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Abstract

In this paper, we use the iterative method proposed by Zegeye and Shahzad [H. Zegeye, N. Shahzed,
Fixed Point Theory Appl., 2013 (2013), 12 pages] which converges strongly to the common minimum-norm
fixed point of a finite family of σ-asymptotically quasi-nonexpansive mappings. As consequence, convergence
results to a common minimum-norm fixed point of a finite family of asymptotically nonexpansive mappings
is proved. Our result generalize and improve a recent result of Zegeye and Shahzad [H. Zegeye, N. Shahzed,
Fixed Point Theory Appl., 2013 (2013), 12 pages]. In the sequel, we apply our main result to find solution
of minimizer of a continuously Frechet-differentiable convex functional which has the minimum norm in
Hilbert spaces. c©2016 All rights reserved.
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1. Introduction

Unless otherwise mentioned, throughout this paper, let H denote a real Hilbert space with inner product
〈·, ·〉 and induced norm ‖ · ‖. Let K be a nonempty closed convex subset of H, T : K → K be a mapping
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and let F (T ) denote the set of fixed points of T , i.e., F (T ) = {u ∈ K : Tu = u}. T is said to be:

(1) nonexpansive [11] if ‖Tu− Tv‖ ≤ ‖u− v‖ for all u, v ∈ K;

(2) quasi-nonexpansive [24] if ‖Tu− p‖ ≤ ‖u− p‖ for all u ∈ K and p ∈ F (T );

(3) asymptotically nonexpansive [13] if there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ such
that

‖Tnu− Tnv‖ ≤ kn‖u− v‖

for all u, v ∈ K and n ≥ 1;

(4) asymptotically quasi-nonexpansive [20] if there exists a real sequence {kn} ⊂ [1,∞) with kn → 1 as
n→∞ such that

‖Tnu− p‖ ≤ kn‖u− p‖

for all u ∈ K and p ∈ F (T );

(5) generalized quasi-nonexpansive [21] with respect to {sn} if there exists a sequence {sn} ⊂ [0, 1) with
sn → 0 as n→∞ such that

‖Tnu− p‖ ≤ ‖u− p‖+ sn‖u− Tnu‖

for all u ∈ K and p ∈ F (T ) and n ≥ 1;

(6) generalized asymptotically quasi-nonexpansive [22] if there exist two sequences {kn}, {cn} of real num-
bers with limn→∞ kn = 0 = limn→∞ cn such that

‖Tnu− p‖ ≤ (1 + kn)‖u− p‖+ cn

for all u ∈ K and p ∈ F (T ), n ≥ 1.

In 1916, Tricomi [24] introduced quasi-nonexpansive for real functions and later studied by Diaz and
Metcalf [10] for mappings in Banach spaces. In 1972, the class of asymptotically nonexpansive mappings
was introduced as a generalization of the class of nonexpansive mappings by Goebel and Kirk [13]. In 2001,
the class of asymptotically quasi-nonexpansive mapping was introduced as a generalization of the class of
asymptotically nonexpansive mappings by Qihou [20]. Furthermore, it is easy to observe that, if F (T ) 6= ∅,
then a nonexpansive mapping must be quasi-nonexpansive and an asymptotically nonexpansive mapping
must be asymptotically quasi-nonexpansive mapping. But the converse implications need not be true.

In 1973, Petryshan and Williamson [19] proved a sufficient and necessary condition for Mann iterative
sequences to convergence to fixed points for quasi-nonexpansive mappings. In 1997, Ghosh and Debnath
[12] extended the results of [19] and gave a sufficient and necessary condition for Ishikawa iterative sequences
to converge to fixed points for quasi-nonexpansive mappings. Using these, they have also obtained some
sufficient conditions for Ishikawa iterative sequences converge to fixed points for nonexpansive mappings.

The foregoing discussion arose a natural question:

Is it possible to extend the result of Ghosh and Debnath to the class of asymptotically quasi-nonexpansive
mappings ?

In 2001, Qihou [20] answered this question affirmatively by proving some sufficiency and necessary
conditions for Ishikawa iterative sequences of asymptotically quasi-nonexpansive mappings to converge to
fixed points.

From the above definitions, it is clear that:

(1) a nonexpansive mapping is a generalized asymptotically quasi-nonexpansive mapping,
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(2) a quasi-nonexpansive mapping is a generalized asymptotically quasi-nonexpansive mapping,

(3) an asymptotically nonexpansive mapping is generalized asymptotically quasi-nonexpansive mapping,

(4) a generalized asymptotically quasi-nonexpansive mapping is not asymptotically quasi-nonexpansive
mapping and asymptotically nonexpansive because it is not Lipschitz (see [22]).

Let K and D be nonempty closed convex subset of real Hilbert space H1 and H2, respectively. The split
feasibility problem is formulated as follows:

Find a point u such that
u ∈ K and Au ∈ D, (1.1)

where A is bounded linear operator from H1 to H2. A split feasibility problem in finite dimensional Hilbert
spaces was introduced by Censor and Elfving [6] for modeling inverse problems which arise in medical image
reconstruction, image restoration and radiation therapy treatment planing (see, for example, [3, 5, 6]). It
is clear that u is a solution to the split feasibility problem (1.1) if and only if u ∈ K and Au− PDAu = 0,
where PD is the metric (nearest point) projection from H2 onto D. Set

min
u∈K

ψ(u) := min
u∈K

1

2
‖Au− PDAu‖2. (1.2)

Then u is a solution of the split feasibility problem (1.1) if and only if u solves the minimum problem
(1.2) with a minimum equal to zero.

Recall that a point u ∈ K is said to be a fixed point of T if Tu = u. We denote the set of fixed points
of T by F (T ) := {u ∈ K : Tu = u}. Therefore, finding a solution to the split feasibility problem (1.1) is
equivalent to finding the minimum-norm problem fixed point of the mapping u 7→ PK(u− γA∗(I −PD)Au),
where A∗ is the adjoint of A and γ > 0 is any positive scalar.

Motivated by the above split feasibility problem, we study the general case of finding the minimum-
norm fixed point of a generalized asymptotically quasi-nonexpansive mapping T : K → K, that is, we find
a minimum-norm fixed point of (T ) which satisfies

u ∈ F (T ) such that ‖u‖ = min{‖u‖ : u ∈ F (T )}. (1.3)

That is, u is the minimum-norm fixed point of T. In other words, u is the metric projection of the origin
into F (T ), i.e., u = PF (T )0.

Next, we briefly review two historic approaches which relate to the minimum-norm fixed point problem
(1.3). In 1967, Browder [1] introduced an implicit scheme as follows:

Let u ∈ K and t ∈ (0, 1), ut be the unique fixed point in K of the contraction Tt : K → K by

Ttx = tu+ (1− t)Tx, (1.4)

for all x ∈ K. Also, he proved that s − limt↓0+ xt = PF (T )u, that is, the strong limit of {xt} as t → 0+ is
the fixed point of T which is nearest from F(T ) to u.

Besides, in 1967, Halpern [14] introduced an explicit scheme. Let x0 ∈ K and define a sequence {xn} by

xn+1 = tnu+ (1− tn)Txn, (1.5)

for all n ≥ 0, where {tn} ⊂ (0, 1). It is known that the sequence {xn} generated by (1.5) converges in norm
to the same limit PF (T )x as Browder’s implicit scheme (1.4) if the sequence {tn} satisfies the conditions:

(A1) limn→∞ tn = 0;

(A2)
∑∞

n=1 tn =∞;
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(A3) either
∑∞

n=1 |tn+1 − tn| =∞ or limn→∞
(
tn/tn+1

)
= 1.

Some more recent progress on the investigation of the implicit and explicit schemes (1.4) and (1.5) can
be found in [2, 8, 9, 15, 17, 25, 26].

We notice that the above two methods find the minimum-norm fixed point x of T if 0 ∈ K. However, if
0 /∈ K, then neither Browder’s nor Halpern’s methods work to find the minimum-norm element x. The reason
is simple: if 0 /∈ K, then we cannot take u = 0 either in (1.4) or (1.5) since the contraction x 7→ (1 − t)Tx
is no longer a self-mapping of K or (1 − tn)Txn may not belong to K and, consequently, xn+1 may be
undefined.

For Browder’s method, we consider a contraction x 7→ PK((1−t)Tx). Since this contraction clearly maps
K into K, it has a unique fixed point which is still denoted by xt, that is,

xt = PK((1− t)Txt) (1.6)

is well-defined. For Halpern’s method, we consider the following iterative algorithm:

xn+1 = PK((1− tn)Txn), (1.7)

for each n ≥ 0. It is easily seen that the sequence {xn} is well-defined (i.e., xn ∈ K for all n ≥ 1). Note
that, if 0 ∈ K, then (1.6) and (1.7) are reduced to (1.4) and (1.5) with u = 0, respectively.

In 2011, Yao and Xu [28] proved that both implicit and explicit methods (1.6) and (1.7) converge strongly
to the minimum-norm fixed point x of the nonexpansive mapping T as t → 0+ and n → ∞, respectively,
(for (1.7)) provided that {tn} satisfies the conditions (A1), (A2) and (A3).

In connection with the iterative approximation of the minimum-norm fixed point of a nonexpansive
self-mapping T, in 2011, Yang et al. [27] introduced an explicit scheme given by

xn+1 = βTxn + (1− β)PK [(1− αn)xn],

for each n ≥ 1. They proved that, under certain conditions on {αn} and β, the sequence {xn} converges
strongly to the minimum-norm fixed point of T in real Hilbert spaces. More recently, in 2012, Cai et al.[4]
have also shown that the implicit and explicit methods for λ ∈ (0, 1), respectively,

xt = (1− t)(λTxy + (1− λ)xt), (1.8)

xn+1 = (1− αn)(λTxn + (1− λ)xn), (1.9)

for each n ≥ 0, where {αn} ⊂ (0, 1). They proved that the sequence {xn} generated by (1.8) and (1.9)
converge strongly to the element of minimum-norm fixed point of nonexpansive mappings.

The aim of this paper is to introduce a new class of σ-asymptotically quasi-nonexpansive mappings
and prove some strong convergence theorems for a common minimum-norm fixed point of a finite family of
σ-asymptotically quasi-nonexpansive mappings which extends some known results on strong convergences
for the class of generalized asymptotically quasi-nonexpansive mappings using iterative process propounded
by Zegeye and Shahzad [30]. In the sequel, we apply our main result to find a solution of minimizer of a
continuously Fréchet-differentiable convex functional which has the minimum norm in Hilbert spaces.

2. Preliminaries

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖. Recall that the
nearest point (or metric projection) PKx of x onto a nonempty closed convex subset K is defined as follows:

PKx = min
y∈K
‖x− y‖.

Now, we make use of the following lemmas for our main results:
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Lemma 2.1. Let H be a real Hilbert space. Then, for any x, y ∈ H, the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.

Lemma 2.2 ([18]). Let {an} be a sequence of nonnegative real numbers satisfying the following relation:

an+1 ≤ (1− αn)an + αnδn,

for each n ≥ n0, where {αn} ⊂ (0, 1) and {δn} ⊂ R satisfying the following conditions: limn→∞ αn = 0,∑∞
n=1 αn =∞ and lim supn→∞ δn ≤ 0 as n→∞. Then limn→∞ an = 0.

Lemma 2.3 ([23]). Let K be a closed and convex subset of a real Hilbert space H. Let x ∈ H. Then x0 = PKx
if and only if

〈z − x0, x− x0〉 ≤ 0,

for all z ∈ K.

Lemma 2.4 ([29]). Let E be a real Hilbert space and BR(0) be a closed ball of H. Then, for any subset
{x0, x1, x2, · · · , xN} ⊂ Br(0) and for any positive numbers α0, α1, · · · , αN with

∑N
i=0 αi = 1, we have

‖α0x0 + α1x1 + α2x2 + · · ·+ αNxN‖2 =
N∑
i=0

αi‖xi‖2 −
∑

0≤i,j≤N
αiαj‖xi − xj‖2.

Lemma 2.5 ([16]). Let {an} be a sequence of real numbers such that there exists a subsequence {ni} of
{n} such that ani < ani+1 for all i ∈ N. Then there exists a nondecreasing sequence {mk} ⊂ N such that
mk →∞ and the following properties are satisfied by all (sufficiently large) numbers k ∈ N :

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.

Lemma 2.6 ([7]). Let H be a real Hilbert space, K be a closed convex subset of H and T : K → K be an
asymptotically nonexpansive mapping. Then (I − T ) is demiclosed at zero, i.e., if {xn} is a sequence in K
such that xn ⇀ x and Txn − xn → 0, as n→∞, x = T (x).

Definition 2.7. Let E be a real normed linear space and K be a nonempty subset of E. A mapping
T : K → K is said to be σ-asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exist two sequences of
real numbers {kn}, {cn} with limn→∞ kn = 0 and

∑
cn <∞ such that the following inequality holds:

‖Tnu− p‖ ≤ (1 + kn)‖u− p‖+ cn,

for all u ∈ K, p ∈ F (T ) and n ≥ 1.

Since
∑
cn < ∞ implies limn→∞ cn = 0, it follows that every σ-asymptotically quasi-nonexpansive

mapping is a generalized asymptotically quasi-nonexpansive mapping. However, the converse is not true.
The following Example 2.8 below shows that the class of σ-asymptotically quasi-nonexpansive mappings
contains the class of generalized asymptotically quasi-nonexpansive mappings.

Example 2.8. Let K = [− 1
π ,

1
π ] and define Tx = x

2 cos( 2x), if x 6= 0 and Tx = 0 if x = 0. Then Tnx → 0.
Clearly, F (T ) = {0}. For each fixed n ≥ 1, define

fn(x) = ‖Tnx‖ − ‖x‖,
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for all x ∈ K. Set

kn =
1

n2 + 1
, cn = max

{
sup
x∈K

fn(x),
1

n

}
= max

{
sup
x∈K

(
‖Tnx‖ − ‖x‖

)
,

1

n

}
,

for all n ∈ N. Then we have

lim
n→∞

kn = lim
n→∞

1

n2 + 1
= 0, lim

n→∞
cn = lim

n→∞

1

n
= 0

and

‖Tnx‖ − ‖x‖ = fn(x) ≤ sup fn(x)

≤ max
{

sup fn(x),
1

n

}
= cn

≤ kn‖x‖+ cn.

Thus, for all n ≥ 1, the above inequality yields

‖Tnx‖ ≤ (1 + kn)‖x‖+ cn.

Therefore, T is a generalized asymptotically quasi-nonexpansive mapping with kn = 1
n2+1

and cn = 1
n

for all n ≥ 1. However, we notice that T is not a σ-asymptotically quasi-nonexpansive mapping because∑
cn =∞.

Proposition 2.9. Let H be a real Hilbert space, K be a closed convex subset of H and T be a σ-asymptotically
quasi-nonexpansive mappings from K into itself. Then F (T ) is closed and convex.

Proof. Clearly, the continuity of T implies that F (T ) is closed. Now, we show that F (T ) is convex. For any
x, y ∈ F (T ) and t ∈ (0, 1), put z = tx+ (1− t)y. Now, we show that z = T (z). In fact, we have

‖z − Tnz‖2 = ‖z‖2 − 2〈z, Tnz〉+ ‖Tnz‖2

= ‖z‖2 − 2〈tx+ (1− t)y, Tnz〉+ ‖Tnz‖2

= ‖z‖2 − 2t〈x, Tnz〉 − 2(1− t)〈y, Tnz〉+ ‖Tnz‖2

= ‖z‖2 + t‖x− Tnz‖2 + (1− t)‖y − Tnz‖2 − t‖x‖2 − (1− t)‖y‖2

≤ ‖z‖2 + t[(1 + kn)‖x− z‖+ cn]2 + (1− t)[(1 + kn)‖y − z‖+ cn]2

− t‖x‖2 − (1− t)‖y‖2

≤ ‖z‖2 + t(1 + kn)2〈x− z, x− z〉+ (1− t)(1 + kn)2〈y − z, y − z〉
− t‖x‖2 − (1− t)‖y‖2 + 2t(1 + kn)cn‖x− z‖
+ 2(1− t)(1 + kn)cn‖y − z‖+ c2n

≤
[
(1 + kn)2 − 1

][
t‖x‖2 + (1− t)‖y‖2

]
+ [1 + (1 + kn)2]‖z‖2

− 2(1 + kn)2[t〈x, z〉+ (1− t)〈y, z〉] + 2(1 + kn)cn[t‖x− z‖
+ (1− t)‖y − z‖] + c2n

≤
[
(1 + kn)2 − 1

][
t‖x‖2 + (1− t)‖y‖2

]
− [(1 + kn)2 − 1]‖z‖2

+ 2(1 + kn)cn[t‖x− z‖+ (1− t)‖y − z‖] + c2n

≤ kn(kn + 2)
[
t‖x‖2 + (1− t)‖y‖2 − ‖z‖2

]
+ 2(1 + kn)cn[t‖x− z‖

+ (1− t)‖y − z‖] + c2n ,
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and hence, since kn → 0 and cn → 0 as n→∞, it follows that limn→∞ ‖z − Tnz‖2 = 0, which implies that
limn→∞ T

nz = z. Now, by the continuity of T, we obtain that

z = lim
n→∞

= lim
n→∞

T (Tn−1z) = T ( lim
n→∞

Tn−1z) = T (z).

Hence z ∈ F (T ) and that F (T ) is convex.

3. Main results

In this section, we establish some strong convergence theorems for finding a common element of the
set of solutions for common minimum-norm fixed point and the set of fixed points of a σ-asymptotically
quasi-nonexpansive mappings in a Hilbert space.

Theorem 3.1. Let K be a nonempty closed and convex subset of a real Hilbert space H. Let Ti : K → K be
a σ-asymptotically quasi-nonexpansive mappings with sequences of real numbers {kn,i} and {cn,i} for each

i = 1, 2, · · · , N. Assume that F :=
⋂N
i=1 F (Ti) is nonempty. Let {un} be a sequence generated by
u1 ∈ K, chosen arbitrarily,

vn = PK [(1− αn)un],

un+1 = βn,0un +
∑N

i=1 βn,iT
n
i vn,

(3.1)

for each n ≥ 1, where αn ∈ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and {βn,i} ⊂ [a, b] ⊂ (0, 1) for
each i = 0, 1, 2, · · · , N satisfying βn,0 + βn,1 + βn,2 + · · ·+ βn,N = 1 for each n ≥ 1. Then the sequence {un}
converges strongly to a common minimum-norm fixed point of F.

Proof. Since F (T ) is closed and convex for any operator T : K → K, PF (T )0 is unique. Let u∗ = PF 0.
Then, from (3.1) and σ-asymptotically quasi-nonexpansive mappings of Ti for each i ∈ {1, 2, · · · , N}, we
have

‖vn − u∗‖ = ‖Pk(1− αn)un − Pku∗‖
≤ ‖(1− αn)un − u∗‖
= ‖αn(0− u∗) + (1− αn)(un − u∗)‖
≤ αn‖u∗‖+ (1− αn)‖un − u∗‖, (3.2)

and

‖un+1 − u∗‖ = ‖βn,0un +

N∑
i=1

βn,iT
n
i vn − u∗‖

≤ βn,0‖un − u∗‖+
N∑
i=1

βn,i‖Tni vn − u∗‖

≤ βn,0‖un − u∗‖+ (1− βn,0)
[
(1 + kn)‖vn − u∗‖+ cn‖

]
≤ βn,0‖un − u∗‖+ (1− βn,0)(1 + kn)[αn‖u∗‖

+ (1− αn)‖un − u∗‖] + (1− βn,0)cn
≤ βn,0‖un − u∗‖+ (1− βn,0)(1 + kn)(1− αn)‖un − u∗‖

+ (1− βn,0)(1 + kn)αn‖u∗‖+ (1− βn,0)cn
≤ [βn,0 + (1− βn,0)(1 + kn)(1− αn)]‖un − u∗‖

+ (1− βn,0)(1 + kn)αn‖u∗‖+ (1− βn,0)cn



H. K. Pathak, V. K. Sahu, Y. J. Cho, J. Nonlinear Sci. Appl. 9 (2016), 3240–3254 2247

≤ [1 + kn(1− βn,0)− αn(1− βn,0)− knαn(1− βn,0)]‖un − u∗‖
+ (1− βn,0)(1 + kn)αn‖u∗‖+ (1− βn,0)cn
≤ [1− (1− βn,0)(−kn + αn + knαn)]‖un − u∗‖

+ (1− βn,0)(1 + kn)αn‖u∗‖+ (1− βn,0)cn
≤ [1− (1− βn,0)(αn(1 + kn)− kn)]‖un − u∗‖

+ (1− βn,0)(1 + kn)αn‖u∗‖+ (1− βn,0)cn

≤
( n∏
i=1

βi,0

)
‖un − u∗‖+ (1− βn−1,0)‖u∗‖+

n∑
j=1

cj

≤ b1‖un − u∗‖+ (1− bn−1)‖u∗‖+
n∑
j=1

cj ,

where b1 =
(∏n

i=1 βi,0
)
, bn−1 = βn−1,0βn−2,0 · · ·β1,0 and

∑n
j=1 cj = c1 + c2 + · · ·+ cn−1 + cn. Moreover, from

(3.2) and Lemma 2.1, it follows that

‖vn − u∗‖2 = ‖Pk[(1− αn)un]− Pku∗‖2

≤ ‖αn(0− u∗) + (1− αn)(un − u∗)‖2

≤ (1− αn)‖un − u∗‖2 − 2αn〈u∗, vn − u∗〉.
(3.3)

Furthermore, from (3.1), Lemma 2.4 and σ-asymptotically quasi-nonexpansive mappings of Ti for each
i = 1, 2, · · · , N, it follows that

‖un+1 − u∗‖2 = ‖βn,0un +

N∑
i=1

βn,iT
n
i vn − u∗‖2

≤ βn,0‖un − u∗‖2 +

N∑
i=1

βn,i‖Tni vn − u∗‖2 −
N∑
i=1

βn,0βn,i‖un − Tni vn‖2

≤ βn,0‖un − u∗‖2 + (1− βn,0)[(1 + kn)‖vn − u∗‖+ cn]2

−
N∑
i=1

βn,0βn,i‖un − Tni vn‖2

≤ βn,0‖un − u∗‖2 + (1− βn,0)[(1 + kn)2‖vn − u∗‖2 + c2n

+ 2(1 + kn)cn‖vn − u∗‖]−
N∑
i=1

βn,0βn,i‖un − Tni vn‖2

≤ βn,0‖un − u∗‖2 + (1− βn,0)(1 + kn)2‖vn − u∗‖2 + (1− βn,0)c2n

+ 2(1− βn,0)(1 + kn)cn‖vn − u∗‖ −
N∑
i=1

βn,0βn,i‖un − Tni vn‖2,

which implies, using (3.2) and (3.3), that

‖un+1 − u∗‖2 ≤ βn,0‖un − u∗‖2 + (1− βn,0)(1 + kn)2

[(1− αn)‖un − u∗‖2 − 2αn〈u∗, vn − u∗〉] + (1− βn,0)c2n
+ 2(1− βn,0)(1 + kn)cn[αn‖u∗‖+ (1− αn)‖un − u∗‖]

−
N∑
i=1

βn,0βn,i‖un − Tni vn‖2
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≤
(

1− θn
αn

)
‖un − u∗‖2 +

θn
αn

(1 + kn)2(1− αn)‖un − u∗‖2

− 2θn(1 + kn)2〈u∗, vn − u∗〉+
θn
αn
c2n + 2

θn
αn

(1 + kn)cnαn‖u∗‖

+ 2
θn
αn

(1 + kn)cn(1− αn)‖un − u∗‖ −
N∑
i=1

βn,0βn,i‖un − Tni vn‖2

≤
[
1− θn

αn
+
θn
αn

(1 + kn)2(1− αn)
]
‖un − u∗‖2

− 2θn(1 + kn)2〈u∗, vn − u∗〉

+
θn
αn

[
c2n + 2(1 + kn)cnαn‖u∗‖+ 2(1 + kn)cn(1− αn)‖un − u∗‖

]
−

N∑
i=1

βn,0βn,i‖un − Tni vn‖2

≤
[
1− θn

αn
+
θn
αn

(1 + kn)2 − θn
αn

(1 + kn)2αn)
]
‖un − u∗‖2

− 2θn(1 + kn)2〈u∗, vn − u∗〉

+
θn
αn

[
c2n + 2(1 + kn)cnαn‖u∗‖+ 2(1 + kn)cn(1− αn)‖un − u∗‖

]
−

N∑
i=1

βn,0βn,i‖un − Tni vn‖2

≤
[
1− θn(1 + kn)2 +

θn
αn

[(1 + kn)2 − 1]
]
‖un − u∗‖2

− 2θn(1 + kn)2〈u∗, vn − u∗〉

+
θn
αn

[
c2n + 2(1 + kn)cnαn‖u∗‖+ 2(1 + kn)cn(1− αn)‖un − u∗‖

]
−

N∑
i=1

βn,0βn,i‖un − Tni vn‖2

≤ [1− θn(1 + kn)2]‖un − u∗‖2 +
θn
αn

[(1 + kn)2 − 1]‖un − u∗‖2

− 2θn(1 + kn)2〈u∗, vn − u∗〉

+
θn
αn

[
c2n + 2(1 + kn)cnαn‖u∗‖+ 2(1 + kn)cn(1− αn)‖un − u∗‖

]
−

N∑
i=1

βn,0βn,i‖un − Tni vn‖2

≤ (1− θn)‖un − u∗‖2 − 2θn〈u∗, vn − u∗〉+ [(1 + kn)2 − 1]M

−
N∑
i=1

βn,0βn,i‖un − Tni vn‖2

+
θn
αn

[
c2n + 2(1 + kn)cnαn‖u∗‖+ 2(1 + kn)cn(1− αn)‖un − u∗‖

]
(3.4)

≤ (1− θn)‖un − u∗‖2 − 2θn〈u∗, vn − u∗〉+ [(1 + kn)2 − 1]M

+
θn
αn

[
c2n + 2(1 + kn)cnαn‖u∗‖+ 2(1 + kn)cn(1− αn)‖un − u∗‖

]
, (3.5)
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for some M > 0, where θn := αn(1− βn,0) for all n ≥ 1.

Now, we consider the following two cases:

Case 1. Suppose that there exists n ∈ N such that {‖un − u∗‖} is non-increasing for all n ≥ N. In this
situation, {‖un − u∗‖} is convergent. Then it follows from (3.4) that

N∑
i=1

βn,0βn,i‖un − Tni vn‖2 → 0,

which implies that

un − Tni vn → 0, (3.6)

as n→∞ for each i ∈ {1, 2, · · · , N}. Moreover, from (3.1) and (3.6) and the fact that αn → 0, we have

‖un+1 − un‖ =
∥∥∥βn,0un +

N∑
i=1

βn,iT
n
i vn − un

∥∥∥
=

N∑
i=1

βn,i‖Tni vn − un‖ (3.7)

= βn,1‖Tn1 vn − un‖+ · · ·+ βn,N‖Tni vn − un‖ → 0,

and

‖vn − un‖ = ‖Pk[(1− αn)un]− Pkun‖ ≤ ‖ − αnun‖ → 0, (3.8)

as n→∞ and hence, from (3.7) and (3.8), we have

‖vn+1 − vn‖ ≤ ‖vn+1 − un+1‖+ ‖un+1 − un‖+ ‖un − vn‖ → 0, (3.9)

as n→∞. Furthermore, from (3.6) and (3.8), it follows that

‖vn − Tni vn‖ ≤ ‖vn − un‖+ ‖un − Tni vn‖ → 0, (3.10)

as n→∞. Therefore, since

‖vn − Tivn‖ ≤ ‖vn − vn+1‖+ ‖vn+1 − Tn+1
i vn+1‖

+ ‖Tn+1
i vn+1 − Tn+1

i vn‖+ ‖Tn+1
i vn − Tivn‖

≤ ‖vn − vn+1‖+ ‖vn+1 − Tn+1
i vn+1‖

+ [(1 + kn+1)‖vn+1 − vn‖+ cn] + ‖Tn+1
i vn − Tivn‖,

(3.11)

it follows from (3.9), (3.10), (3.11) and the uniform continuity of Ti that

‖vn − Tivn‖ → 0, (3.12)

as n→∞ for each i = 1, 2, · · · , N . Let {vnk
} be subsequence of {vn} such that

lim sup
n→∞

〈u∗, vn − u∗〉 = lim
k→∞
〈u∗, vnk

− u∗〉,

and vnk
⇀ z. Then, from (3.8), we have unk

⇀ z. Therefore, by Lemma 2.3, we obtain

lim sup
n→∞

〈u∗, vn − u∗〉 = lim
k→∞
〈u∗, vnk

− u∗〉 = 〈u∗, z − u∗〉 ≥ 0. (3.13)
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Now, we show that un+1 → u∗ as n → ∞. But, from (3.12) and Lemma 2.6, it follows that z ∈ F (Ti)
for each i ∈ {1, 2, · · · , N} and z ∈

⋂N
i F (Ti). Then, from (3.5), we have

‖un+1 − u∗‖2 ≤ (1− θn)‖un − u∗‖2 − 2θn〈u∗, vn − u∗〉+ [(1 + kn)2 − 1]M

+
θn
αn

[
c2n + 2(1 + kn)cnαn‖u∗‖+ 2(1 + kn)cn(1− αn)‖un − u∗‖

]
, (3.14)

for some M > 0. We also notice that

lim sup
n→∞

θn = lim sup
n→∞

αn(1− βn,0) ≤ lim sup
n→∞

αn · (1− lim inf
n→∞

βn,0) = 0 · (1− a) = 0,

and

∞∑
n=1

θn =
∞∑
n=1

αn(1− βn,0) ≥
∞∑
n=1

αn · (1− lim sup
n→∞

βn,0) = (1− b)
∞∑
n=1

αn =∞.

Thus, limn→∞ θn = 0 and
∑∞

n=1 θn =∞. Now it follows from (3.14) and Lemma 2.2 that ‖un−u∗‖ → 0
as n→∞. Consequently, un → u∗.

Case 2. Suppose that there exists a subsequence {ni} of {n} such that

‖uni − u∗‖ ≤ ‖uni+1 − u∗‖,

for all i ∈ N. Then, by Lemma 2.5, there exists a nondecreasing sequence {mk} ⊂ N such that mk →∞,

‖umk
− u∗‖ ≤ ‖umk+1 − u∗‖, ‖uk − u∗‖ ≤ ‖uni+1 − u∗‖,

for all k ∈ N. Then, from (3.4) and the fact that θn → 0, we have

N∑
i=1

βmk,0βmk,i‖umk
− Tmk

i vmk
‖2 ≤ ‖umk

− u∗‖2 − ‖umk+1 − u∗‖2 − θmk
‖umk

− u∗‖2

− 2θmk
〈u∗, vmk

− u∗〉

+ [(1 + kmk
)2 − 1]M +

θmk

αmk

[
c2mk

+ 2(1 + kmk
)cmk

αmk
‖u∗‖

+ 2(1 + kmk
)cmk

(1− αmk
)‖umk

− u∗‖
]
→ 0,

as k → ∞. This implies that umk
− Tmk

i vmk
→ 0 as k → ∞. Thus, following the method of Case 1, we

obtain that umk
− vmk

→ 0 and vmk
− Tivmk

→ 0 as k →∞ for each i = 1, 2, · · · , N and hence there exists
z1 ∈ F such that

lim sup
n→∞

〈u∗, vmk
− u∗〉 = lim

k→∞
〈u∗, vmk

− u∗〉 = 〈u∗, z1 − u∗〉 ≥ 0. (3.15)

Then it follows form (3.5) that

‖umk+1 − u∗‖2 ≤ (1− θmk
)‖umk

− u∗‖2 − 2θmk
〈u∗, vmk

− u∗〉

+ [(1 + kmk
)2 − 1]M +

θmk

αmk

[
c2mk

+ 2(1 + kmk
)cmk

αmk
‖u∗‖ (3.16)

+ 2(1 + kmk
)cmk

(1− αmk
)‖umk

− u∗‖
]
.

Since ‖umk
− u∗‖ ≤ ‖umk+1 − u∗‖, (3.16) implies that

θmk
‖umk

− u∗‖2 ≤ ‖umk
− u∗‖2 − ‖umk+1 − u∗‖2 − 2θmk

〈u∗, vmk
− u∗〉

+ [(1 + kmk
)2 − 1]M +

θmk

αmk

[
c2mk

+ 2(1 + kmk
)cmk

αmk
‖u∗‖
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+ 2(1 + kmk
)cmk

(1− αmk
)‖umk

− u∗‖
]

≤ −2θmk
〈u∗, vmk

− u∗〉+ [(1 + kmk
)2 − 1]M

+
θmk

αmk

[
c2mk

+ 2(1 + kmk
)cmk

αmk
‖u∗‖

+ 2(1 + kmk
)cmk

(1− αmk
)‖umk

− u∗‖
]
.

In particular, since θmk
> 0, we have

‖umk
− u∗‖2 ≤ −2〈u∗, vmk

− u∗〉+
[(1 + kmk

)2 − 1]M

θmk

+
1

αmk

[
c2mk

+ 2(1 + kmk
)cmk

αmk
‖u∗‖

+ 2(1 + kmk
)cmk

(1− αmk
)‖umk

− u∗‖
]
,

and so ‖umk
− u∗‖ → 0 as k → ∞, which, together with (3.16), gives ‖umk+1 − u∗‖ → 0 as k → ∞. But

‖uk − u∗‖ ≤ ‖umk+1 − u∗‖ for all k ∈ N and so we obtain that uk → u∗. Therefore, from the above two
Cases, we can conclude that the sequence {un} converges strongly to a point u∗ of F which is the common
minimum-norm fixed point of the family {Ti : i = 1, 2, · · · , N}. This completes the proof.

If, in Theorem 3.1, we assume that N = 1, then we get the following results:

Corollary 3.2. Let K be a nonempty closed and convex subset of a real Hilbert space H. Let T : K → K be
a σ-asymptotically quasi-nonexpansive mapping with two sequences of real numbers {kn} and {cn}. Assume
that F (T ) is nonempty. Let {un} be a sequence generated by

u1 ∈ K, chosen arbitrarily,

vn = PK [(1− αn)un],

un+1 = βnun + (1− βn)Tnvn,

(3.17)

for each n ≥ 1, where αn ∈ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and {βn} ⊂ [a, b] ⊂ (0, 1) for
each n ≥ 1. Then the sequence {un} converges strongly to a minimum-norm point of F (T ).

If, in Theorem 3.1, we assume that each Ti is an asymptotically nonexpansive mapping and a non-
expansive mapping for i = 1, 2, · · · , N, then the method of proof of Theorem 3.1 provides the following
results:

Corollary 3.3 ([30]). Let K be a nonempty closed and convex subset of a real Hilbert space H. For each
i ∈ {1, 2, · · · , N}, let Ti : K → K be an asymptotically nonexpansive mapping with sequence of real number
{kn}. Assume that F :=

⋂N
i=1 F (Ti) is nonempty. Let {un} be a sequence generated by

u1 ∈ K, chosen arbitrarily,

vn = PK [(1− αn)un],

un+1 = βn,0un +
∑N

i=1 βn,iT
n
i vn,

(3.18)

for each n ≥ 1, where αn ∈ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and {βn,i} ⊂ [a, b] ⊂ (0, 1)
for i = 1, 2, · · · , N satisfying βn,0 + βn,1 + βn,2 + · · · + βn,N = 1 for each n ≥ 1. Then the sequence {un}
converges strongly to a common minimum-norm point of F (Ti).
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Corollary 3.4 ([30]). Let K be a nonempty closed and convex subset of a real Hilbert space H. Let Ti :
K → K be a nonexpansive mapping. Assume that F :=

⋂N
i=1 F (Ti) is nonempty. Let {un} be a sequence

generated by 
u1 ∈ K, chosen arbitrarily,

vn = PK [(1− αn)un],

un+1 = βn,0un +
∑N

i=1 βn,iTivn,

(3.19)

for each n ≥ 1, where αn ∈ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and {βn,i} ⊂ [a, b] ⊂ (0, 1)
for i = 1, 2, · · · , N satisfying βn,0 + βn,1 + βn,2 + · · · + βn,N = 1 for each n ≥ 1. Then the sequence {un}
converges strongly to a minimum-norm point of F (T ).

If, in Corollaries 3.3 and 3.4 we assume that N = 1, then we have the following results:

Corollary 3.5 ([30]). Let K be a nonempty closed and convex subset of a real Hilbert space H. Let T : K →
K be an asymptotically nonexpansive mapping with a sequence {kn} of real numbers. Assume that F (T ) is
nonempty. Let {un} be a sequence generated by

u1 ∈ K, chosen arbitrarily,

vn = PK [(1− αn)un],

un+1 = βnun + (1− βn)Tnvn,

(3.20)

for each n ≥ 1, where αn ∈ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and {βn} ⊂ [a, b] ⊂ (0, 1) for
each n ≥ 1. Then the sequence {un} converges strongly to a minimum-norm point of F (T ).

Corollary 3.6 ([30]). Let K be a nonempty closed and convex subset of a real Hilbert space H. Let T : K →
K be a nonexpansive mappings with F (T ) nonempty. Let {un} be a sequence generated by

u1 ∈ K, chosen arbitrarily,

vn = PK [(1− αn)un],

un+1 = βnun + (1− βn)Tvn,

(3.21)

for each n ≥ 1, where αn ∈ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and {βn} ⊂ [a, b] ⊂ (0, 1) for
each n ≥ 1. Then the sequence {un} converges strongly to a minimum-norm point of F (T ).

4. Applications

In this section, we study the problem of finding a minimizer of a continuously Fréchet-differentiable
convex functional which has the minimum norm in Hilbert spaces.

We consider the following minimization problem

min
x∈K

ψ(x), (4.1)

where K is a closed convex subset of a real Hilbert space H and ψ : K → R is a continuously Fréchet-
differentiable convex function. Denote by S the solution set of the minimization problem (4.1), that is,

S = {z ∈ K : ψ(z) = min
x∈K

ψ(x)}. (4.2)

Assume S 6= ∅. It is known that a point z ∈ K is a solution of the minimization problem (4.1) if and
only if the following optimality condition holds:

z ∈ K, 〈∇ψ(z), x− z〉 ≥ 0, (4.3)
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for all x ∈ K, where ∇ψ(x) is denotes the gradient of ψ at x ∈ K. It is also known that the optimality
condition (4.3) is equivalent to the following fixed point problem

z = Tµz, Tµ = PK(I − µ∇ψ), (4.4)

where PK is the metric projection onto K and µ > 0 is any positive number.

We assume that each Tµ is nonexpansive mappings for some µ > 0, then Corollary 3.6 deduce following
result:

Corollary 4.1. Let K be a nonempty closed and convex subset of a real Hilbert space H. Let ψ : K → R
is a continuously Fréchet-differentiable convex function such that Tµ := PK(I − µ∇ψ) be a nonexpansive
mapping for some µ > 0. Assume that the solution of the minimization problem (4.1) is nonempty. Let {un}
be a sequence generated by 

u1 ∈ K, chosen arbitrarily,

vn = PK [(1− αn)un],

un+1 = βnun + (1− βn)[PK(I − µ∇ψ)]vn,

(4.5)

for each n ≥ 1, where αn ∈ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and {βn} ⊂ [a, b] ⊂ (0, 1)
for each n ≥ 1. Then the sequence {un} converges strongly to a common minimum-norm solution of the
minimization problem (4.1).

5. Conclusion

In this paper, we use the iterative algorithm proposed by Zegeye and Shahzad [30] which converges
strongly to a common minimum-norm fixed point of a finite family of σ-asymptotically quasi-nonexpansive
mappings. We also study the convergence analysis of this process, besides proving convexity of this algorithm
for the set of common fixed points of a finite family of σ-asymptotically quasi-nonexpansive mappings and
boundedness of the sequence of this algorithm. Our main result generalize and improve the recent results
of Zegeye and Shahzad [30]. Our result also extend and improve the known results of Yang et al. [27]
(Theorems 3.1, 3.2), Yao et al. [28] (Theorems 3.1, 3.2) and Cai et al. [4] (Theorems 3.1, 3.2) by using the
above iterative algorithm for finding a minimum-norm fixed point of a nonexpansive mapping in lies of the
implicit and explicit methods. Finally, we furnish an application of our main result to find solution of a
minimizer of continuously Fréchet-differentiable convex functional which has the minimization problem.
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