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Abstract
In this paper, we consider the approximation problem on the volume of a convex body K in R™ by those
of its radial mean bodies R, K. Specifically, we establish the identity
R, (K 1
p—oo log p | K| 2
when K is an ellipsoid in R™. (©2016 All rights reserved.
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1. Introduction

In convex geometry, corresponding to each convex body K C R", there are two important geometric
objects called difference body DK and polar projection body II* K. The difference body was studied by
Minkowski, and has found many applications in mathematical physics and PDEs. See, for example, the
books of Bandle [2] and Kawohl [11]. Projection bodies also originated in the work of Minkowski, and are
widely used in the local theory of Banach spaces, stochastic geometry, mathematical economics, and other
areas [4, 9]. The polar projection body, the polar body of the projection body, appears explicitly in the more
recent literature; its behavior under linear transformations often renders it more natural than the projection
body itself.

Both the difference body and the polar projection body appear in known affine inequalities. The first is
an ingredient in the famous Rogers - Shephard inequality [6, 21], that is,

viDE) < | 2" ) vK). (1.1)
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The second appears in the celebrated Zhang projection inequality [8, 27, 28]

n < 2; > < V(K" 'V(TK), (1.2)

where the equality holds in ([1.1]) as well as in (1.2, if and only if K is a simplex.
Given a convex body K € R™ and p > —1, Gardner and Zhang [8] originally introduced an important
geometric body, called radial p-th mean body R,K of K, whose radial function is defined by

PR, K (u) = (V(lm/KpK(x,u)Pd:c)i, Yu € S"L. (1.3)

It is remarkable that the bodies R,K form a spectrum linking the difference body DK of K and the
polar projection body IT* K of K, which correspond to p = co and p = —1, respectively. More importantly,
for —1 < p < ¢, the following strong and sharp affine inequality

V(DK) < & V(RK) < ¢ V(R,K) < n"V(K)"V(II"K), (1.4)

which was established in [§] , implies the above mentioned Rogers-Shephard inequality and Zhang projection
inequality as special cases. In (1.4]), each equality holds if and only if K is a simplex, and ¢, , = (nB(p +

1,n))_% is a constant.

Specifically, when p = n and ¢ — oo, the middle inequality in becomes the Rogers-Shephard
inequality, and when p — —1 and ¢ = n, it becomes the Zhang projection inequality. Therefore, in some
sense, radial mean bodies R,K exhibit a strong unity in convex geometry. In [26] , the authors established
the identity related chord power integrals of convex body K and dual quermassintegrals of R, K.

It is proved in [8] that for p > 0, the radial p-th mean body R,K is an origin-symmetric convex body.
Now, a problem is naturally asked,

Problem. If K is a convex body in R™, how about the rate of approximation on the volume V (K) of convex
body K by the volume V(R,K) of its radial p-th mean body R,K ?

It is noted that the approximation problem of a convex body by its associated bodies, such as floating
bodies, convolution bodies, and centroid bodies, projection bodies etc, have been intensively investigated.
We refer to e.g. [5, 8 10, 12, 13, 14} 15 16, 17, 18, 19, 23, 24, 25] for further details, extensions and
applications. As an aside, we observe that throughout the whole paper [§], all affine inequalities attain
extremum if and only if the convex body is a simplex. Therefore, it will naturally lead us to study the radial
mean bodies R, K when K is an origin-symmetric convex body.

From now on, we shall use | - | to represent the n—dimensional volume V(-) of a convex body in R". In
this paper, for the affine invariant ratio ‘}T;’(Ifl, we will prove the following theorems.

Theorem 1.1. Suppose K is an ellipsoid in R" and R,K is the radial p-th mean body of K. Then

RyK 1
lim 2 (1 = 9—nlFefly _m(n+1) (1.5)
p—oo log p | K| 2
Theorem 1.2. Suppose K is a simplex in R™. Then
-1
. p 2n |RpK| 2
1 1— =n-. 1.6
’pggologp( ( n > | K| )=n (16)

This paper is organized as follows. In Section [2, we develop some notation and list, some basic facts
regarding convex bodies. Good general references for the theory of convex bodies are provided by the books
of Gardner [7] and Schneider [22]. In Section [3, we give some bounds for the approximation of volume in
the case of a general convex body. The proofs of Theorems and will be arranged in the Section [



L. Zheng, J. Nonlinear Sci. Appl. 9 (2016), 28462856 2848

2. Notations and Preliminaries

The setting for this paper is n—dimensional Euclidean space, R". A convex body K in R™ is a compact
convex set that has a non-empty interior. As usual, S”~! denotes the unit sphere, B,, the unit ball and o
the origin in R™. The volume of B, is denoted by w,,. If u € S"~!, we denote by u* the (n — 1)-dimensional
subspace of R” orthogonal to w and by [, the line through o parallel to u. We write V;, for the k—dimensional
Lebesgue measure in R".

Let K be a convex body in R™. The radial function pg(x,-) of K with respect to z € R", is defined by
pi(z,u) = max{c:z +cu € K}, Vue S" L If x is the origin, we usually denote px (0,u) by px (u).

For u € S"' and y € ut, let X, K(y) = Vi(K N (I, +y)), the function is called the X —ray of K in the
direction u. See [7] for details.

Let

Ex(r,u) ={y € ut : X, K(y) > r}

and
ag (ryu) = Vo1 (Ex(r,u))
for » > 0, and u € S"~!. In [27] the function af (r,u) is called the restricted chord projection function of K.
Note that if u € S*~!, then Ex(0,u) = K|ut and ax(0,u) = V,,_1(K|ut), and when r > ppg(u), we have
Ex(r,u) =0 and ag(r,u) = 0.
The difference body of the convex body K, denoted by DK, is the centrally symmetric convex body
(centered at the origin) defined by

DK =K+ (-K)={z—y:z,yec K}.
It is not difficult to verify that

ppk (u) = maXpK(x u) = ngax ViI(K N (I, +7v), uwesS™h
yeut

An often used fact in both convex and Banach space geometry is that associated with each convex body
K in R" is a unique ellipsoid JK of maximal volume contained in K. The ellipsoid is called the John ellipsoid
of K and the center of this ellipsoid is called the John point of K. The John ellipsoid is extremely useful;
see, for example, [I], T7]and [20] for applications.

Two important results concerning the John ellipsoid are John’s inclusion and Ball’s volume-ratio in-
equality. John's inclusion states that if K is an origin-symmetric convex body in R", then

JK C K C v/nJK. (2.1)

Among a slew of applications, John’s inclusion gives the best upper bound, /n, for the Banach-Mazur
distance of an n—dimensional normed space to n—dimensional Euclidean space. Ball’s volume — ratio
inequality is the following: if K is an origin-symmetric convex body in R", then

K|
K] S (2.2)

with equality if and only if K is a parallelotope. The fact that there is equality in (2.2)) only for parallelotopes
was established by Barthe [3].

Lemma 2.1 (Markov’s Inequality). Suppose (X,> ., ) is a measure space, f is a measurable extended
real-valued function and € > 0. Then

u({z € X :|f(@)] > e}) < / \Fldu (2.3)

The invariant property of radial p-th mean body under non-singular linear transformation shows that
they are natural objects in affine geometry.
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Lemma 2.2 ([20]). Let K be a convex body in R™ and GL(n) the nonsingular linear transformation group.
Then for ¢ € GL(n) and p > —1, we have Ry(¢K) = ¢(R,K).

Lemma 2.3 ([§]). Let K be a convex body in R™ and let w € S"~1. Then for p > —1, we have

pDK (1)
/pK(x,u)pdx:/ ag (r,u)rPdr. (2.4)
K 0

We will also use the following lemma.

Lemma 2.4 ([18]). Let p > 0. Then

B(p+1 Pl " og(T 7 logp)? — ™ og(D(n) log p = o(p~? 2
p+1ln)r = » 0gp+pog( (n))+2p2(0gp) e og(T'(n)) logp + o(p™7). (2.5)

3. General Bounds

Lemma 3.1. Let K be a convez body in R™ and u € S . Then

r

o PDK(U) )n—anil(KwL) < aK(’I“, U) < anl(K\uL), (3‘1)

1

where the equality holds in the left hand if and only if ap=" (r,u) is linear in r, the equality holds in the right
hand if and only if r = 0.

1
Proof. The right inequality is obvious. Since af (r,u)»-T is concave in r, we have

1 r r 1
ag(r,u)»-1t =a u)+ (1 — 0,u)n-1
x(ru) K(PDK(U)pDK( )+ pDK(U)) )
o T ( () )L N < ) r ) © )L
a w),u)n—1 — ag(0,u)n-T1
~ ppr(u) KPP ppK (1) .
> (1 r ) (0, u)aT
— ag(0,u)n-1
U por(w)) "
r 1
=(1- Vo1 (K |ut)n=T1,
< PDK(U)> 1K)
The equality condition can be derived from the arguments easily. This completes the proof. O

Lemma 3.2. Let K be a convez body in R™ and u € S* 1.

(1) For —1 < p <0, we have

1
n \? _ PR,k (u) 1
<2 <Bp+1,n)r.
<P+1> = ppr(u) v )

(2) Forp >0, we have

D=

1 pRpK(U) n
Blo+1n) < poi(w) = <p+1>

Proof. According to the formula |K| = (fDK(u) ag (r,u)dr and (3.1), we have

ppK (u)
|K| = / ar(r,u)dr < ppx (u)ax (0,u) = ppre(u)Vo—1(K|ut),
0
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and

1255440
|K| = / ag (r,u)dr
0

pDK (u) r n—1
> / (1 - ) Vi (K |ub)dr
0 ppoK ()

1
= EPDK(U)anl(Klul)o

It yields that
1
5PDK(U)Vn71(K|uL) < |K| < pok(u)Vao1 (Klu'). (3.2)

Combined with (3.1)) and (3.2)), we have
1
o o(u) = / pi(z,u)Pdx
Ry K ) |K‘ K (

1 ppK (u)
= ]K\/ rPag(r,w)dr
0

Vio1(Klut) 1 11
<
— ’K| P +1 DK (u)

n
< il 1,0%1((“)-

On the other hand, we have

1 [rpK(w) ,
P, (W) = ’K|/o rPag (r,u)dr

1 ppK (u) r n—1
& lKl/o " (1 B PDK(U)) Vs (K Ju)dr

Vo1 (K|ut) ! n—
- K] D?(U)/ sP(1 — )" 1ds
0

> ph(w)B(p+1,n).
This completes the proof. O
From Lemma we can get immediately that,

Corollary 3.3. Let K be an origin-symmetric convex body in R™ and u € S~ 1.

(1) For —1 < p <0, we have

n 1 _ pr,x(u) 1
2 p < L4 <2B(p+1,n)r.
(P+ 1 ppK (u) (p )
(2) Forp >0, we have
1 pr,ix(u) n 1
QB b + 1) n)r S L S 2 p,
( ) ppK (u) (p+ 0

By using Markov’s inequality, we can obtain a new upper bound for %.

Lemma 3.4. Let K be a convex body in R"™ and v € S*~'. If p > 0, we have

pry(u) <1)¢ | (33

ppK (1) P
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Proof. According to Markov’s inequality (2.3]), we have

ax(r,u) = Vi 1({y € Klut : X, K(y) >7})
1 K
<[ xkmay =5
T K|’LLJ‘ T
With Lemma it yields
1 1 [rox() K| 1
o o (u) = / pr(z,u)Pdr < — —rPdr = =pt - (u).
ot =T Kl r T prox
This completes the proof. O
Theorem 3.5. Let K be a convex body in R™ and p > 0. Then
(3.4)

n|DK| < lim ——(|DK]| — |R,K|) < n?|DK].
p—oo log p

Proof. We have that

1
DK|— |RyK| =

1

n

T (1 -

From Lemma [34], it follows

/’%I,K(U)
Phr (1)

/S (p%K(u) - PrﬁpK(u)> du

) .

n U n
,01:1,1(( ) < <1) P nlogp :to(lng).
Phx (1) D p D
From Lemma [3.2] and Lemma it implies
PR k(U n
%() > B(p+1,n)
P (u)
2 4
n“logp n n 9
=1- + @(logp)

+ » log(T'(n))

3

p2

By using Lebesgue convergence Theorem, it gives

" 1og(T'(n)) log p+ o(p™

2).

1 DK| - |R,K|) = = Dic(u) 1 L= 4
1 ] p nlogp log p
> b n 1 + d
= o /S"—l pDK(u)pLIgo ]ogp < p O( p ) !
and
1 DK| - [R,K|) = — (1) ] =2 a
pggo 1ng(| | — | P ) n/sn1 pDK(u)pl)IEO logp ( P%K(u) !
21 ]
< 1/ Phx (u) lim . <" = +of ng)> .
n Jon p—oo log p D p

which yields the required inequalities. This completes the proof.
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If convex body K is origin-symmetric, then DK = K + (—K) = 2K. Hence, we have:

Corollary 3.6. Let K be an origin-symmetric convex body in R™ and p > 0. Then

b ( _ —n|RpK|

n < lim ) < n?.
K]

~ p—oo logp

4. Proof of Main Results

Firstly, we prove Theorem [I.T] which is involved in a large number of estimations.

Proof of Theorem We first consider the radial p-th mean body of the unit ball B,,. Obviously, we

have
r
a, () = Vs (1= (5)2Bar), pom, () =2,

for all u € S"~ . From Lemma it gives

PPRPB,L(“) = V(lB%Z)/B pB, (x,u)Pdx

1 PDBny, (u)
= / ap, (r,u)rPdr
0

V(By)
2 2
:CUn—l/ (1—T—)nT_1Tpd7‘
Wn 0 4
D 1 nel p—
= 2wn-1 / (1 —r)'TlrpTldr
Wn 0
P
:2wn_1B<n+1,p+1)
Wn, 2 2
for all p > 0. Let
 2Pwp o+ 1 p+11
dup = {2 B =

we have
PR,B, (1) = dnp,
which is a constant depending only on the numbers p and n. Hence the radial p-th mean body of unit ball
B, is still a ball centered at the origin with radius dy, p, i.e., R,By = dp pBny.
When K is a centered ellipsoid, there exists ¢ € GL(n) such that K = ¢B,,. From Lemma and the
above argument, we have

R,K = R,(¢By) = ¢(Rp,By) = @(dnpBn) = dppp(Bp) = dn pK,

which is still a centered ellipsoid.
Now, we have

R,K R,B
lim p (1_ —n| P |)_ li p 1— —n| P n|)
p—oo log p [K| 7~ pooologp | Bl
_ 1 1
= lim _(En 1B(n+ 7p+ ) ’
p—oo log p W, 2 2

1 1
I(z)=+vV et 2T [1 + —+
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. (1—2_"‘RPK|):lim P 1 wn_lB(rH—l p—i—l) P
p—co logp K| p—oo log p Wn 2 72 '

we have

=3

p+1

9\ ntptl _ ntp+2 _
ﬁ\/ 277‘(%) 2 e 2 |:1 + 12(71.154»2) + 288(77,}»54»2)2 i O(p 2):|

n(n+1)

ra+me B\ (2 N L o1\ -
(S () () o

and each term can be computed as

n+1 -
T'(1+%e =2 7 n o D0+3) r(14+o 1
Ut 5)e — B 1y o N ) nt
NZs VT 2
n? F1+2) n+1\°
_ 1 2 Zl: -2
+2p2<og NG + ) o(p™°),
LN n+1\72  am+1)  nn+2)(n+1) )
niptl p+1 2(p+1) 8(p+1) ’
n(n+1)
1 w _n(n4l) oo ontp2
<n+p+2 — ez losl £
2
1 2 n? 1)? 2
:1_n(n+ )logn+p+ +n(n—{— ) ( n+p+ )
2p 2 8p? 2
i+ Dn+2)
— 22 +o(p™?).
So we have
_ 1 1 r z 1 2
(wn 1B(n+ ’p+ )> 14 " log (1+35) n(n+ )logn+p+
W, 2 2 p N3 2p 2
n+1 n+p+2 n(n+2)(n + 1)
) + 5
8p
1 2 ro+2 1
(n+ )logn+p+ log ( +2)+n+
2p?2 2 JT 2

+o(p?).

n n 2
+2LpQ [n <logr(1\/—;2) + ;1) —(n+1)(n+3)

Consequently, it yields

. Pl wn_lB(n—Fl’p—l—l) :n(n—l—l)'
p—oo log p W, 2 2

2

lim

bS]
| I
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This completes the proof.

O
Proof of Theorem [1.2]
By using the left inequality in (1.4 and its equality condition, it has
DK = ¢, ,R, K,
here )
cnp=(nB(p+1,n)) ».
Moreover,
P N 1
1 DK| - |R,K|) = lim —|DK|(1 - (—)"
Jim o (DK = Ry = Jim P DE|(1 = (")
T p B n
= Jm P DK|(1 = B+ 1))
n 2]
= lim 2 |DK|(1 - (n)7(1 - L8Py
p—oc logp p
2]
— lim 2 |DK|L 8P
p—oo logp p
= n?|DK]|.
When K is a simplex, the equality holds in Rogers-Shephard inequality (1.2)). That is, |DK| =
( 2: > |K|. So the desired identity is obtained.
This completes the proof.
O

Finally, we discuss the case when K is a general origin-symmetric convex body in R™. The following
lemma can be derived through the definition of pg,x directly.

Lemma 4.1. Let Ky and Ko be conver bodies in R™. If K1 C K9 and p > 0, then

Kol 1
| 2|)’17PRPK2(U), for all uw € S™ 1.

pRpKl (’U,) S (‘Kl|

By using the important John’s inclusion ([2.1)) and Theorem we have

1
nJK|\ »
PR, K (u) < (’\/IE(I |> PRy (yaIK) (W)

JK|\ #
: W " PR,(JK) (u)

PR, (oK) (W), uw€E ST

N[

<nz-.n

n

<n2-.n

N

which implies . )
R,K Cn% -n2R,(JK).
So it gives
[RpK| _ In¥ -n2R,(JK)| _ 2 x|R,(JK)|

< =n?r  -n2 ———,
K| [JK]| [JK]
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Hence, it has

. = =2 |R,K]| 2Ry (JK)|
1-27".n2 -pn2» L2 >1 2P
K| [JK]
Consequently, from Lemma [4.1] it yields
P n o= =2 [RpK| P L Bp(JK)[) _ n(n+1)
1 1-27". -n 2 > 1-27" = . 4.1
pggo logp( nEen |K| ) 7p_)r£10 logp( |JK| ) 2 (41)

Similarly, by using John’s inclusion (2.1)), followed by Lemma and Ball’s volume-ratio inequality
22, it gives

K]\
PR, K) (1) < K| * PR, K (1)
1
2"\ p
< () pry(u), ueE ST
wn
which implies
2"\ p
R,(JK) C (w> R,K
n
So it gives
2'”. 71
) P Ry(JK n? n R
‘RPK’ 2 |(UJn) ? p( )| =929 .n 2 w’g X ’RP<JK)’
K| [VnJK] [JK|
Hence, it has
cn o2 n =2 |RpK] —n [ Bp(JK)|
1-27".2% .n% -w, ? - —E— <1 27"~
SRR S IK
Consequently, from Lemma [.1] it yields
Cp o a mREKL . p o RUK), (D)
1 1-27".27» . . P <1 1-27" = 4.2
P00 logp( Lo |K| )*pggo logp( |JK] ) 2 (42)
Combined with (4.1)) and (4.2)), it yields
i p L gn g —5 | RpK| <"("+1)
plgrolo logp(1 2 27 n2-wn |K| )< 2
—n ;’”2 R K
< lim P 1—-2".n2 .n2 Ry ‘)
3% Tog p K]
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