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Abstract

In this paper, we consider the approximation problem on the volume of a convex body K in Rn by those
of its radial mean bodies RpK. Specifically, we establish the identity

lim
p→∞

p

log p
(1− 2−n

|Rp(K)|
|K|

) =
n(n+ 1)

2
,

when K is an ellipsoid in Rn. c©2016 All rights reserved.
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1. Introduction

In convex geometry, corresponding to each convex body K ⊂ Rn, there are two important geometric
objects called difference body DK and polar projection body Π∗K. The difference body was studied by
Minkowski, and has found many applications in mathematical physics and PDEs. See, for example, the
books of Bandle [2] and Kawohl [11]. Projection bodies also originated in the work of Minkowski, and are
widely used in the local theory of Banach spaces, stochastic geometry, mathematical economics, and other
areas [4, 9]. The polar projection body, the polar body of the projection body, appears explicitly in the more
recent literature; its behavior under linear transformations often renders it more natural than the projection
body itself.

Both the difference body and the polar projection body appear in known affine inequalities. The first is
an ingredient in the famous Rogers - Shephard inequality [6, 21], that is,

V (DK) ≤
(

2n
n

)
V (K). (1.1)
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The second appears in the celebrated Zhang projection inequality [8, 27, 28]

n−n
(

2n
n

)
≤ V (K)n−1V (Π∗K), (1.2)

where the equality holds in (1.1) as well as in (1.2), if and only if K is a simplex.
Given a convex body K ∈ Rn and p > −1, Gardner and Zhang [8] originally introduced an important

geometric body, called radial p-th mean body RpK of K, whose radial function is defined by

ρRpK(u) = (
1

V (K)

∫
K
ρK(x, u)pdx)

1
p , ∀u ∈ Sn−1. (1.3)

It is remarkable that the bodies RpK form a spectrum linking the difference body DK of K and the
polar projection body Π∗K of K, which correspond to p =∞ and p = −1, respectively. More importantly,
for −1 < p < q, the following strong and sharp affine inequality

V (DK) ≤ cnn,qV (RqK) ≤ cnn,pV (RpK) ≤ nnV (K)nV (Π∗K), (1.4)

which was established in [8] , implies the above mentioned Rogers-Shephard inequality and Zhang projection
inequality as special cases. In (1.4), each equality holds if and only if K is a simplex, and cn,p = (nB(p +

1, n))
− 1
p is a constant.

Specifically, when p = n and q → ∞, the middle inequality in (1.4) becomes the Rogers-Shephard
inequality, and when p → −1 and q = n, it becomes the Zhang projection inequality. Therefore, in some
sense, radial mean bodies RpK exhibit a strong unity in convex geometry. In [26] , the authors established
the identity related chord power integrals of convex body K and dual quermassintegrals of RpK.

It is proved in [8] that for p ≥ 0, the radial p-th mean body RpK is an origin-symmetric convex body.
Now, a problem is naturally asked,

Problem. If K is a convex body in Rn, how about the rate of approximation on the volume V (K) of convex
body K by the volume V (RpK) of its radial p-th mean body RpK ?

It is noted that the approximation problem of a convex body by its associated bodies, such as floating
bodies, convolution bodies, and centroid bodies, projection bodies etc, have been intensively investigated.
We refer to e.g. [5, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25] for further details, extensions and
applications. As an aside, we observe that throughout the whole paper [8], all affine inequalities attain
extremum if and only if the convex body is a simplex. Therefore, it will naturally lead us to study the radial
mean bodies RpK when K is an origin-symmetric convex body.

From now on, we shall use | · | to represent the n−dimensional volume V (·) of a convex body in Rn. In

this paper, for the affine invariant ratio
|RpK|
|K| , we will prove the following theorems.

Theorem 1.1. Suppose K is an ellipsoid in Rn and RpK is the radial p-th mean body of K. Then

lim
p→∞

p

log p
(1− 2−n

|RpK|
|K|

) =
n(n+ 1)

2
. (1.5)

Theorem 1.2. Suppose K is a simplex in Rn. Then

lim
p→∞

p

log p
(1−

(
2n
n

)−1 |RpK|
|K|

) = n2. (1.6)

.

This paper is organized as follows. In Section 2, we develop some notation and list, some basic facts
regarding convex bodies. Good general references for the theory of convex bodies are provided by the books
of Gardner [7] and Schneider [22]. In Section 3, we give some bounds for the approximation of volume in
the case of a general convex body. The proofs of Theorems 1.1 and 1.2 will be arranged in the Section 4.
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2. Notations and Preliminaries

The setting for this paper is n−dimensional Euclidean space, Rn. A convex body K in Rn is a compact
convex set that has a non-empty interior. As usual, Sn−1 denotes the unit sphere, Bn the unit ball and o
the origin in Rn. The volume of Bn is denoted by ωn. If u ∈ Sn−1, we denote by u⊥ the (n− 1)-dimensional
subspace of Rn orthogonal to u and by lu the line through o parallel to u. We write Vk for the k−dimensional
Lebesgue measure in Rn.

Let K be a convex body in Rn. The radial function ρK(x, ·) of K with respect to x ∈ Rn, is defined by
ρK(x, u) = max{c : x+ cu ∈ K}, ∀u ∈ Sn−1. If x is the origin, we usually denote ρK(o, u) by ρK(u).

For u ∈ Sn−1 and y ∈ u⊥, let XuK(y) = V1(K ∩ (lu + y)), the function is called the X − ray of K in the
direction u. See [7] for details.

Let
EK(r, u) = {y ∈ u⊥ : XuK(y) ≥ r}

and
aK(r, u) = Vn−1(EK(r, u))

for r ≥ 0, and u ∈ Sn−1. In [27] the function aK(r, u) is called the restricted chord projection function of K.
Note that if u ∈ Sn−1, then EK(0, u) = K|u⊥ and aK(0, u) = Vn−1(K|u⊥), and when r > ρDK(u), we have
EK(r, u) = ∅ and aK(r, u) = 0.

The difference body of the convex body K, denoted by DK, is the centrally symmetric convex body
(centered at the origin) defined by

DK = K + (−K) = {x− y : x, y ∈ K}.

It is not difficult to verify that

ρDK(u) = max
x∈K

ρK(x, u) = max
y∈u⊥

V1(K ∩ (lu + y)), u ∈ Sn−1.

An often used fact in both convex and Banach space geometry is that associated with each convex body
K in Rn is a unique ellipsoid JK of maximal volume contained in K. The ellipsoid is called the John ellipsoid
of K and the center of this ellipsoid is called the John point of K. The John ellipsoid is extremely useful;
see, for example, [1, 17]and [20] for applications.

Two important results concerning the John ellipsoid are John’s inclusion and Ball’s volume-ratio in-
equality. John′s inclusion states that if K is an origin-symmetric convex body in Rn, then

JK ⊆ K ⊆
√
nJK. (2.1)

Among a slew of applications, John’s inclusion gives the best upper bound,
√
n, for the Banach-Mazur

distance of an n−dimensional normed space to n−dimensional Euclidean space. Ball’s volume − ratio
inequality is the following: if K is an origin-symmetric convex body in Rn, then

|K|
|JK|

≤ 2n

ωn
, (2.2)

with equality if and only if K is a parallelotope. The fact that there is equality in (2.2) only for parallelotopes
was established by Barthe [3].

Lemma 2.1 (Markov’s Inequality). Suppose (X,
∑
, µ) is a measure space, f is a measurable extended

real-valued function and ε > 0. Then

µ({x ∈ X : |f(x)| ≥ ε}) ≤ 1

ε

∫
X
|f |dµ. (2.3)

The invariant property of radial p-th mean body under non-singular linear transformation shows that
they are natural objects in affine geometry.
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Lemma 2.2 ([26]). Let K be a convex body in Rn and GL(n) the nonsingular linear transformation group.
Then for ϕ ∈ GL(n) and p > −1, we have Rp(ϕK) = ϕ(RpK).

Lemma 2.3 ([8]). Let K be a convex body in Rn and let u ∈ Sn−1. Then for p > −1, we have∫
K
ρK(x, u)pdx =

∫ ρDK(u)

0
aK(r, u)rpdr. (2.4)

We will also use the following lemma.

Lemma 2.4 ([18]). Let p > 0. Then

B (p+ 1, n)
n
p = 1− n2

p
log p+

n

p
log(Γ(n)) +

n4

2p2
(log p)2 − n3

p2
log(Γ(n)) log p± o(p−2). (2.5)

3. General Bounds

Lemma 3.1. Let K be a convex body in Rn and u ∈ Sn−1. Then

(1− r

ρDK(u)
)n−1Vn−1(K|u⊥) ≤ aK(r, u) ≤ Vn−1(K|u⊥), (3.1)

where the equality holds in the left hand if and only if a
1

n−1

K (r, u) is linear in r, the equality holds in the right
hand if and only if r = 0.

Proof. The right inequality is obvious. Since aK(r, u)
1

n−1 is concave in r, we have

aK(r, u)
1

n−1 = aK(
r

ρDK(u)
ρDK(u) + (1− r

ρDK(u)
)0, u)

1
n−1

≥ r

ρDK(u)
aK(ρDK(u), u)

1
n−1 +

(
1− r

ρDK(u)

)
aK(0, u)

1
n−1

≥
(

1− r

ρDK(u)

)
aK(0, u)

1
n−1

=

(
1− r

ρDK(u)

)
Vn−1(K|u⊥)

1
n−1 .

The equality condition can be derived from the arguments easily. This completes the proof.

Lemma 3.2. Let K be a convex body in Rn and u ∈ Sn−1.

(1) For −1 < p < 0, we have (
n

p+ 1

) 1
p

≤
ρRpK(u)

ρDK(u)
≤ B(p+ 1, n)

1
p .

(2) For p > 0, we have

B(p+ 1, n)
1
p ≤

ρRpK(u)

ρDK(u)
≤
(

n

p+ 1

) 1
p

.

Proof. According to the formula |K| =
∫ ρDK(u)
0 aK(r, u)dr and (3.1), we have

|K| =
∫ ρDK(u)

0
aK(r, u)dr ≤ ρDK(u)aK(0, u) = ρDK(u)Vn−1(K|u⊥),
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and

|K| =
∫ ρDK(u)

0
aK(r, u)dr

≥
∫ ρDK(u)

0

(
1− r

ρDK(u)

)n−1
Vn−1(K|u⊥)dr

=
1

n
ρDK(u)Vn−1(K|u⊥).

It yields that
1

n
ρDK(u)Vn−1(K|u⊥) ≤ |K| ≤ ρDK(u)Vn−1(K|u⊥). (3.2)

Combined with (3.1) and (3.2), we have

ρpRpK(u) =
1

|K|

∫
K
ρK(x, u)pdx

=
1

|K|

∫ ρDK(u)

0
rpaK(r, u)dr

≤ Vn−1(K|u⊥)

|K|
1

p+ 1
ρp+1
DK(u)

≤ n

p+ 1
ρpDK(u).

On the other hand, we have

ρpRpK(u) =
1

|K|

∫ ρDK(u)

0
rpaK(r, u)dr

≥ 1

|K|

∫ ρDK(u)

0
rp
(

1− r

ρDK(u)

)n−1
Vn−1(K|u⊥)dr

=
Vn−1(K|u⊥)

|K|
ρp+1
DK(u)

∫ 1

0
sp(1− s)n−1ds

≥ ρpDK(u)B(p+ 1, n).

This completes the proof.

From Lemma 3.2, we can get immediately that,

Corollary 3.3. Let K be an origin-symmetric convex body in Rn and u ∈ Sn−1.

(1) For −1 < p < 0, we have

2(
n

p+ 1
)

1
p ≤

ρRpK(u)

ρDK(u)
≤ 2B(p+ 1, n)

1
p .

(2) For p > 0, we have

2B(p+ 1, n)
1
p ≤

ρRpK(u)

ρDK(u)
≤ 2(

n

p+ 1
)

1
p .

By using Markov’s inequality, we can obtain a new upper bound for
ρRpK(u)

ρDK(u) .

Lemma 3.4. Let K be a convex body in Rn and u ∈ Sn−1. If p > 0, we have

ρRpK(u)

ρDK(u)
≤
(

1

p

) 1
p

. (3.3)
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Proof. According to Markov’s inequality (2.3), we have

aK(r, u) = Vn−1({y ∈ K|u⊥ : XuK(y) ≥ r})

≤ 1

r

∫
K|u⊥

XuK(y)dy =
|K|
r
.

With Lemma 2.3, it yields

ρpRpK(u) =
1

|K|

∫
K
ρK(x, u)pdx ≤ 1

|K|

∫ ρDK(u)

0

|K|
r
rpdr =

1

p
ρpDK(u).

This completes the proof.

Theorem 3.5. Let K be a convex body in Rn and p > 0. Then

n|DK| ≤ lim
p→∞

p

log p
(|DK| − |RpK|) ≤ n2|DK|. (3.4)

Proof. We have that

|DK| − |RpK| =
1

n

∫
Sn−1

(
ρnDK(u)− ρnRpK(u)

)
du

=
1

n

∫
Sn−1

ρnDK(u)

(
1−

ρnRpK(u)

ρnDK(u)

)
du.

From Lemma 3.4 , it follows

ρnRpK(u)

ρnDK(u)
≤
(

1

p

)n
p

= 1− n log p

p
± o( log p

p
).

From Lemma 3.2 and Lemma 2.4, it implies

ρnRpK(u)

ρnDK(u)
≥ B(p+ 1, n)

n
p

= 1− n2 log p

p
+
n

p
log(Γ(n)) +

n4

2p2
(log p)2

− n3

p2
log(Γ(n)) log p± o(p−2).

By using Lebesgue convergence Theorem, it gives

lim
p→∞

p

log p
(|DK| − |RpK|) =

1

n

∫
Sn−1

ρnDK(u) lim
p→∞

p

log p

(
1−

ρnRpK(u)

ρnDK(u)

)
du

≥ 1

n

∫
Sn−1

ρnDK(u) lim
p→∞

p

log p

(
n log p

p
± o( log p

p
)

)
du

= n|DK|,

and

lim
p→∞

p

log p
(|DK| − |RpK|) =

1

n

∫
Sn−1

ρnDK(u) lim
p→∞

p

log p

(
1−

ρnRpK(u)

ρnDK(u)

)
du

≤ 1

n

∫
Sn−1

ρnDK(u) lim
p→∞

p

log p

(
n2 log p

p
± o( log p

p
)

)
du

= n2|DK|,

which yields the required inequalities. This completes the proof.
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If convex body K is origin-symmetric, then DK = K + (−K) = 2K. Hence, we have:

Corollary 3.6. Let K be an origin-symmetric convex body in Rn and p > 0. Then

n ≤ lim
p→∞

p

log p
(1− 2−n

|RpK|
|K|

) ≤ n2.

4. Proof of Main Results

Firstly, we prove Theorem 1.1, which is involved in a large number of estimations.

Proof of Theorem 1.1. We first consider the radial p-th mean body of the unit ball Bn. Obviously, we
have

aBn(r, u) = Vn−1(

√
1− (

r

2
)2Bn−1), ρDBn(u) = 2,

for all u ∈ Sn−1. From Lemma 2.3, it gives

ρpRpBn(u) =
1

V (Bn)

∫
Bn

ρBn(x, u)pdx

=
1

V (Bn)

∫ ρDBn (u)

0
aBn(r, u)rpdr

=
ωn−1
ωn

∫ 2

0
(1− r2

4
)
n−1

2 rpdr

=
2pωn−1
ωn

∫ 1

0
(1− r)

n−1
2 r

p−1
2 dr

=
2pωn−1
ωn

B(
n+ 1

2
,
p+ 1

2
)

for all p > 0. Let

dn,p = {2pωn−1
ωn

B(
n+ 1

2
,
p+ 1

2
)}

1
p ,

we have
ρRpBn(u) = dn,p,

which is a constant depending only on the numbers p and n. Hence the radial p-th mean body of unit ball
Bn is still a ball centered at the origin with radius dn,p, i.e., RpBn = dn,pBn.

When K is a centered ellipsoid, there exists ϕ ∈ GL(n) such that K = ϕBn. From Lemma 2.2 and the
above argument, we have

RpK = Rp(ϕBn) = ϕ(RpBn) = ϕ(dn,pBn) = dn,pϕ(Bn) = dn,pK,

which is still a centered ellipsoid.
Now, we have

lim
p→∞

p

log p
(1− 2−n

|RpK|
|K|

) = lim
p→∞

p

log p
(1− 2−n

|RpBn|
|Bn|

)

= lim
p→∞

p

log p

[
1−

(
ωn−1
ωn

B(
n+ 1

2
,
p+ 1

2
)

)n
p

]
.

With the fact that,

Γ(x) =
√

2πxx−
1
2 e−x

[
1 +

1

12x
+

1

288x2
± o(x−2)

]
, x→∞,
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we have

lim
p→∞

p

log p
(1− 2−n

|RpK|
|K|

) = lim
p→∞

p

log p

(
1−

(
ωn−1
ωn

B(
n+ 1

2
,
p+ 1

2
)

)n
p

)
.

Since

(
ωn−1
ωn

B(
n+ 1

2
,
p+ 1

2
)

)n
p

=

 Γ(1 + n
2 )
√

2π(p+1
2 )

p
2 e−

p+1
2

[
1 + 1

12( p+1
2

)
+ 1

288( p+1
2

)2
± o(p−2)

]
√
π
√

2π(n+p+2
2 )

n+p+1
2 e−

n+p+2
2

[
1 + 1

12(n+p+2
2

)
+ 1

288(n+p+2
2

)2
± o(p−2)

]


n
p

=

(
Γ(1 + n

2 )e
n+1

2

√
π

)n
p
(

p+1
2

n+p+2
2

)n
2
(

1
n+p+2

2

)n(n+1)
2p (

1± o(p−2)
)
,

and each term can be computed as

(
Γ(1 + n

2 )e
n+1

2

√
π

)n
p

= e
n
p
log(

Γ(1+n
2 )

√
π

)
= 1 +

n

p
(log

Γ(1 + n
2 )

√
π

+
n+ 1

2
)

+
n2

2p2

(
log

Γ(1 + n
2 )

√
π

+
n+ 1

2

)2

± o(p−2),

(
p+1
2

n+p+2
2

)n
2

=

(
1 +

n+ 1

p+ 1

)−n
2

= 1− n(n+ 1)

2(p+ 1)
+
n(n+ 2)(n+ 1)2

8(p+ 1)2
± o(p−2),

(
1

n+p+2
2

)n(n+1)
2p

= e
−n(n+1)

2p
log(n+p+2

2
)

= 1− n(n+ 1)

2p
log

n+ p+ 2

2
+
n2(n+ 1)2

8p2
(log

n+ p+ 2

2
)2

− n(n+ 1)(n+ 2)

2p2
± o(p−2).

So we have(
ωn−1
ωn

B(
n+ 1

2
,
p+ 1

2
)

)n
p

=1 +
n

p
log

Γ(1 + n
2 )

√
π

− n(n+ 1)

2p
log

n+ p+ 2

2

+
n2(n+ 1)2

8p2

(
log(

n+ p+ 2

2
)

)2

+
n(n+ 2)(n+ 1)2

8p2

− n2(n+ 1)

2p2
log

n+ p+ 2

2

(
log

Γ(1 + n
2 )

√
π

+
n+ 1

2

)
+

n

2p2

[
n

(
log

Γ(1 + n
2 )

√
π

+
n+ 1

2

)2

− (n+ 1)(n+ 3)

]
± o(p−2).

Consequently, it yields

lim
p→∞

p

log p

[
1−

(
ωn−1
ωn

B(
n+ 1

2
,
p+ 1

2
)

)n
p

]
=
n(n+ 1)

2
.
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This completes the proof.
�

Proof of Theorem 1.2.
By using the left inequality in (1.4) and its equality condition, it has

DK = cn,pRpK,

here
cn,p = (nB(p+ 1, n))

− 1
p .

Moreover,

lim
p→∞

p

log p
(|DK| − |RpK|) = lim

p→∞

p

log p
|DK|(1− (

1

cn,p
)n)

= lim
p→∞

p

log p
|DK|(1− (nB(p+ 1, n))

n
p )

= lim
p→∞

p

log p
|DK|(1− (n)

n
p (1− n2 log p

p
))

= lim
p→∞

p

log p
|DK|n

2 log p

p

= n2|DK|.

When K is a simplex, the equality holds in Rogers-Shephard inequality (1.2). That is, |DK| =(
2n
n

)
|K|. So the desired identity is obtained.

This completes the proof.
�

Finally, we discuss the case when K is a general origin-symmetric convex body in Rn. The following
lemma can be derived through the definition of ρRpK directly.

Lemma 4.1. Let K1 and K2 be convex bodies in Rn. If K1 ⊆ K2 and p > 0, then

ρRpK1(u) ≤ (
|K2|
|K1|

)
1
p ρRpK2(u), for all u ∈ Sn−1.

By using the important John’s inclusion (2.1) and Theorem 1.1, we have

ρRpK(u) ≤
(
|
√
nJK|
|K|

) 1
p

· ρRp(√nJK)(u)

≤ n
n
2p · n

1
2 ·
(
|JK|
|K|

) 1
p

· ρRp(JK)(u)

≤ n
n
2p · n

1
2 · ρRp(JK)(u), u ∈ Sn−1,

which implies

RpK ⊆ n
n
2p · n

1
2Rp(JK).

So it gives

|RpK|
|K|

≤ |n
n
2p · n

1
2Rp(JK)|
|JK|

= n
n2

2p · n
n
2
|Rp(JK)|
|JK|

.
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Hence, it has

1− 2−n · n
−n
2 · n

−n2

2p
|RpK|
|K|

≥ 1− 2−n
|Rp(JK)|
|JK|

.

Consequently, from Lemma 4.1 it yields

lim
p→∞

p

log p
(1− 2−n · n

−n
2 · n

−n2

2p
|RpK|
|K|

) ≥ lim
p→∞

p

log p
(1− 2−n

|Rp(JK)|
|JK|

) =
n(n+ 1)

2
. (4.1)

Similarly, by using John’s inclusion (2.1), followed by Lemma 4.1 and Ball’s volume-ratio inequality
(2.2), it gives

ρRp(JK)(u) ≤
(
|K|
|JK|

) 1
p

· ρRpK(u)

≤
(

2n

ωn

) 1
p

· ρRpK(u), u ∈ Sn−1,

which implies

Rp(JK) ⊆
(

2n

ωn

) 1
p

RpK.

So it gives

|RpK|
|K|

≥
|( 2n

ωn
)
− 1
pRp(JK)|

|
√
nJK|

= 2
−n

2

p · n−
n
2 · ω

n
p
n ·
|Rp(JK)|
|JK|

.

Hence, it has

1− 2−n · 2
n2

p · n
n
2 · ω

−n
p

n · |RpK|
|K|

≤ 1− 2−n
|Rp(JK)|
|JK|

.

Consequently, from Lemma 4.1 it yields

lim
p→∞

p

log p
(1− 2−n · 2

n2

p · n
n
2 · ω

−n
p

n
|RpK|
|K|

) ≤ lim
p→∞

p

log p
(1− 2−n

|Rp(JK)|
|JK|

) =
n(n+ 1)

2
. (4.2)

Combined with (4.1) and (4.2), it yields

lim
p→∞

p

log p
(1− 2−n · 2

n2

p · n
n
2 · ω

−n
p

n
|RpK|
|K|

) ≤ n(n+ 1)

2

≤ lim
p→∞

p

log p
(1− 2−n · n

−n
2 · n

−n2

2p
|RpK|
|K|

).
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