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Abstract

Associated with the notion of the mixed L,-affine surface area for multiple convex bodies for all real p
(p # —n) which was introduced by Ye, et al. [D. Ye, B. Zhu, J. Zhou, arXiv, 2013 (2013), 38 pages|, we
define the concept of the mixed L,-dual affine surface area for multiple star bodies for all real p (p # —n)
and establish its monotonicity inequalities and cyclic inequalities. Besides, the Brunn-Minkowski type
inequalities of the mixed L,-dual affine surface area for multiple star bodies with two addition are also
presented. (©2016 All rights reserved.
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1. Introduction

During the past three decades, the investigations of the classical affine surface area have received great
attention from many articles (see [7, 8 9 10, 11l 12} [13], 14]). Based on the classical affine surface area,
Lutwak (see [14]) introduced the notion of L,-affine surface area and established its some inequalities. Wang
and He (see [19, 20]) introduced the notion of L,-dual affine surface area. Regarding studies of the L,-affine
surface area and Ly-dual affine surface area also see [16} 17, 21} 22| 23, 24] 25, 26].

We say that K is a convex body if K is a compact and convex subset in n-dimensional Euclidean space
R™ with non-empty interior. The set of all convex bodies in R™ is written as I, and its subset I, denote the
set of convex bodies containing the origin in their interiors. Similarly, K. denote the set of convex bodies
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with centroid at the origin. Besides S, denotes the set of star bodies (with respect to the origin) and S,
denotes the set of star bodies whose centroid lie at the origin in R™. Let F, denotes the subset of K, that
has a positive continuous curvate function. Let S"~! denotes the unit sphere in R” and V(K) denotes the
n-dimensional volume of the body K.

The notion of classical affine surface area was proposed by Leichtweif (see [7]). For K € K, the affine
surface area, (K) of K is defined by

T Q(K)" % = inf {nVi(K,L*)V(L)n}.
LeS,
Here L* denotes the polar body of L.
According to the Ly-mixed volume, Lutwak introduced the notion of L,-affine surface area in [I4]. For

K € Ko, p > 1, the Ly-affine surface area, Q,(K) of K is defined by

n+p

nTRQ(K) = inf {nVy (K, L)V (L)},

Obviously, if p = 1, Q4 (K) is the classical affine surface area Q(K).

Based on above the notion of L,-affine surface area, Wang and He (see [19]) presented the notion of
L,-dual affine surface area associated with the L,-dual mixed volume. For K € S, and 1 < p < n, the
L,-dual affine surface area, Q_,(K) of K is defined by

nnQ_,(K)5" = inf {nV_,(K,L*)V(L) " }.
Lek.

According to the definition of Ly-dual affine surface area, Wang and He (see [19]) proved the following

result:

Theorem 1.1. If K, L € K. and 1 < p < n, then

QWK Fnpl) ™ > Q (K) = +Q_ (D)5,
with equality if and only if K and L dilates. Here K—T—n+pL denotes the Lyip-radial combination of K and
L.

In fact, Wang and Wang in [I§] extend the definition of L,-dual affine surface area which was introduced
by Wang and He (see [19]) from L € K. to L € S, as follows:

For K € S, and 1 < p < n, the L,-dual affine surface area, Q,p(K ) of K is defined by

nnQ_,(K) 5 = inf {(nV_,(K, L*)V(L) " }. (1.1)

Recently, L,-affine surface area was successfully extended to any real p (p # —n) by Ye (see [24] 25]).
Moreover, Ye, Zhu and Zhou [26] studied the mixed L,-affine surface area for multiple star bodies for all
real p (p # —n). Let K = (K7, -, K,) be a sequence with each K; C R" (i =1,--- ,n) and K € F' means
each K; € F,, L € S,. They defined the mixed L,-affine surface areas for multiple convex bodies Q,(K) as
follows:

for p > 0, . )

Q(K) = inf {nV,(K;L*, - L))" V(L) )

for —n # p < 0,
Q,(K) = sup {nV,(K; L*,--- , L") "5 V(L)" }.
p(K) Leso{ il )tV (L)wir }
In this paper, combining with ((1.1)) and the notion of the mixed L,-affine surface area for multiple star

bodies, we first introduce the notion of the mixed L,-dual affine surface area for multiple star bodies for all
real p (p # —n). Here, we write that K = (K71,...,K,) € S be a sequence with each K; € S,.
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Definition 1.2. Let K = (K3, ..., K,) € §), the mixed L,-dual affine surface area for multiple star bodies,
Q_,(K) of K is defined by:

for p > 0,
P . =~ « oy 1 __pr
0, () = jnf {(nV (K L' D)7V (1) 77, (1:2)
for —n # p < 0,
~ ~ _n_ __P_
6 y(K) = sup {nV p(K; L, -+, L) 5V (L) w7}, (1.3)
LES, ——

n

Further, we establish monotonicity inequalities and cyclic inequalities of the mixed L,-dual affine surface
area for multiple star bodies. Our results can be stated as follows:

Theorem 1.3. Let K = (Ky,...,K,) € ). If 0 <p < g <n, then
~ ~ 1
Q_,(K)" P Q_,(K)" 9 \4
nn—pV(K)n-f—P

nn—aV (K)n+a

B =
Q

IN

if —n < qg<p<0, then

3 =
Q|

Here ﬁ,p(K)”_p/nn_p?(K)"ﬂ’ denotes Ly-dual affine area ratio of the sequence K.

Theorem 1.4. Let K = (K1,...,K,) € S). If 0 <r < q<p<n, then

Q_,(K)Pa=r) > ﬁ_q(K)(n—q)(p—T)ﬁ_T(K)(n—r)(q—p); (1.6)

if—n#r<p<q<0, then

Q_p(K)(n*P)(Q*T) < @_q(K)(nfq)(pfr)ﬁ_r(K)(nﬂ")(qu)_ (1.7)

Besides, associated with the combination \ o K—T—qu oL = (Mo Kl‘T‘qM olq,---,Ao Knlq,u o Ly), where
Ao K+gpo L is the Ly-radial combination of star bodies K and L, and corresponding to Theorem we
give a Brunn-Minkowski type inequality of the mized Ly-dual affine surface area for multiple star bodies.

Theorem 1.5. Let K = (K3,...,K,) € S}, L= (Ly,...,Ly) € S}, \,u > 0 (not both zero). If 0 < p < n,
qg>n+p, then

q(n—p)

~ ~ (n—p) ~ (n—p) ~
O\ o KT o L)yntmin > AQ_ (K)nwin) + 1) (L)ntnin (1.8)

with equality if and only if K; and L; are dilates.

Finally, combining with the combination Ax K +_, p*L = (A% K +_qu* Ly, -+ ,A*x K, +_4 ux Ly),
where Ax K 4_, pux L denote the Lg-harmonic radial combination of star bodies K and L, and corresponding
to Theorem we get another Brunn-Minkowski type inequality of the mixed L,-dual affine surface area
for multiple star bodies.

Theorem 1.6. For K = (Ky,...,K,) € 8} and L = (L1,...,L,) € S}, \,;x > 0 (not both zero). If
p>n>0,q>1, then

_a(n—p)

Q A+ K +_y L) n0n) > XQ_,(K) ™m0 4 p€) (L) nnfo); (1.9)

qa(n—p) g(n—p)

equality holds if and only if K; and L; are dilates.

The proofs of Theorems [1.3 will be completed in Section [3| of this paper.
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2. Notations and Background Materials

2.1. Radial functions and polar set

If K is a compact star-shaped (with respect to the origin) in R", then its radial function, px = p(K, ") :
R™\ {0} — [0,00), is defined by (see [4} [15])

p(K,u) =max{\>0: uec K}, uecS" !

If px is positive and continuous, K will be called a star body (respect to the origin). Two star bodies K
and L are said to be dilates (of one another) if px(u)/pr(u) is independent of u € S™~L.
If E is a nonempty subset in R™, the polar set, E*, of E is defined by (see [4] [15])

Er={zeR":z-y<1l,ye E}.

2.2. Lp-dual mized volume
Lutwak ([I4]) introduced the L,-dual mixed volume. For K,L € S, and p > 1, the L,-dual mixed
volume, V_,(K, L) of K and L is defined by

VD) =+ [ e s ), (2.1)

Obviously, V_,(K,K) = V(K).

Now we extend the L,-dual mixed volume to multiple star bodies as follows: For K = (K,...,K,) €
Sy, L=(Ly,...,L,) €S}, p e R (p# —n and p # 0), the L,-dual mixed volume, XN/_p(K;L) of K and L
is defined by

~ 1 n 1
Vo) = o [ Tl ) 7 p(Li ) ) dS ). (2.2)
Smi=n
From (2.2), when all K; coincide with K and all L; coincide with L, one can easily get V_p(K;L) =
V_,(K,L).
When Ly = Ly =--- = L, = L, we rewrite (2.2) as follows:

” 1 - n+p)i -p
Vit = [ T k) asto) (2.3

n

We use V(L) to denote the dual mixed volume of L = (Ly, ..., L,) € 8. That is,

V(L) =V(Ly,...,L,) = i/s_ [T re. (wdS(w).
=1

When Ly = ... = L, = L, one has V(L) = V(L). It is easy to get the following inequality for the dual
mixed volume:

VL))" =V(Ly,..., L))" < V(L) - V(Ly),
with equality if and only if L; (1 < i < n) are dilates of each other.
2.8. Two Lg4-combinations

1. Lgradial combination. For K,L € S,, ¢ > 0 and A, pr > 0 (not both zero), the L,-radial
combination, Ao K+,puo L €S, of K and L is defined by (see [4])

p()\OK—AI:q,uOL,-)q:)\p(K7-)q—|—pp(L, ')q’ (24)

where the operation ”:Lq” is called Lg-radial addition and A o K denotes the L,-radial scalar multiplication.

From (2.4)), we easily get Ao K = )\éK . For ¢ = 1, Lgradial combination (2.4) is the classical radial
combination (see [4]).
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2. Lg-harmonic radial combination. For K,L € S,, ¢ > 1 and A,z > 0 (not both zero), the
L,-harmonic radial combination, Ax K +_, px L € S, of K and L is defined by (see [3 1}, 2, [14])

p(A*K +7q :U'*Ka ')_q = )‘p(Kv ')_q + MIO(Lv ')_qv (25)

where the operation ” +_,”

1
scalar multiplication. From ({2.5)), we can obtain Ax K = A" « K. For ¢ = 1, Ls-harmonic radial combination
(2.5) is the classical harmonic radial combination (see [14]).

is called Lg-harmonic radial addition and A+ K denotes the L,-harmonic radial

3. Results and Proofs

In this section, we complete the proofs of Theorems [1.3
Proof of Theorem . For K= (K, -+ ,K,) €S L €S, using (2.3)), we obtain

~ 1

n 1
L ] . || [puq», u>”ﬂ s (u)
=1

1 n+gq

= n/Sn1 [p(L*,U)_qi]f[lp(Ki,U) n ]Zilf[lp(Ki,u)TdS(U)-

If 0 <p<g,ie.,q/p>1, together with the Hélder inequality, then

n g P
~ 1 n P q
Vs < {0 [ Lo T ot ™5 | ast |
n Sn—l im1
9—p
1 - a—p T 3.1
{/ H@(Kuu)qqp)qudsw)} q .
n Snfl =1
<V (K;L*,...,L*")iV(K)@
Thus _ ) _ )
(V_p(KLL7”"L))p§(V_Q(K;NL"”’L)>q. (3.2)
V(K) V(K)
If g <p<0,ie. g/p>1,then (3.1) is also hold. Since p < 0, we give
Ve 1 Ve * * L
(V_p(K;NL,...,L)>p>(V_q(KLL,...,L)>q' 33)
V(K) V(K)

(i) For 0 < p < g < n, applying (1.2)) and (3.2)), we have

() g ([t vy

— inf {<V‘p(KLL*""’L*)>ZV(L)117(K)1}

B =

LeS. V(K)
() v
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So (|1.4)) is obtained.
(ii) For —n < g < p < 0, by (L.3)) and (3.3)), we obtain

() = o ([
= {5 ) o)
e { (B vore)

This gives (|1.5]). (I
Proof of Theorem|1.4, For K = (Ki,---,K,) € S} and L € S,, from ({2.3), we obtain

S =

|

23
t

?_p(K;L*,...,L*):/Snl p(L*,u)_p[: <p(K¢,u)"+p> wdS(u)

=1

p—r

) /5”1 ['O(L*’“)_q(ﬁp(Ki,u)W)] =

Ifo<r<g<p<n,ie,0< Z%: < 1, then by the Hélder inequality, we get

q—

[mL*,u)—’"(i]nIlp(Ki,u)”n”)] s ().

I3

otttz [ [ ot ([Tt Jasco]

ar (3.4)

[/s ps < ﬁl p(K,u)"" ) ds(u)} =

a—p

=V (K, L*,... . L") Vo (K L*,... L*)or,

Thus

Vo, (K;L*,...,L*)"V (L) > [‘N/q(K; L*,... ,L*)”V(L)_q]

This combining with ([1.2]), and notice n > p, yields

n—p __ n—pys LTk *\1 —p
Q_,(K)" P = Llél‘gc {n Vo, (K;L*,...,L*)"V(L) }

3

p—
q—r

> inf {n"—qf/_q(K; L*,... ,L*)”V(L)_q}

a—p
q—r

inf {nn—’“f/_r(K; L*, ..., L*)”V(L)""}

~ (n—q)(p—r) ~ (n—r)(qa—p)
= Q,q K q-r (K q-r

So (|1.6)) is obtained.
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Ifr<p<g<,ie.

, p = > 1, then inequality (3.4)) is reversed, that is

—r ~ q9—p

v oy p=r
Vop(KG LY. L) S V(K LY. LY e VI (KG LY, . L) e

This combining with ([L.3]), we have that

Q_,(K)"P = sup {n"PV_p(K;L*, y .,L*)”V(L)p}
LeS.

p—r
q—r

< sup {n"—QV/_q(K; L* ... ,L*)”V(L)_q}
LeS.

a-p
p

q
sup {n"—TT/_T(K; L ... ,L*)”V(L)_T} .
LeS.

~ (n—q)(p—r) ~ (n—=r)(a—p)

=0, (K) QLK)

This yields (1.7). O
In the following we will prove Theorem and The Minkowski’s produce type inequality obtained
by Kuang [6] is needed.

Lemma 3.1 (Minkowski’s product type inequality). Let ay, by > 0, then

{ﬁ(ak+bk)}n > (ﬁ%)n + (ﬁbk>n7
k=1 k=1 k=1

with equality if and only if ap, and by are proportional.

Lemma 3.2. For K = (Ky,--- ,K,) € S, L= (L1,---,L,) € S, \,u > 0 (not both zero). If p > 0 and
q >n+p, then for any Q = (Q1, -+ ,Qn) € SY,

~ — _q ~ _q ~ _4q
Vop(A o KtguoL; Q)ntr > AV, (K; L) v + puV_p(L; Q) e, (3.5)
with equality if and only if K; and L; are dilates.

Proof. Since p > 0, ¢ > n + p, thus 0 < "%;p < 1. Hence, from ({2.2)), (2.4), Lemma and the Minkowski’s
integral inequality (see [5]), we get

q

~ - g 1 n - n nrp
V_p(A o K+gpoL; Q)nip = {n/ Hp(/\oKi—i—q,uoLi,u)Ipp(Qi,u)ZdS(u)} ’
Sn—1 i1

- n n+p _a_

1 __pg n+
:{/ [T oo KiFgno Liyu) p(Qi,u) "<5q“”] qu<u>} p

n Sn—l Li—1

- n 1 ntp _a_

1 n ___Ppa q n+p
= {/ 11 <AP Ky u)? + pp(Li,u)? > p(Qi, u) ”“L*“] dS(U)}

n Snfl Ly

1 - pq
> >\ K’L7 ’L? n(n+tp)
- {n /S’n—l ZEIIP v Q ) ’

n+p q

+qu<Li,u>3p<@i,u>W’i’+m] Castw)}

i=1
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q
n+p

25 [ Tt ™ i Hast)

+u[ /S 1Hp Liyu) ™% p(Qivu)” fidS(u)}””

= )\V_p(K; Q)“+P + ,LLV_p(L; Q)r+p v

According to the equality conditions of Lemma and Minkowski’s integral inequality, we see that
equality holds in (3.5)) if and only if K; and L; are dilates. O

Proof of Theorem . Since 0 < p <n, ¢ > 1+ £, thus by (L.2)) and (3.5)), we have
P

{Q p(AoKFpuoL)" p}m={5g§{n "pr(AoKlquoL;Q*,-~-,Q*)V<Q)_Z}}n+p

= inf { [nnnpvp()\ oK+t puoL; Q- ,Q*)] - [V(Q)_z] W}

QES:

QES.

> inf {A[n"n’JV_AK;Q*,--- ,Q*W(Q)ﬁ]"“’}

n infc{u[n’?ﬁ_p@;cz*,--- ,Q*W(Q)—i]"“}

1
Fla
5

- wop]ip
+ 1| Qp(L) .

According to the equality condition of , we see that equality holds in if and only if K; and L;
are dilates. ([l

Using the proof method of Lemma and combining with L,-harmonic radial combination , we
easily obtain the following result for the L,-dual mixed volume.

Lemma 3.3. If K= (Ky,--+ ,Ky) €Sy, L= (L1, ,Ln) €S, A\, > 0 (not both zero). If p>0, g =1,
then for any Q = (Q1,--- ,Qn) € SV,

VoA K +_g pux L Q) 70 > AV (K; Q)75 + puV_p(L; Q) 7iv, (3.6)

with equality if and only if K; and L; are dilates.

Proof. Since p > 0, ¢ > 1, thus —”Tﬂ’ < 0. Hence, by (2.2), , Lemma and the Minkowski’s
integral inequality (see [5]), we get

Vo,AxKF_uxL; Q) v

{ /S 1H”*Kz+ gt x Liyu) 5 p(Qiyu) 7 dS(u )}

1 L ~ _q Pq
{ [HP(A*Ki‘i‘—qM*LiyU) np(Qi,u)n(n-HD)]

n 1
5” i=1

o L T (ot i) ip(Qi,uwﬂm] st}

n 1
st Li;a
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2 n _ntp __q
! - eEm] _a _pa__ q e
> {n/s ) [AHP(KHU) np(Qi,U)n(n+P) "‘MHP(LwU) np(Qi’u)n(n+p):| dS(u)}
b= i=1
1 i -
n+p P n+p
ZA[n/S T ot w) ™" p(@iw) ﬁdS(u)}
" =1
_q
n+p

1 n . ) _
e [n /S gp(Li’u)"P(Qi,U)_"dS(u)]

= AV_,(K; Q)7 + V., (L; Q)77

According to the equality conditions of Lemma [3.1] and the Minkowski’s integral inequality, we see that
equality holds in if and only if K; and L; are dilates. ([

Proof of Theorem . If p>n>0,q>1, then from and , and notice that n — p < 0 and
_nTﬂ) < 0 we have

Q_p(A*K+_qM*L)W]W > inf {A[n’u”v_p(K;Q*,m ,Q*)V(Q)n]"“’}

This gives ((1.9).
According to the equality condition of (3.6]), we see that equality holds in (1.9) if and only if K; and L;

are dilates.

O
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