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Abstract

In this paper we present some criteria for Φ-essential maps and as a consequence these generate a number
of new Leray-Schauder type alternatives. c©2016 All rights reserved.
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1. Introduction

Essential maps were introduced by Granas in [3] and extended in a variety of settings in [1, 2, 4].
Recently a new notion of Φ–essential maps was discussed in [5]. In [5] the author presented some coincidence
alternatives in a very general setting. He showed (see Theorem 2.1 below) that if G is Φ–essential and G ∼= F
(in a particular setting) then Φ and F have a coincidence point. This paper puts criteria on a map G to
guarantees that G is Φ–essential so this together with our above result will guarantee that Φ and F have a
coincidence point.

Let E be a completely regular topological space and U an open subset of E.
We will consider classes A and B of maps.

Definition 1.1. We say F ∈ A(U,E) if F ∈ A(U,E) and F : U → K(E) is an upper semicontinuous map;
here U denotes the closure of U in E and K(E) denotes the family of nonempty compact subsets of E.

Definition 1.2. We say F ∈ B(U,E) if F ∈ B(U,E) and F : U → K(E) is an upper semicontinuous map.

In this paper we fix a Φ ∈ B(U,E) as indicated in our results.

Definition 1.3. We say F ∈ A∂U (U,E) if F ∈ A(U,E) with F (x) ∩ Φ(x) = ∅ for x ∈ ∂U ; here ∂U
denotes the boundary of U in E.
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Definition 1.4. Let F, G ∈ A∂U (U,E). We say F ∼= G in A∂U (U,E) if there exists an upper semi-
continuous map Ψ : U × [0, 1] → K(E) with Ψ( . , η( . )) ∈ A(U,E) for any continuous function η :
U → [0, 1] with η(∂U) = 0, Ψt(x) ∩ Φ(x) = ∅ for any x ∈ ∂U and t ∈ [0, 1], Ψ1 = F , Ψ0 = G and{
x ∈ U : Φ(x) ∩Ψ(x, t) 6= ∅ for some t ∈ [0, 1]

}
is relatively compact (here Ψt(x) = Ψ(x, t)).

Remark 1.5. If E is a normal topological space the condition{
x ∈ U : Φ(x) ∩Ψ(x, t) 6= ∅ for some t ∈ [0, 1]

}
is relatively compact can be removed in Definition 1.4.

Definition 1.6. Let F ∈ A∂U (U,E). We say F : U → K(E) is Φ–essential in A∂U (U,E) if for every map
J ∈ A∂U (U,E) with J |∂U = F |∂U and J ∼= F in A∂U (U,E) there exists x ∈ U with J (x) ∩ Φ (x) 6= ∅.

2. Leray-Schauder nonlinear alternatives.

The following result was established in [5].

Theorem 2.1. Let E be a normal topological space, U an open subset of E and let G ∈ A∂U (U,E) be
Φ–essential in A∂U (U,E). Suppose there exists an upper semicontinuous map Ψ : U × [0, 1]→ K(E) with
Ψ( . , η( . )) ∈ A(U,E) for any continuous function η : U → [0, 1] with η(∂U) = 0, Φ(x) ∩Ψt(x) = ∅ for any
x ∈ ∂U and t ∈ (0, 1] and Ψ0 = G. Then there exists x ∈ U with Φ(x) ∩Ψ1(x) 6= ∅.

Remark 2.2. We can replace in Theorem 2.1 the assumption that E is normal with E being completely regular
provided in addition we assume

{
x ∈ U : Φ(x) ∩Ψ(x, t) 6= ∅ for some t ∈ [0, 1]

}
is relatively compact in

the statement of Theorem 2.1.

We now rewrite Theorem 2.1 as a nonlinear alternative of Leray-Schauder type.

Theorem 2.3. Let E be a normal topological space and U an open subset of E. Suppose G ∈ A∂U (U,E)
is Φ–essential in A∂U (U,E) and F ∈ A(U,E). Also assume there exists an upper semicontinuous map
Ψ : U × [0, 1] → K(E) with Ψ( . , η( . )) ∈ A(U,E) for any continuous function η : U → [0, 1] with
η(∂U) = 0, and with Ψ0 = G, Ψ1 = F . Then either

(A1). there exists x ∈ U with F (x) ∩ Φ(x) 6= ∅,
or

(A2). there exists x ∈ ∂U and λ ∈ (0, 1) with Ψλ(x) ∩ Φ(x) 6= ∅.

Proof. Suppose (A2) does not hold and F (x) ∩ Φ(x) = ∅ for x ∈ ∂U (otherwise (A1) is true). Then

Ψλ(x) ∩ Φ(x) = ∅ for x ∈ ∂U and λ ∈ (0, 1].

Then Theorem 2.1 implies there exists a x ∈ U with F (x) ∩ Φ(x) 6= ∅.

Let L : E → E be a continuous single valued map (a particular example is when L = i, the identity
map). We now consider a special case of Theorem 2.3 when Φ = L.

Theorem 2.4. Let E be a normal topological space and U an open subset of E. Suppose L : E → E is a
continuous map with

L ∈ B(U,E). (2.1)

Assume G, F ∈ A(U,E) with L(x) /∈ G(x) for x ∈ ∂U and suppose G is L–essential in A∂U (U,E). Also
suppose there exists an upper semicontinuous map Ψ : U × [0, 1] → K(E) with Ψ( . , η( . )) ∈ A(U,E) for
any continuous function η : U → [0, 1] with η(∂U) = 0, and with Ψ0 = G, Ψ1 = F . Then either

(A1). there exists x ∈ U with L(x) ∈ F (x),

or

(A2). there exists x ∈ ∂U and λ ∈ (0, 1) with L(x) ∈ Ψλ(x).



D. O’Regan, J. Nonlinear Sci. Appl. 9 (2016), 3031–3035 3033

Proof. Note L ∈ B(U,E) and G ∈ A∂U (U,E) since G(x) ∩ L(x) = ∅ for x ∈ ∂U . The result follows from
Theorem 2.3.

We next discuss L–essential maps (which could be used in Theorem 2.4).

Theorem 2.5. Let E be a normal topological vector space and U an open subset of E. Suppose L : E → E
is a continuous map with L(y) 6= 0 for y ∈ E \U . Let G ∈ A(U,E) and L ∈ B(U,E). Assume the following
conditions hold:

there exists x ∈ U with L(x) = 0, (2.2)

L(x) /∈ λG(x) for x ∈ ∂U and λ ∈ (0, 1], (2.3)

for any map Q ∈ A(E,E) there exists x ∈ E with L(x) ∈ Q(x), (2.4)

there exists a retraction (continuous) r : E → U (2.5)

and 
for any continuous map µ : E → [0, 1] with µ(E \U) = 0 and

J ∈ A∂U (U,E) with J |∂U = G|∂U and J ∼= G in A∂U (U,E)
the map H ∈ A(E,E) where H(x) = µ(x) J(r(x)).

(2.6)

Then G is L–essential in A∂U (U,E).

Proof. Now
L(x) /∈ λG(x) for x ∈ ∂U and λ ∈ [0, 1], (2.7)

(note (2.3) and L(y) 6= 0 for y ∈ E \U). Now G ∈ A∂U (U,E) and to show G is L–essential in A∂U (U,E)
let J ∈ A∂U (U,E) with J |∂U = G|∂U and J ∼= G in A∂U (U,E). We must show there exists x ∈ U with
L(x) ∈ J(x) (note Φ = L). Let

D =
{
x ∈ U : L(x) ∈ λJ(x) for some λ ∈ [0, 1]

}
.

Note D 6= ∅ (see (2.2)), D is closed (note J is upper semicontinuous) and D ⊆ U . We claim D ⊆ U . To see
this let x ∈ D and x ∈ ∂U . Then since J |∂U = G|∂U we have

L(x) ∈ λJ(x) = λG(x),

which contradicts (2.7). Thus D ⊆ U . Now Urysohn’s Lemma guarantees there exists a continuous map
µ : E → [0, 1] with µ(E \U) = 0 and µ(D) = 1. Let r : E → U be as in (2.5) and consider the map H given
by H(x) = µ(x) J(r(x)). Now (2.4), (2.6) guarantee there exists x ∈ E with L(x) ∈ H(x) = µ(x) J(r(x)).
If x ∈ E \U then µ(x) = 0, which yields a contradiction since L(y) 6= 0 for y ∈ E \U . Thus x ∈ U so
L(x) ∈ µ(x) J(x). Hence x ∈ D so µ(x) = 1. Thus L(x) ∈ J(x) with x ∈ U .

Remark 2.6. We can remove the assumption that E is normal in the statement of Theorem 2.5 provided we
have that (so we need to put conditions on the maps) the set D (see the proof of Theorem 2.5) is relatively
compact (note the existence of µ in Theorem 2.5 is then guaranteed since topological vector spaces are
completely regular).

A special case of Theorem 2.5 is when L = i.

Theorem 2.7. Let E be a normal topological vector space and U an open subset of E with 0 ∈ U . Suppose
G ∈ A(U,E) and i ∈ B(U,E). Assume

x /∈ λG(x) for x ∈ ∂U and λ ∈ (0, 1] (2.8)

any map Q ∈ A(E,E) has a fixed point (2.9)

and (2.5), (2.6) hold. Then G is i–essential in A∂U (U,E).
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Remark 2.8. If U is convex and G(∂U) ⊆ U then (2.8) holds. To see this note if there exists x ∈ ∂U and
λ ∈ (0, 1] with x ∈ λG(x) then since G(∂U) ⊆ U , U convex and 0 ∈ U , we have λG(x) ⊆ U , a contradiction.

The argument in Theorem 2.5 can be extended to a multivalued Φ as can be seen in our next result
(here Φ ∈ B(U,E) is fixed).

Theorem 2.9. Let E be a normal topological vector space and U an open subset of E. Suppose Φ : E → 2E

with 0 /∈ Φ(E \U). Let G ∈ A(U,E), Φ ∈ B(U,E) and assume the following conditions hold:

0 ∈ Φ(U), (2.10)

Φ(x) ∩ λG(x) = ∅ for x ∈ ∂U and λ ∈ (0, 1] (2.11)

and
for any map Q ∈ A(E,E) there exists x ∈ E with Φ(x) ∩Q(x) 6= ∅. (2.12)

Also suppose (2.5) and (2.6) hold. Then G is Φ–essential in A∂U (U,E).

Proof. Note (2.11) and 0 /∈ Φ(E \U) implies

Φ(x) ∩ λG(x) = ∅ for x ∈ ∂U and λ ∈ [0, 1]. (2.13)

Now G ∈ A∂U (U,E) and to show G is Φ–essential in A∂U (U,E) let J ∈ A∂U (U,E) with J |∂U = G|∂U and
J ∼= G in A∂U (U,E). Let

D =
{
x ∈ U : Φ(x) ∩ λJ(x) 6= ∅ for some λ ∈ [0, 1]

}
.

Note D 6= ∅ (see (2.10)). Also a standard argument (see [5]) guarantees that D is closed. Note D ⊆ U and
we claim D ⊆ U . To see this let x ∈ D and x ∈ ∂U . Then since J |∂U = G|∂U we have Φ(x) ∩ λG(x) 6= ∅,
and this contradicts (2.13). Thus D ⊆ U . Now Urysohn’s Lemma guarantees there exists a continuous map
µ : E → [0, 1] with µ(E \U) = 0 and µ(D) = 1. Let r : E → U be as in (2.5) and consider the map H
given by H(x) = µ(x) J(r(x)). Now (2.6) and (2.12) guarantee there exists x ∈ E with Φ(x)∩H(x) 6= ∅ i.e.
Φ(x)∩ µ(x) J(r(x)) 6= ∅. If x ∈ E \U then µ(x) = 0, which yields a contradiction since 0 /∈ Φ(E \U). Thus
x ∈ U so Φ(x) ∩ µ(x) J(x) 6= ∅. Hence x ∈ D so µ(x) = 1, and consequently Φ(x) ∩ J(x) 6= ∅.

Remark 2.10. We can remove the assumption that E is normal in the statement of Theorem 2.9 provided
we have that the set D (see the proof of Theorem 2.9) is relatively compact.

In our next two results we assume Φ : U → 2E (we do not assume Φ : E → 2E). Here Φ ∈ B(U,E) is
fixed.

Theorem 2.11. Let E be a normal topological vector space and U an open subset of E with 0 ∈ U . Let
G ∈ A(U,E), Φ ∈ B(U,E) and assume the following condition holds:

G(x) ∩ Φ(x) = ∅ for x ∈ ∂U. (2.14)

Suppose (2.5), (2.9) and the following holds:
for any continuous map µ : E → [0, 1] with µ(E \U) = 0 and

J ∈ A∂U (U,E) with J |∂U = G|∂U and J ∼= G in A∂U (U,E)

the map H ∈ A(E,E) where H(x) = µ(x) [J(r(x)) ∩ Φ(r(x)) ].

(2.15)

Then G is Φ–essential in A∂U (U,E) [in fact there exists a x ∈ U with x ∈ J(x)∩Φ(x) where J is described
in (2.15)].
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Proof. Note G ∈ A∂U (U,E) (see (2.14)). To show G is Φ–essential in A∂U (U,E) let J ∈ A∂U (U,E) with
J |∂U = G|∂U and J ∼= G in A∂U (U,E). We must show there exists x ∈ U with J(x) ∩ Φ(x) 6= ∅. Let

D =
{
x ∈ U : x ∈ λ [J(x) ∩ Φ(x)] for some λ ∈ [0, 1]

}
.

Note 0 ∈ D, D is closed and D ⊆ U since if x ∈ ∂U then J(x) ∩ Φ(x) = G(x) ∩ Φ(x) = ∅. Now Urysohn’s
Lemma guarantees there exists a continuous map µ : E → [0, 1] with µ(E \U) = 0 and µ(D) = 1. Let
r : E → U be as in (2.5) and consider the map H given by

H(x) = µ(x) [J(r(x)) ∩ Φ(r(x))].

Now (2.9) and (2.15) guarantee there exists x ∈ E with x ∈ µ(x) [J(r(x)) ∩ Φ(r(x))]. If x ∈ E \U then
µ(x) = 0 so x = 0, a contradiction since 0 ∈ U . Thus x ∈ U so x ∈ µ(x) [J(x) ∩ Φ(x)]. Hence x ∈ D so
µ(x) = 1. Thus x ∈ U and x ∈ J(x) ∩ Φ(x).

Remark 2.12. A special case of Theorem 2.11 is when G = i (the identity map) or G = 0 (the zero
map). Theorem 2.11 was motivated in part by our result in [4, Theorem 2.9] (note in [4, Theorem 2.9] the
assumption 0 ∈ ψ(∂U) in not needed and also there are some typos in the proof there).

A more general version of Theorem 2.11 is the following result.

Theorem 2.13. Let E be a normal topological vector space and U an open subset of E. Let G ∈ A(U,E),
Φ ∈ B(U,E), Ψ : E → 2E with Ψ : U → K(E) an upper semicontinuous map and 0 /∈ Ψ(E \U). Also
assume the following conditions hold:

0 ∈ Ψ(U) (2.16)

and
for any map Q ∈ A(E,E) there exists x ∈ E with Ψ(x) ∩Q(x) 6= ∅. (2.17)

Suppose (2.5), (2.14) and (2.15) hold. Then G is Φ–essential in A∂U (U,E) [in fact there exists a x ∈ U
with Ψ(x) ∩ [ J(x) ∩ Φ(x) ] 6= ∅ where J is described in (2.15)].

Proof. To show G is Φ–essential in A∂U (U,E) let J ∈ A∂U (U,E) with J |∂U = G|∂U and J ∼= G in
A∂U (U,E). We must show there exists x ∈ U with J(x) ∩ Φ(x) 6= ∅. Let

D =
{
x ∈ U : Ψ(x) ∩ λ [J(x) ∩ Φ(x)] 6= ∅ for some λ ∈ [0, 1]

}
.

Note D 6= ∅ (see (2.16)), D is closed and D ⊆ U since if x ∈ ∂U then J(x) ∩ Φ(x) = G(x) ∩ Φ(x) = ∅.
Now Urysohn’s Lemma guarantees there exists a continuous map µ : E → [0, 1] with µ(E \U) = 0 and
µ(D) = 1. Let r : E → U be as in (2.5) and consider the map H given by

H(x) = µ(x) [J(r(x)) ∩ Φ(r(x))].

Now (2.15), (2.17) guarantee there exists x ∈ E with Ψ(x)∩ µ(x) [J(r(x))∩Φ(r(x))] 6= ∅. If x ∈ E \U then
µ(x) = 0, which yields a contradiction since 0 /∈ Ψ(E \U). Thus x ∈ U so Ψ(x) ∩ µ(x) [J(x) ∩ Φ(x)] 6= ∅.
Hence x ∈ D so µ(x) = 1 and Ψ(x) ∩ [ J(x) ∩ Φ(x) ] 6= ∅.
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