0). From the definition of A(0)
and (3.2), (3.4), (3.5) we have

τk

(
0 N
0 0

)
q(0) + τk

(
0 0
G S

)
q(−1) = iω0τkq(0).

For q(−1) = q(0)e−iω0τk , then we obtain

q1 =
iω0

N
.

Similarly, we can obtain the eigenvector q∗(s) = D(1, q∗1)eiω0τks of A∗ corresponding to −iω0τk, where

q∗1 =
iN

ω0
.

In order to assure 〈q∗(s), q(θ)〉 = 1, we need to determine the value of D. By (3.7), we have

〈q∗(s), q(θ)〉 = q̄∗(0)q(0)−
∫ 0

−1

∫ θ

ξ=0
q̄∗(ξ − θ)dη(θ)q(ξ)dξ

= D̄(1, q̄∗1)(1, q1)
T −

∫ 0

−1

∫ θ

ξ=0
D̄(1, q̄∗1)e−iω0τk(ξ−θ)dη(θ)(1, q1)

T eiω0τkξdξ

= D̄{1 + q1q̄
∗
1 − (1, q̄∗1)

∫ 0

−1
θeiω0τkθdη(θ)(1, q1)

T }

= D̄{1 + q1q̄
∗
1 + τk(Gq̄

∗
1 + Sq1q̄

∗
1)e−iω0τk}.
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Therefore, we can choose D as

D =
1

1 + q̄1q∗1 + τk(Gq
∗
1 + Sq̄1q∗1)eiω0τk

.

Next we will compute the coordinate to describe the center manifold C0 at µ = 0. Let ut be the solution
of (3.6) when µ = 0. Define

z(t) = 〈q∗, ut〉, W (t, θ) = ut(θ)− 2Re{z(t)q(θ)}. (3.8)

On the center manifold C0, we have
W (t, θ) = W (z(t), z̄(t), θ),

where

W (z(t), z̄(t), θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · ·. (3.9)

z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗. Note that W is real if ut
is real. We only consider real solutions. For solutions ut ∈ C0 of (3.6). Since µ = 0, we have

ż(t) = iω0τkz + q̄∗(0)f(0,W (z, z̄, 0) + 2Re{zq(θ)})4= iω0τkz + q̄∗(0)f0(z, z̄).

We rewrite this equation as
ż(t) = iω0τkz + g(z, z̄),

where

g(z, z̄) = q̄∗(0)f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · ·. (3.10)

It follows from (3.8) and (3.9) that

ut(θ) = W (t, θ) + 2Re{z(t)q(θ)}

= W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ (1, q1)

T eiω0τkθz + (1, q̄1)
T e−iω0τkθz̄ + · · ·.

(3.11)

It follows together with (3.3) that

g(z, z̄) = q̄∗(0)f0(z, z̄) = q̄∗(0)f(0, ut)

= τkD̄(1, q̄∗1)

(
a11u1t(0)u2t(0)

a21u
2
1t(−1) + a22u1t(−1)u2t(0) + a23u1t(−1)u2t(−1) + a24u2t(0)u2t(−1)

)
= τkD̄[a11u1t(0)u2t(0) + a21q̄

∗
1u

2
1t(−1) + a22q̄

∗
1u1t(−1)u2t(0)

+ a23q̄
∗
1u1t(−1)u2t(−1) + a24q̄

∗
1u2t(0)u2t(−1)]

= τkD̄a11{W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ z + z̄ + · · ·}

{W (2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ q1z + q̄1z̄ + · · · }

+ τkD̄a21q̄
∗
1{W

(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄ +W

(1)
02 (−1)

z̄2

2
+ e−iω0τkz + eiω0τk z̄ + · · · }

{W (1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄ +W

(1)
02 (−1)

z̄2

2
+ e−iω0τkz + eiω0τk z̄ + · · · }

+ τkD̄a22q̄
∗
1{W

(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄ +W

(1)
02 (−1)

z̄2

2
+ e−iω0τkz + eiω0τk z̄ + · · · }

{W (2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ q1z + q̄1z̄ + · · · }
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+ τkD̄a23q̄
∗
1{W

(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄ +W

(1)
02 (−1)

z̄2

2
+ e−iω0τkz + eiω0τk z̄ + · · · }

{W (2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz̄ +W

(2)
02 (−1)

z̄2

2
+ q1e

−iω0τkz + q̄1e
iω0τk z̄ + · · ·}

+ τkD̄a24q̄
∗
1{W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ q1z + q̄1z̄ + · · · }

{W (2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz̄ +W

(2)
02 (−1)

z̄2

2
+ q1e

−iω0τkz + q̄1e
iω0τk z̄ + · · ·}

Comparing the coefficients with (3.10), we have

g20 = 2τkD̄a11q1 + 2τkD̄a21q̄
∗
1e
−2iω0τk + 2τkD̄a22q̄

∗
1q1e

−iω0τk

+ 2τkD̄a23q̄
∗
1q1e

−2iω0τk + 2τkD̄a24q̄
∗
1q

2
1e
−iω0τk ,

g11 = 2τkD̄a11Re{q1}+ 2τkD̄a21q̄
∗
1 + 2τkD̄a22q̄

∗
1Re{q1eiω0τk}

+ 2τkD̄a23q̄
∗
1Re{q1}+ 2τkD̄a24q̄

∗
1Re{q1q̄1eiω0τk},

g02 = 2τkD̄a11q̄1 + 2τkD̄a21q̄
∗
1e

2iω0τk + 2τkD̄a22q̄
∗
1 q̄1e

iω0τk

+ 2τkD̄a23q̄
∗
1q1e

2iω0τk + 2τkD̄a24q̄
∗
1(q̄1)

2eiω0τk ,

g21 = τkD̄a11q̄1W
(1)
20 (0) + 2τkD̄a11q1W

(1)
11 (0) + (2τkD̄a11 + 2τkD̄a22q̄

∗
1e
−iω0τk

+ 2τkD̄a24q̄
∗
1q1e

−iω0τk)W
(2)
11 (0) + (τkD̄a11 + τkD̄a22q̄

∗
1e
iω0τk

+ τkD̄a24q̄
∗
1 q̄1e

iω0τk)W
(2)
20 (0) + (2τkD̄a21q̄

∗
1e
iω0τk + τkD̄a22q̄

∗
1 q̄1

+ τkD̄a23q̄
∗
1 q̄1e

iω0τk)W
(1)
20 (−1) + (4τkD̄a21q̄

∗
1e
−iω0τk + 2τkD̄a22q̄

∗
1q1

+ 2τkD̄a23q̄
∗
1q1e

−iω0τk)W
(1)
11 (−1) + (2τkD̄a23q̄

∗
1e
−iω0τk + 2τkD̄a24q̄

∗
1q1)W

(2)
11 (−1)

+ (τkD̄a23q̄
∗
1e
iω0τk + τkD̄a24q̄

∗
1 q̄1)W

(2)
20 (−1).

To determine g21, we need to compute W20(θ) and W11(θ). By (3.6) and (3.8), we have

Ẇ = u̇t − żq − ˙̄zq̄

=

{
A(0)W − 2Re{q̄∗(0)f0q(θ)}, θ ∈ [−1, 0)
A(0)W − 2Re{q̄∗(0)f0q(0)}+ f0, θ = 0

4
=A(0)W +H(z, z̄, θ),

(3.12)

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · ·. (3.13)

Substituting the corresponding series into (3.12) and comparing the coefficients, we have

(A(0)− 2iω0τkI)W20(θ) = −H20(θ), A(0)W11(θ) = −H11(θ). (3.14)

From (3.12), we know that for θ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ) = −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ). (3.15)

Comparing the coefficients with (3.13) gives that

H20(θ) = −g20q(θ)− ḡ02q̄(θ), (3.16)

and
H11(θ) = −g11q(θ)− ḡ11q̄(θ). (3.17)
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From the definition of A and (3.14) and (3.16), we have

Ẇ20(θ) = 2iω0τkW20(θ) + g20q(θ) + ḡ02q̄(θ).

For q(θ) = (1, q1)
T eiω0τkθ, we have

W20(θ) =
ig20
ω0τk

q(0)eiω0τkθ +
iḡ02

3ω0τk
q̄(0)e−iω0τkθ + E1e

2iω0τkθ, (3.18)

where E1 = (E
(1)
1 , E

(2)
1 )T is a constant vector.

Similarly, from (3.14) and (3.17), we know

W11(θ) =
−ig11
ω0τk

q(0)eiω0τkθ +
iḡ11
ω0τk

q̄(0)e−iω0τkθ + E2, (3.19)

where E2 = (E
(1)
2 , E

(2)
2 )T is a constant vector.

In what follows, we shall seek the values of E1 and E2. From the definition of A(0) and (3.14), we have∫ 0

−1
dη(θ)W20(θ) = 2iω0τkW20(0)−H20(0), (3.20)

and ∫ 0

−1
dη(θ)W11(θ) = −H11(0), (3.21)

where η(θ) = η(θ, 0). By (3.12), we know when θ = 0,

H(z, z̄, 0) = −2Re{q̄∗(0)f0q(0)}+ f0

= −q̄∗(0)f0q(0)− q∗(0)f̄0q̄(0) + f0

= −g(z, z̄)q(0)− ḡ(z, z̄)q̄(0) + f0.

That is

H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · ·

= −q(0)(g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ · · ·)− q̄(0)(ḡ20

z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ · · ·) + f0.

(3.22)

By (3.3), we have

f0 = τk

(
a11u1t(0)u2t(0)

a21u
2
1t(−1) + a22u1t(−1)u2t(0) + a23u1t(−1)u2t(−1) + a24u2t(0)u2t(−1)

)
.

By (3.11), we obtain

f0 =τk

(
a11q1

(a21 + a23q1)e
−2iω0τk + (a22q1 + a24q

2
1)e−iω0τk

)
z2

+ τk

(
a11q1 + a11q̄1

2a21 + a23(q1 + q̄1) + (a22q1 + a24q1q̄1)e
iω0τk + (a22q̄1 + a24q1q̄1)e

−iω0τk

)
zz̄

+ · · ·.

(3.23)

By (3.22) and (3.23), we have

H20(0) =− g20q(0)− ḡ02q̄(0)

+ 2τk

(
a11q1

(a21 + a23q1)e
−2iω0τk + (a22q1 + a24q

2
1)e−iω0τk

)
,

(3.24)
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and

H11(0) =− g11q(0)− ḡ11q̄(0)

+ τk

(
a11q1 + a11q̄1

2a21 + a23(q1 + q̄1) + (a22q1 + a24q1q̄1)e
iω0τk + (a22q̄1 + a24q1q̄1)e

−iω0τk

)
.

(3.25)

Since iω0τk is the eigenvalue of A(0) and q(0) is the corresponding eigenvector, we obtain

(iω0τkI −
∫ 0

−1
eiω0τkθdη(θ))q(0) = 0, (−iω0τkI −

∫ 0

−1
e−iω0τkθdη(θ))q̄(0) = 0.

Substituting (3.18) and (3.24) into (3.20), we obtain

(2iω0τkI −
∫ 0

−1
e2iω0τkθdη(θ))E1 = 2τk

(
a11q1

(a21 + a23q1)e
−2iω0τk + (a22q1 + a24q

2
1)e−iω0τk

)
.

That is (
2iω0 −N

−Ge−2iω0τk 2iω0 − Se−2iω0τk

)
E1

= 2

(
a11q1

(a21 + a23q1)e
−2iω0τk + (a22q1 + a24q

2
1)e−iω0τk

)
.

It follows that

E
(1)
1 =

2

M1

∣∣∣∣ a11q1 −N
(a21 + a23q1)e

−2iω0τk + (a22q1 + a24q
2
1)e−iω0τk 2iω0 − Se−2iω0τk

∣∣∣∣ ,
E

(2)
1 =

2

M1

∣∣∣∣ 2iω0 a11q1
−Ge−2iω0τk (a21 + a23q1)e

−2iω0τk + (a22q1 + a24q
2
1)e−iω0τk

∣∣∣∣ ,
where

M1 =

∣∣∣∣ 2iω0 −M −N
−Ge−2iω0τk 2iω0 − Se−2iω0τk

∣∣∣∣ .
Similarly, substituting (3.19) and (3.25) into (3.21), we get

E
(1)
2 =

1

M2

∣∣∣∣ a11q1 + a11q̄1 −N
2a21 + a23(q1 + q̄1) + (a22q1 + a24q1q̄1)e

iω0τk + (a22q̄1 + a24q1q̄1)e
−iω0τk −S

∣∣∣∣ ,
E

(2)
2 =

1

M2

∣∣∣∣ 0 a11q1 + a11q̄1
−G 2a21 + a23(q1 + q̄1) + (a22q1 + a24q1q̄1)e

iω0τk + (a22q̄1 + a24q1q̄1)e
−iω0τk

∣∣∣∣ ,
where

M2 =

∣∣∣∣ 0 −N
−G −S

∣∣∣∣ .
Thus, we can determine W20(θ) and W11(θ) from (3.18) and (3.19). Furthermore, we can compute g21

by (3.12). Thus we can compute the following values:

c1(0) =
i

2ω0τk
(g20g11 − 2|g11|2 −

|g02|2

3
) +

g21
2
,

µ2 = −Re{C1(0)}
Re{dλ(τk)dτ }

,

β2 = 2Re{C1(0)},

T2 = −
Im{C1(0)}+ µ2Im{dλ(τk)dτ }

ω0τk
, (k = 0, 1, 2, · · · ).
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Theorem 3.1.

(i) µ2 determines the direction of the Hopf bifurcation: if µ2 > 0 (µ2 < 0), then the Hopf bifurcation is
supercritical (subcritical) and the bifurcating periodic solutions exist for τ > τk (τ < τk);

(ii) β2 determines the stability of the bifurcating periodic solutions: if β2 < 0 (β2 > 0), then the bifurcating
periodic solutions are stable (unstable);

(iii) T2 determines the period of the bifurcating periodic solutions: if T2 > 0 (T2 < 0), then the period
increases (decreases).

4. Numerical simulations

In this section, we give some numerical simulations supporting our theoretical predictions. As an
example, we consider the following system{

dN(t)
dt = 0.9N(t)− 0.09P (t− τ1)N(t),
dP (t)
dt = P (t)(0.3− 0.15P (t−τ1−τ2)

N(t−τ2) ).
(4.1)

By computing, we may obtain that the unique positive equilibrium E∗ : (5.000000000, 10.00000000), a =
0.3000000000, b = 0.2700000000, a1 = 0.09000000000, b1 = 0.06480000000, c1 = −0.01312200000, d1 =
−0.005314410000, ω0 = 0.5645567411, τ0 = τ1 + τ2 = 0.9923554636. The computer simulations see Fig.1,
Fig.2 show that E∗ : (5.000000000, 10.00000000) is asymptotically stable when τ = 0.9 < τ0 = 0.9923554636.

When τ passes through the critical value τ0, E
∗ = (5.000000000, 10.00000000) loses its stability and a

Hopf bifurcation occurs, i.e., a family of periodic solutions bifurcate from E∗ : (5.000000000, 10.00000000).
When τ = 1.1 > τ0 = 0.9923554636, E∗ : (5.000000000, 10.00000000) is unstable, see Fig.3, Fig.4.
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Figure 1: The trajectory graph of system (4.1) with τ = 0.9 < τ0 = 0.9923554636. The positive equilibrium E∗ :
(5.000000000, 10.00000000) is asymptotically stable with initial value (x(0) = 8.0, y(0) = 4.0).
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Figure 2: The phase graph of system (4.1) with τ = 0.9 < τ0 = 0.9923554636. The positive equilibrium E∗ :
(5.000000000, 10.00000000) is asymptotically stable with initial value (x(0) = 8.0, y(0) = 4.0).
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Figure 3: The trajectory graph of system (4.1) with τ = 1.1 > τ0 = 0.9923554636. The positive equilibrium E∗ :
(5.000000000, 10.00000000) is unstable with initial value (x(0) = 8.0, y(0) = 4.0).
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Figure 4: The phase graph of system (4.1) with τ = 1.1 > τ0 = 0.9923554636. The positive equilibrium E∗ :
(5.000000000, 10.00000000) is unstable with initial value (x(0) = 8.0, y(0) = 4.0).
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