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Abstract

In this paper, an improved simulated annealing (SA) optimization algorithm is proposed for solving
bilevel multiobjective programming problem (BLMPP). The improved SA algorithm uses a group of points
in its operation instead of the classical point-by-point approach, and the rule for accepting a candidate
solution that depends on a dominance based energy function is adopted in this algorithm. For BLMPP, the
proposed method directly simulates the decision process of bilevel programming, which is different from most
traditional algorithms designed for specific versions or based on specific assumptions. Finally, we present six
different test problems to measure and evaluate the proposed algorithm, including low dimension and high
dimension BLMPPs. The experimental results show that the proposed algorithm is a feasible and efficient
method for solving BLMPPs. c©2016 All rights reserved.
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1. Introduction and Preliminaries

Bilevel programming problem (BLPP) arises in a wide variety of scientific and engineering applications
including optimal control, process optimization, game-playing strategy development, transportation problem
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and so on. In the past years, the theory and method of BLPP has been extensively studied, see [3–
7, 14, 15, 22, 28, 33, 34, 36, 37] and the references therein. It is worth noting that the evolutionary
algorithm (EA) is an important method for solving BLPP, see [18, 21, 25, 35, 41] and the references therein.

Since the multiobjective characteristics widely exist in many practical problems, it is necessary and in-
teresting to study numerical method for solving bilevel multiobjective programming problems (BLMPP). An
interactive algorithm was proposed for BLMPP, see [1, 24, 26, 27]. Eichfelder [16, 17] presented numerical
methods for solving nonlinear bilevel multiobjective optimization problems with coupled upper level con-
straints and for solving nonlinear non-convex bilevel multiobjective optimization problems. Zhang and Lu
[43] developed an approximation Kth-best algorithm to solve multi-follower (cooperative) bilevel program-
ming problems with fuzzy multi-objective. In recent years, the metaheuristic has attracted considerable
attentions as an alternative method for BLMPP. Recently, Deb and Sinha discussed BLMPP based on evo-
lutionary multiobjective optimization principles, see [10–12, 30]. Based on those studies, Deb and Sinha [13]
also introduced a viable and hybrid evolutionary-local-search based algorithm, and presented challenging test
problems. Sinha [29] presented a progressively interactive evolutionary multiobjective optimization method
for BLMPP. Very recently, Zhang et al. [42] proposed a hybrid particle swarm optimization algorithm with
crossover operator to solve high dimensional BLMPP.

Simulated annealing (SA) [20] is a stochastic optimization method that is based on an analogy with
physical annealing, which has been found to be quite successful in a wide variety of optimization tasks.
Initially, SA has been used with combinatorial optimization problems [23]. Afterwards, SA has been extended
to the single and multiobjective optimization problems with continuous N-dimensional control spaces [2, 31,
32]. Due to its robust and relative simplicity, there have been a few attempts in solving BLPP by SA. For
example, Sahin and Ciric [19] proposed a dual temperature SA algorithm for solving BLPP. Xiang et al.
[39] presented a method to solve bilevel optimization model on high-speed railway station location using
SA algorithm. However, it is worth noting that the mentioned paper above only for bilevel single objective
problems and the BLMPP has seldom been studied using SA so far.

In this paper, an improved SA is proposed for solving BLMPP. For such problems, the proposed algorithm
directly simulates the decision process of bilevel programming, which is different from most traditional
algorithms designed for specific versions or based on specific assumptions. The BLMPP is transformed
to solve multiobjective optimization problems in the upper level and the lower level interactively by the
improved SA. For one time of iteration, a set of approximate Pareto optimal solutions for BLMPP is
obtained using the elite strategy. This interactive procedure is repeated until the accurate Pareto optimal
solutions of the original problem are found. The rest of the paper is organized as follows. In Sect. 2, the
BLMPP is provided. The proposed algorithm for solving bilevel multiobjective problem is presented in
Sect. 3. In Sect. 4, some numerical examples are given to demonstrate the feasibility and efficiency of the
proposed algorithm. The proposed algorithm is applied for solving a practical problem in Sect. 5, while the
conclusion is reached in Sect. 6.

2. Problem Formulation

Let X ∈ Rn1 , Y ∈ Rn1 , F : Rn1 ×Rn2 → R ∈ Rm1 , f : Rn1 ×Rn2 → Y ∈ Rm2 , G : Rn1 ×Rn2 → R ∈ Rp,
g : Rn1 ×Rn2 → R ∈ Rq. The general model of the BLMPP can be written as follows:

min
x,y

F (x, y)

s.t. G(x, y) > 0
min
y

f(x, y)

s.t. g(x, y) > 0,

(2.1)

where F (x, y) and f(x, y) are the upper level and the lower level objective functions, respectively. G(x, y)
and g(x, y) are the upper level and the lower level constraints, respectively.

Let S = {(x, y)|G(x, y) > 0g(x, y) > 0}, X={x|∃y,G(x, y) > 0, g(x, y) > 0}, and for the fixed x∈X, we
denote by S(X) the weak efficiency set of solutions to the lower level problem, the feasible solution set of
problem (2.1) is denoted by IR =

{
S = (x, y)|(x, y) ∈ S, y ∈ S(X)

}
.
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Definition 2.1. For a fixed x ∈ X, if y is a Pareto optimal solution to the lower level problem, then (x, y)
is a feasible solution to the problem (2.1).

Definition 2.2. If (x∗, y∗) is a feasible solution to the problem (2.1), and there is no (x, y) ∈ IR, such
that F (x, y) ≺ F (x∗, y∗), then x∗, y∗ is a Pareto optimal solution to the problem (2.1), where “ ≺ ” denotes
Pareto preference.

For problem (2.1), it is noted that a solution (x∗, y∗) is feasible for the upper level problem if and only if
y∗ is an optimal solution for the lower level problem with x = x∗. In practice, we often make the approximate
Pareto optimal solutions of the lower level problem as the optimal response feed back to the upper level
problem, and this point of view is accepted usually. Based on this fact, the SA algorithm may have a great
potential for solving BLMPP. On the other hand, unlike the traditional point-by-point approach mentioned
in Sect. 1, the improved SA algorithm apply a group of points in its operation, thus the improved SA can
be developed as a new way for solving BLMPP. In the following, we present an improved SA algorithm for
solving problem (2.1).

3. The Algorithm

3.1. The improved SA algorithm

The SA algorithm realizes the combination of the local search and global search through the cooling
schedule. The cooling schedule is critical to the performance of the algorithm. The candidate solution is
usually created by the current solution with a random perturbed vector, the probability density function
of the random perturbed vector and the accept probability of the corresponding candidate solution are in
relation to the temperature. When the temperature is higher, the search range of the candidate solution is
wider, and it can also be accepted easily. When temperature is lower, the candidate solutions are constrained
in the local area of the current solution, the search become local exploration. In this study, in order to
improve the global search ability of the SA algorithm, the random perturbation vector is constructed based
on cooling schedule used in [40] and the global convergence can be guaranteed. On the other hand, the
method for computing the energy difference between the current solution and the candidate solution of
multiobjective optimization problem used by [31] is employed in this paper.

Suppose the current solution is Xk, the candidate solution is Y k, for the k− th iteration at temperature
Tk, the particle is updated by the improved SA as following:

Algorithm 1:

Step1 Create candidate solution according to the current solution.

Y k = Xk + ε.

Step2 Compute energy difference between the current solution and the candidate solution.

∆E(Xk, Y k) =
1∣∣F ∣∣(|FXk | − |FY k |), η = random (0, 1) .

Step3 Compute transition probability.

p(Y k|Xk, Tk) = min
{

1, exp(∆E(Xk, Y k))
}
.

Step4 Choose the offspring. If p(Y k|Xk, Tk) > η, Xk+1 = Y k; Otherwise Xk+1 = Xk.
In Step1, εk = (εk1, ε

k
2, · · · , εkn), and the component εki of the random perturbed vector εk is produced

by εki = sign(Ui)Tk

(
1
|Ui|m − 1

)
, (i = 1, 2, · · · , n) where U1, U2, · · · , Un ∈ random (−1, 1) are mutual inde-

pendence uniform distribution random variables, sign(·) is the sign function, m (m > 1) is the predefined
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constant. In Step 2, F is the approximate Pareto front, which is the set of mutually non-dominating solu-
tions found thus far in the annealing. Denote by F the union of the F , the current solution Xk and the
proposed solution Y k, that is, F = F

⋃
Xk
⋃
Y k. We denote by FXk the elements of F that dominate Xk

and FY k the elements of F that dominate Y k.

3.2. The algorithm for solving BLMPP

The process of the proposed algorithm for solving BLMPP is an interactive co-evolutionary process. We
first initialize population, and then solve multiobjective optimization problems in the upper level and the
lower level interactively using the improved SA algorithm. For one time of iteration, a set of approximate
Pareto optimal solutions for problem (2.1) is obtained by the elite strategy adopted in Deb et al. [9]. This
interactive procedure is repeated until the accurate Pareto optimal solutions of problem (2.1) are found.
The details of the proposed algorithm are given as following:

Algorithm 2:

Step 1. Initializing.
Step 1.1. Initialize the population P0 with Nu particles which is composed by ns = Nu/Nl sub-swarms

of size Nl each. The particles position is presented as: zj = (xj , yj) (j = 1, 2, · · · , nl) and zj is sampled
randomly in the feasible space.

Step 1.2. The start temperature and the end temperature are noted as Tmax and Tf respectively, let the
iteration number k = 0 and let Tk = Tmax.
Step 2. For the k − th sub-swarm, (k = 1, 2, · · · , ns), each particle is assigned a non-domination rank NDl

and a crowding value CDl in f space. Then, all resulting sub-swarms are combined into one population
which is named as the Pt. Afterwards, each particle is assigned a non-domination rank NDu and a crowding
value CDu in F space.
Step 3. The non-domination particles assigned both NDu = 1 and CDu = 1 from Pt are saved in the elite
set At.
Step 4. For the k − th sub-swarm (k = 1, 2, · · · , ns), update the lower level decision variables.

Step 4.1. Initialize the lower level loop counter tl = 0.
Step 4.2. Update the j−th (j = 1, 2, · · · , Nl) particle position with the fixed upper level decision variable

using Algorithm 1.
Step 4.3. tl = tl + 1.
Step 4.4. If tl > Tl, go to Step 4.5. Otherwise, go to Step 4.2.
Step 4.5. Each particle of the i− th sub-swarm is reassigned a non-domination rank NDl and a crowding

value CDl in f space. Then, all resulting sub-swarms are combined into one population which is renamed
as the Qt. Afterwards, each particle is reassigned a non-domination rank NDu and a crowding value CDu

in F space.
Step 5. Combined population Pt and Qt to form Rt. The combined population Rt is reassigned a non-
domination rank NDu, and the particles within an identical non-domination rank are assigned a crowding
distance value CDu in the F space.
Step 6. Choose half particles from Rt. The particles of rank NDu = 1 are considered first. From the particles
of rank NDu = 1, the particles with CDl = 1 are noted one by one in the order of reducing crowding distance
CDu, for each such particle the corresponding sub-swarm from its source population (either Pt or Qt ) is
copied in an intermediate population St. If a sub-swarm is already copied in St and a future particle from the
same sub-swarm is found to have NDu = CDu = 1, the sub-swarm is not copied again. When all particles
of NDu = 1 are considered, a similar consideration is continued with NDu = 1 and so on till exactly ns
sub-swarms are copied in St.
Step 7. Update the elite set St. The non-domination particles assigned both NDu = 1 and NDl = 1 from
St are saved in the elite set At .
Step 8. Update the upper level decision variables in St.
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Step 8.1. Based on the non-domination rank and crowding value, choose xiu ∈ At and xju ∈ St using

tournament selection method. Though the parents xiu ∈ At and xju ∈ St, the offspring xju is created by the
simulated binary crossover and polynomial mutation operator.

Step 8.2. For the updated xiu, solve min
xk
u∈At

∣∣∣xiu − xku∣∣∣. If xpu ∈ At meet the condition and the xpl is the

lower lever variable corresponding to xpu, xiu and xpl are combined as a particle (xju, x
p
l ). The other Nl−1 level

particles are produced randomly in the feasible region. According to the above method, the ns sub-swarms
are produced.

Step 8.3. Combine all the sub-swarms produced by Step 8.2 as Pt.
Step 8.4. Every member is then assigned a non-domination rank NDu and a crowding distance value

CDu in F space.
Step 9. k = k + 1, computing.
Step 10. If Tk < Tf output the elite set At. Otherwise, go to Step 2.

In Step 4.2, denotes the non-dominated set in which the members are assigned NDl = 1. In Step 9, the
function for updating temperature which was adopted in Yang and Gu [40]. A relatively simple scheme is
used to handle constraints. Whenever two individuals are compared, their constraints are checked. If both
are feasible, non-domination sorting technology is directly applied to decide which one is selected. If one
is feasible and the other is infeasible, the feasible dominates. If both are infeasible, then the one with the
lowest amount of constraint violation dominates the other. Notations used in the proposed algorithm are
detailed in Table 1.

Table 1: The notations of the algorithm

xi The i− th particles position of the upper level problem.
yj The j − th particles position of the lower level problem.
zj The j − th particles position of BLMPP.
Nu The population size of the upper level problem.
Nl The sub-swarm size of the lower level problem.
tl Current iteration number for the lower level problem.
Tl The pre-defined max iteration number for tl.
NDu Non-domination sorting rank of the upper level problem.
CDu Crowding distance value of the upper level problem.
NDl Non-domination sorting rank of the lower level problem.
CDu Crowding distance value of the lower level problem.
Pt The t− th iteration population.
Qt The offspring of Pt.
St Intermediate population.

4. Numerical Experiments

In this section, six examples will be considered to illustrate the feasibility of the proposed algorithm
for problem (2.1). In order to evaluate the closeness between the obtained Pareto optimal front and the
theoretical Pareto optimal front, as well as the diversity of the obtained Pareto optimal solutions along the
theoretical Pareto optimal front, we adopted the following evaluation metrics:

4.1. Performance evaluation metrics

(a) Generational Distance (GD): This metric used by Deb [8] is employed in this paper as a way
of evaluating the closeness between the obtained Pareto optimal front and the theoretical Pareto optimal



T. Zhang, et al., J. Nonlinear Sci. Appl. 9 (2016), 3672–3685 3677

front. GD metric denotes the average distance between the obtained Pareto optimal front and the theoretical
Pareto optimal front:

GD =

√∑n
i=1 d

2
i

n
,

where it is the number of the obtained Pareto optimal solutions by the proposed algorithm and is the
Euclidean distance between each obtained Pareto optimal solution and the nearest member of the theoretical
Pareto optimal set.

(b) Spacing (SP ): This metric is used to evaluate the diversity of the obtained Pareto optimal solutions
by comparing the uniform distribution and the deviation of solutions as described by Deb [8]:

SP =

∑M
m=1 d

e
m +

∑n
i=1(d− di)2∑M

m=1 d
e
m + nd

,

where di = minj

(∣∣∣F i
1(x, y)− F j

1 (x, y)
∣∣∣+
∣∣∣F i

2(x, y)− F j
2 (x, y)

∣∣∣) (i, j = 1, 2, · · · , n), d is the mean of all di,

dem is the Euclidean distance between the extreme solutions in obtained Pareto optimal solution set and the
theoretical Pareto optimal solution set on the m− th objective, M is the number of the upper level objective
function, n is the number of the obtained solutions by the proposed algorithm.

4.2. Experimental comparison

All results presented in this paper have been obtained on a personal computer (CPU: AMD 2.80GHz;
RAM: 3.25GB) using a C# implementation of the proposed algorithm.

Example 4.1 ([11]). Let x ∈ R1, y ∈ R2 and set the parameters: Nu = 200, Tu = 200, Nl = 40, Tl = 40,
Tmax = 106, Tf = 10−3 and m = 3.

min
x,y

F (x, y) = (y1 − x, y2)

s.t.G1(y) = 1 + y1 + y2 > 0

min
y
f(x, y) = (y1, y2)

s.t.g1(x, y) = x2 − y21 − y22 > 0,−1 ≤ y1, y2 ≤ 1, 0 ≤ x ≤ 1.

Figure 1: The obtained Pareto front and solutions of Example 4.1
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Figure 1(a) shows the obtained Pareto front of Example 4.1 by the proposed algorithm (Algorithm 2)
and the method in [11]. Table 2 shows the comparison results between the two algorithms considering the
metrics previously described. It can be seen that the performance of the proposed algorithm is better with
respect to the generational distance, although it places slightly below the method in [11] with respect to
spacing. By looking at the obtained Pareto fronts, some non-dominated vectors produced by the method in
[11] are not part of the true Pareto front of the problem, however, the proposed algorithm is able to cover
the full Pareto front. Figure 2(b) shows that all the obtained solutions by the proposed algorithm, which
follow the relationship: y1 = −1 − y2, y2 = −1

2 ±
1
4

√
8x2 − 4 and x ∈ ( 1√

2
, 1). However, some solutions

obtained by the method in [11] do not meet the relationship.

Example 4.2. Let x ∈ R1, y ∈ R2 and set the parameters: Nu = 200, Tu = 50, Nl = 40, Tl = 20,
Tmax = 107, Tf = 10−3 and m = 3.
min
x,y

F (x, y) = (x2 + (y1 − 1)2 + y22)

min
y
f(x, y) = (y1, y2)

s.t.− 1 ≤ x, y1, y2 ≤ 2.

Figure 2: The obtained Pareto front and solutions of Example 4.2

Figure 2(a) shows the obtained Pareto front of Example 4.2 by the proposed algorithm (Algorithm 2)
and the method in [11]. Obviously, both the proposed algorithm and the method in [11] almost have the
same spacing. However, there are some areas of the Pareto optimal solution obtained by the method in [11]
that are sparse. In Figure 2(b) and Figure 2(c), it can be seen that the obtained solutions by the proposed
algorithm almost follow the relationship: x = y1(y1 ∈ [0.5, 1]), y2 = 0. However, some areas of the solutions
obtained by the method in [11] are sparse and some solutions do not meet the relationship.

Table 2: Results of Generation Distance (GD) and Spacing (SP) metrics for Examples 4.1 and 4.2

GD SP
Test examples The method in [11] Algorithm 2 The method in [11] Algorithm 2
Example 4.1 0.00266 0.00103 0.01382 0.01321
Example 4.2 0.01157 0.00995 0.00241 0.01328
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Example 4.3 ([13]). Let x ∈ R10, y ∈ R10 and set the parameters: Nu = 400, Tu = 50, Nl = 40, Tl = 20,
Tmax = 109, Tf = 10−5 and m = 3.

min
x,y

F (x, y) = ((1 + r − cos(απx1)) +
K∑
j=2

(xj −
j − 1

2
)2) + τ

K∑
j=2

(yj − xi)2 − γcos(γ
πx1
2y1

),

(1 + r − sin(απx1)) +
K∑
j=2

(xj −
j − 1

2
)2) + τ

K∑
j=2

(yj − xi)2 − γsin(γ
πx1
2y1

))

min
y
f(x, y) = (y21 +

K∑
j=2

(yi − xi)2 +

K∑
j=2

10(1− cos(π
k

(yi − xi))),

y21 +
K∑
j=2

(yi − xi)2 +
K∑
j=2

10
∣∣∣1− cos(π

k
(yi − xi))

∣∣∣)
s.t.−K ≤ yi ≤ K, (i = 1, 2, · · · ,K); 1 ≤ x1 ≤ 4,−K ≤ xj ≤ K(j = 2, 3, · · · ,K)

α = 1, r = 0.1, τ = 0.1, γ = 1,K = 10

Figure 3: The obtained Pareto front of Example 4.3

This problem is more difficult than the previous problems (Example 4.1 and Example 4.2) because the
lower level problem of the example has multimodalities, thereby making the lower level problem difficult in
finding the upper level Pareto optimal front. Figure 3 shows the graphical results produced by the method in
[13], the method in [42] and the proposed algorithm (Algorithm 2). Table 3 and Table 4 show the comparison
of results among the three algorithms considering the metrics previously described. It can be seen that the
performance of the proposed algorithm is the best with respect to the generational distance. By looking
at the Pareto fronts of this test problem, some non-dominated vectors produced by the method in [13] are
not part of the true Pareto front and there are some areas of the Pareto optimal solution obtained by the
method in [42] that are sparse. However, the proposed algorithm is able to cover the full Pareto optimal
front. Although it places slightly below the method in [13] with respect to spacing, the fact that the spacing
metric provides a good value is irrelevant if the non-dominated vectors produced by the algorithm are not
part of the true Pareto front of the problem. Furthermore, two obtained lower level Pareto optimal fronts
are given when x1 = 2 and x1 = 2.5.
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Example 4.4 ([13]). Let x ∈ R10, y ∈ R10 and set the parameters: Nu = 400, Tu = 50, Nl = 40, Tl = 20,
Tmax = 1011, Tf = 10−5 and m = 3.

min
x,y

F (x, y) = v1(x1) +

K∑
j=2

y2j + 10(1− cos(π
k

)yi) + τ
K∑
i=2

(yi − xi)2 − rcos(γ
πx1
2y1

),

v2(x1) +
K∑
j=2

y2j + 10(1− cos(π
k

)yi) + τ
K∑
i=2

(yi − xi)2 − rsin(γ
πx1
2y1

)

min
y
f(x, y) = (y21 +

K∑
j=2

(yi − xi)2, i
K∑
i=2

(yi − xi)2)

s.t.−K ≤ yi ≤ K, (i = 1, 2, · · · ,K); 0.001 ≤ x1 ≤ 4,−K ≤ xj ≤ K(j = 2, 3, · · · ,K).

α = 1, r = 0.1, τ = 0.1, γ = 1,K = 10.

where

v1(x1) =

{
cos(0.2π)x1 + sin(0.2π)

√
|0.02sin(5πx1)| for 0 ≤ x1 ≤ 1

x1 − (1− sin(0.2π)) for x1 ≥ 1

v2(x1) =

{
−sin(0.2π)x1 + cos(0.2π)

√
|0.02sin(5πx1)| for 0 ≤ x1 ≤ 1

0.1(x1 − 1)− sin(0.2π)) for x1 ≥ 1

Figure 4: The obtained Pareto front of Example 4.4

For the Example 4.4, the upper level problem has multimodalities, thereby causing an algorithm difficulty
in finding the upper level Pareto optimal front. Figure 4 shows the obtained Pareto front of Example 4.4 by
the method in [13], the method in [42] and the proposed algorithm (Algorithm 2). Table 3 and Table 4 show
the comparison of results among the three algorithms considering the metrics previously described. It can
be seen that the performance of the proposed algorithm is better than the method in [13] with respect to
the generational distance though they almost have the same performance with respect to the spacing. On
the other hand, the method in [42] and the proposed algorithm almost have the same generational distance,
but the proposed algorithm is better with respect to spacing. It shows that the global search ability of
the proposed algorithm is better than the method in [42]. Moreover, all corresponding lower level Pareto
optimal fronts are given.
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Example 4.5 ([13]). Let x ∈ R10, y ∈ R10 and set the parameters: Nu = 400, Tu = 50, Nl = 40, Tl = 20,
Tmax = 1013, Tf = 10−5 and m = 3.

min
x,y

F (x, y) = (x1 +

K∑
j=3

(xj − j/2)2 + τ

K∑
i=3

(yi − xi)2 − cos(4tan−1(
x2 − y2
x1 − y1

)),

x2 +
K∑
j=3

(xj − j/2)2 + τ
K∑
i=3

(yi − xi)2 − cos(4tan−1(
x2 − y2
x1 − y1

)))

s.t. G(x) = x2 − (1− x21)2 ≥ 1

min
y
f(x, y) = (y1 +

K∑
i=3

(yi − xi)2, y2 +
K∑
i=3

(yi − xi)2)

s.t. g1(x, y) = (y1 − x1)2 + (y2 − x2)2 ≤ r2

−K ≤ yi ≤ K, (i = 1, 2, · · · ,K)

0 ≤ x1 ≤ K,−K ≤ xj ≤ K(j = 2, 3, · · · ,K).

τ = 1, r = 0.2,K = 10.

Figure 5: The obtained Pareto front of Example 4.5

Figure 5 shows the obtained Pareto front of Example 4.5 by the method in [13], the method in [42]
and the proposed algorithm (Algorithm 2). Table 3 and Table 4 show the comparison of results among the
three algorithms considering the metrics previously described. For this example, the graphical results again
indicate that the method in [13] does not cover the full Pareto front. Since the non-dominated vectors found
by the method in [13] are clustered together, the spacing metric provides very good results. The method in
[42], some non-dominated vectors produced are relatively sparse in some regions of the true Pareto optimal
front and some non-dominated vectors produced are slightly off the true Pareto front. Graphically, it can
be seen the proposed algorithm is able to cover the entire Pareto front. It is also interesting to note that
the Pareto optimal fronts for both the lower and upper level lie on constraint boundaries and every lower
level Pareto optimal front has an unequal contribution to the upper level Pareto optimal front.
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Example 4.6 ([13]). Let x ∈ R1, y ∈ R9 and set the parameters: Nu = 400, Tu = 50, Nl = 40, Tl = 20,
Tmax = 107, Tf = 10−3 and m = 3.

min
x,y

F (x, y) = ((1− y1)(1 +

K∑
j=2

x1), y1(1 +

K∑
j=2

y2j )x1)

s.t. G(x) = −(1− y1x1 −
1

2
x1y1) ≤ 1

min
y
f(x, y) = ((1− y1)(1 +

K+L∑
K+1

y2j )x1, y1(1 +
K+L∑
K+1

y2j )x1)

s.t. 1 ≤ x1 ≤ 2,−1 ≤ y1 ≤ 1

−(K + L) ≤ yj ≤ (K + L)(j = 2, 3, · · · ,K + L),K = 5, L = 4.

Figure 6: The obtained Pareto front of Example 4.6

Figure 6 shows the obtained Pareto front of Example 4.6 by the method in [13], the method in [42] and
the proposed algorithm (Algorithm 2). Table 3 and Table 4 show the comparison of results among the three
algorithms considering the metrics previously described. It can be seen that our algorithm and the method
in [13] almost have the same performance of the spacing, but some non-dominated vectors produced by the
method in [13] are slightly off the true Pareto front. On the other hand, the method in [42] and the proposed
algorithm almost have the same generational distance. However, some areas of the Pareto optimal solution
obtained by the method in [42] are sparse. Moreover, three obtained lower level Pareto optimal fronts are
given when y1 = 1, y1 = 1.5 and y1 = 2. It can be seen that only one Pareto optimal point from each
participating lower level problem qualifies to be on the upper level Pareto optimal front.

Table 3: Results of the Generation Distance (GD) metrics for the above four examples

Test examples The proposed algorithm The method in [42] The method in [13]
Example 4.3 0.00021 0.00127 0.00832
Example 4.4 0.00029 0.00089 0.06391
Example 4.5 0.00053 0.00375 0.02574
Example 4.6 0.00019 0.00098 0.00769
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5. Application of the Proposed Algorithm for a Watershed Water Trading Decision-Making
Problem

Taking into account water rights and emission rights to establish a water market system based on
watershed management is the most effective economic method to solve water shortage and pollution of
watershed In this water market system, the watershed management agency usually to maximize his profits,
whereas each user goal is to maximize its own profit. The problem involves uncertainty and is bilevel in
nature, thus, a watershed water trading decision-making model based on bilevel programming is constructed,
in which the upper decision-maker is the watershed management agency as the planning, controlling and
coordinating center of watershed and each user is the lower decision-maker. In the model, the index of
water pollution is added to the target function of watershed management agency based on the [38], setting
maximum benefit and minimum water pollution as the upper objective; while the maximum benefit of
different water users as the lower objective. The bilevel multiobjective programming model is built as
following:

max
w,t,r1,g1,r2,g2

VT = 0.4w + t(q1 + q2) + f1 + f2

max
q1,q2

− S = −100q1 − 300q2

s.t. r1 + r2 + w = 90,

q1 + q2 + w ≤ 90,

g1 + g2 = 20

r1 ≥ 38, r2 ≥ 42, g1 ≥ 7, g2 ≥ 8, w ≥ 6, 0.3 ≤ t ≤ 2

max
q1,l1

V1 = 0.7q1 − q1t− 0.3(45− q1)2 + (r1 − q1)[0.9− 0.01(r1 + r2 − q1 − q2)]

−0.2(0.2q1 − l1)2 + (g1 − l1)[0.8− 0.01(g1 + g2 − l1 − l2)]

max
q2,l2

V2 = 0.8q2 − q2t− 0.2(47− q2)2 + (r2 − q2)[0.9− 0.01(r1 + r2 − q1 − q2)]

−0.1(0.3q2 − l2)2 + (g2 − l2)[0.8− 0.01(g1 + g2 − l1 − l2)]

s.t. l1 + l2 ≤ 20,

q1 ≥ 0, l1 ≥ 0

q2 ≥ 0, l2 ≥ 0.

Where q1 and q2 are actual water intake volume of water consumer A and water consumer B, respectively.
l1 and l2 are waste water discharge volume of two users respectively. r1 and r2 are water rights of two users
respectively. g1 and g2 are emission rights of two users respectively. w is ecological water requirement of
watershed. t is water resource fees. Here f1 = (q1) = 0.7q1, f2 = (q2) = 0.8q2. The BOD of water consumer
A is 1.0× 105kg/billion(m3) and the BOD of water consumer B is 1.5× 105kg/billion(m3).

The optimal solution of the problem is obtained by the Algorithm 2 (The parameter is set as: Tu = 10,
Nl = 10, Ti = 20, T = 40). We execute the algorithm in 20 independent runs and the Pareto optimal
solution is obtained. The solution is as following: q1 = q2 = 4.2 × 109(m3), l1 = 7.0216 × 108(m3),

Table 4: Results of the Spacing (SP) metrics for the above four examples

Test examples The proposed algorithm The method in [42] The method in [13]
Example 4.3 0.00125 0.01921 0.00097
Example 4.4 0.00235 0.00986 0.00241
Example 4.5 0.00371 0.00793 0.02082
Example 4.6 0.00150 0.00205 0.00149
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l2 = 9.0013 × 108(m3), r1 = 4 × 109(m3), r2 = 4.2 × 109(m3), g1 = 9 × 108(m3), g2 = 1.1 × 109(m3),
w = 6× 109(m3), t = 0.3yuan/m3, VT = 5.90613× 109yuan, −S = −1.68× 103kg, V1 = 1.34240× 109yuan,
V2 = 1.80244× 109yuan.

6. Conclusion

In this paper, an improved SA algorithm is presented, in which a heuristic criterion for determining
the temperature updating function of SA algorithm is applied, enabling the particle to escape the local
optima. The improved SA algorithm is employed for solving BLMPP for the first time. In this study,
some numerical examples are used to explore the feasibility and efficiency of the proposed algorithm. The
experimental results indicate that the obtained Pareto front by the proposed algorithm is very close to the
theoretical Pareto optimal front, and the solutions are also distributed uniformly on entire range of the
theoretical Pareto optimal front. The proposed algorithm is simple and easy to implement, which provides
another appealing method for further study on BLMPP.
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