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1. Introduction and Preliminaries

Let H be a real Hilbert space with inner product 〈x, y〉 and induced norm ‖x‖ =
√
〈x, x〉 for x, y ∈ H.

Let C be a nonempty convex and closed subset of H.
Let T : C → C be a mapping. In this paper, we use Fix(T ) to stand for the set of fixed points of T .

Recall that T is said to be an α-contractive mapping iff there exists a constant α with 0 < α < 1 such that

‖Tx− Ty‖ ≤ α‖x− y‖, ∀x, y ∈ C.

T is said to be nonexpansive iff
‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.
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If C is also bounded, then the set of fixed points of S is not empty; see [5] and the references therein. In the
real world, many important problems have reformulations which require finding fixed points of nonexpansive
mapping. Mann iteration is powerful to study fixed points of nonexpansive mappings. However it is only
weakly convergent. Recently, many authors studied the problem of modifying Mann iteration so that strong
convergence is guaranteed without any compactness assumption; see [7, 8, 12, 13, 14, 16, 24, 25, 26, 27] and
the references therein.

T is said to be a λ-strict pseudocontraction iff there exists a constant λ with 0 ≤ λ < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖+ λ‖x− Tx− y + Ty‖2, ∀x, y ∈ C.

The class of λ-strict pseudocontractions was introduced by Browder and Petryshyn [6] in 1967. It is clear
that the class of λ-strict pseudocontractions strictly include the class of nonexpansive mappings as a special
cases. It is also known that every λ-strict pseudocontraction is Lipschitz continuous; see [6] and the references
therein.

Let A : C → H be a mapping. Recall that A is said to be monotone iff

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

A is said to be λ-strongly monotone iff there exists a positive constant λ > 0 such that

〈Ax−Ay, x− y〉 ≥ λ‖x− y‖2, ∀x, y ∈ C.

A is said to be inverse λ-strongly monotone iff there exists a positive constant λ > 0 such that

〈Ax−Ay, x− y〉 ≥ λ‖Ax−Ay‖2, ∀x, y ∈ C.

From the above, we see that A is inverse λ-strongly monotone iff A−1 is strongly monotone. A is said to be
L-Lipschitz continuous iff there exists a positive constant L > 0 such that

‖Ax−Ay‖ ≤ L‖x− y‖, ∀x, y ∈ C.

It is obvious that A is inverse λ-strongly monotone, then A is also monotone and 1
λ -Lipschitz continuous.

Recall that the classical variational inequality is to find an x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1.1)

The solution set of variational inequality (1.1) is denoted by V I(C,A). Projection methods have been
recently investigated for solving variational inequality (1.1). Let ProjC be the metric projection from
H onto C and I the identity on H. It is known that x is a solution to (1.1) iff x is a fixed point of
mapping ProjC(I − rA). If A is inverse λ-strongly monotone, then ProjC(I − rA) is nonexpansive. If C is
bounded, closed and convex, then the existence of solutions of variational inequality (1.1) is guaranteed by
the nonexpansivity of mapping ProjC(I − rA).

Recall that an operator B : H ⇒ H is said to be monotone iff, for all x, y ∈ H, f ∈ Bx and g ∈ By
imply 〈x − y, f − g〉 ≥ 0. In this paper, we use B−1(0) to stand for the zero point of B. A monotone
mapping B : H ⇒ H is maximal iff the graph G(B) of B is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping B is maximal if and only if, for any
(x, f) ∈ H ×H, 〈x− y, f − g〉 ≥ 0, for all (y, g) ∈ G(B) implies f ∈ Bx. For a maximal monotone operator
B on H, and r > 0, we may define the single-valued resolvent JBr = (I + rB)−1, where D(B) denote
the domain of B. It is known that JBr : H → D(B) is firmly nonexpansive, and B−1(0) = Fix(JBr ). The
property of the resolvent ensures that the Picard iterative algorithm xn+1 = JBr xn converge weakly to a
fixed point of JBr , which is necessarily a zero point of B. Rockafellar introduced this iteration method and
call it the proximal point algorithm (PPA); for more detail, see [20, 23] and the references therein. The
PPA and its dual version in the context of convex programming, the method of multipliers of Hesteness and
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Powell, have been extensively studied and are known to yield as special cases decomposition methods such
as the method of partial inverses [22], the Douglas-Rachford splitting method, and the alternating direction
method of multipliers [10]. In the case of B = B1 + B2, where B1 and B2 are maximal monotone on H,
the forward-backward splitting method xn+1 = (I + rnB1)

−1(I − rnB2)xn, n = 0, 1, · · · , where rn > 0,
was proposed by Lions and Mercier [15], and in a dual form for convex programming, by Han and Lou
[11]. In the case where B1 = NC , this method reduces to a projection method proposed by Sibony [21] for
monotone variational inequalities (1.1). Recently, many authors have studied the splitting algorithm; see
[2, 3, 4, 9, 17, 18, 19] and the references therein.

In this paper, a viscosity splitting method is investigated for treating a inclusion problem with two
monotone operators and a fixed point problem of λ-strict pseudocontractions. Strong convergence theorems
of common solutions are established in the framework of Hilbert spaces. Applications are also provided to
support the main results.

The following lemmas are essential to prove our main results.

Lemma 1.1 ([3]). Let C be a nonempty convex and closed subset of a real Hilbert space H. Let A : C → H
be a mapping, and B : H ⇒ H a maximal monotone operator. Then F (Jr(I − rA)) = (A+B)−1(0).

Lemma 1.2 ([25]). Let {an} be a sequence of nonnegative numbers satisfying the condition an+1 ≤ (1 −
tn)an+ tnbn+cn, ∀n ≥ 0, where {tn} is a number sequence in (0, 1) such that limn→∞ tn = 0 and

∑∞
n=0 tn =

∞, {bn} is a number sequence such that lim supn→∞ bn ≤ 0, and {cn} is a positive number sequence such
that

∑∞
n=0 cn <∞. Then limn→∞ an = 0.

Lemma 1.3 ([1]). Let H be a Hilbert space, and A an maximal monotone operator. For λ > 0, µ > 0, and

x ∈ E, we have Jλx = Jµ

(
µ
λx+

(
1− µ

λ

)
Jλx

)
, where Jλ = (I + λA)−1 and Jµ = (I + µA)−1.

Lemma 1.4 ([6]). Let C be a nonempty convex and closed subset of a real Hilbert space H. Let T : C → C
be a λ-strict pseudocontraction. Define a mapping S by S = βI + (1 − β)T . If beta ∈ [λ, 1), then S is
nonexpansive and Fix(T ) = Fix(S).

Lemma 1.5 ([6]). Let C be a nonempty convex and closed subset of a real Hilbert space H. Let T : C → C
be a λ-strict pseudocontraction. Then T is Lipschitz continuous and I − T is demiclosed at zero.

2. Main results

Theorem 2.1. Let C be a nonempty convex closed subset of a real Hilbert space H. Let A : C → H be an
inverse κ-strongly monotone mapping and let B be a maximal monotone operator on H. Let f : C → C be a
fixed α-contraction and let T : C → C be a λ-strict pseudocontraction. Assume that (A+B)−1(0)∩Fix(T )
is not empty. Let {αn}, {βn} be real number sequences in (0, 1) and let {rn} be a real number sequence in
(0, 2κ). Let {xn} be a sequence in C generated in the following process: x0 ∈ C, xn+1 = βnyn+(1−βn)Tyn,
∀n ≥ 0, where {yn} is a sequence in C such that ‖yn− (I + rnB)−1

(
αnf(xn) + (1−αn)xn− rnA

(
αnf(xn) +

(1 − αn)xn
))
‖ ≤ en. Assume that the control sequences satisfy the following restrictions: limn→∞ αn = 0,∑∞

n=0 αn = ∞,
∑∞

n=1 |αn − αn−1| < ∞, 0 < a ≤ rn ≤ a′ < 2κ,
∑∞

n=1 |rn − rn−1| < ∞,
∑∞

n=0 ‖en‖ < ∞,∑∞
n=1 |βn − βn−1| < ∞, and λ ≤ βn ≤ a′′ < 1, where a, a′ and a′′ are three real numbers. Then {xn}

converges strongly to a point x̄ ∈ Fix(T ) ∩ (A + B)−1(0), where x̄ = ProjFix(T )∩(A+B)−1(0)f(x̄), that is, x̄
solves the following variational inequality 〈f(x̄)− x̄, x̄− x〉 ≥ 0, ∀x ∈ Fix(T ) ∩ (A+B)−1(0).

Proof. Since A is inverse κ-strongly monotone, one has

‖(I − rnA)x− (I − rnA)y‖2 = ‖x− y‖2 − 2rn〈x− y,Ax−Ay〉+ rn
2‖Ax−Ay‖2

≤ ‖x− y‖2 − rn(2κ− rn)‖Ax−Ay‖2.

From the restriction imposed on {rn}, one has I − rnA is nonexpansive. Setting Tn = βnI + (1 − βn)T,



X. Qin, B. A. Bin Dehaish, S. Y. Cho, J. Nonlinear Sci. Appl. 9 (2016), 2789–2797 2792

where I is the identity, one sees from Lemma 1.4 that Tn is nonexpansive with Fix(Tn) = Fix(T ). Fixing
p ∈ Fix(T ) ∩ (A + B)−1(0), one has from Lemma 1.1 that p = Tnp = (I + rnB)−1(p − rnAp). Setting
zn = αnf(xn) + (1− αn)xn, one has

‖zn − p‖ ≤ αn‖f(xn)− p‖+ (1− αn)‖xn − p‖
≤
(
1− αn(1− α)

)
‖xn − p‖+ αn‖f(p)− p‖.

Hence, one has

‖xn+1 − p‖ ≤ ‖yn − p‖
≤ ‖yn − (I + rnB)−1

(
zn − rnAzn

)
‖+ ‖

(
zn − rnAzn

)
−
(
p− rnAp

)
‖

≤ ‖zn − p‖+ en

≤
(
1− αn(1− α)

)
‖xn − p‖+ αn‖f(p)− p‖+ en

≤ max{‖xn − p‖,
‖f(p)− p‖

1− α
}+ en.

By mathematical induction, one finds that sequence {xn} is bounded, so are {yn} and {zn}. Notice that

‖zn − zn−1‖ ≤ |αn − αn−1|‖xn−1 − f(xn−1)‖+
(
1− αn(1− α)

)
‖xn−1 − xn‖. (2.1)

Putting wn = zn − rnAzn, we find from (2.1) that

‖wn − wn−1‖ ≤ ‖zn − zn−1‖+ ‖rn − rn−1‖‖Azn−1‖
≤ |αn − αn−1|‖xn−1 − f(xn−1)‖+

(
1− αn(1− α)

)
‖xn−1 − xn‖

+ |rn − rn−1|‖Azn−1‖.
(2.2)

Set JBrn = (I + rnB)−1. Using Lemma 1.3, one has

‖xn − xn+1‖ = ‖Tn−1yn−1 − Tnyn‖
≤ ‖yn−1 − yn‖+ |βn − βn−1|‖yn − Tyn‖
≤ ‖JBrnwn − J

B
rn−1

wn−1‖+ |βn − βn−1|‖yn − Tyn‖+ en−1 + en

≤ ‖(1− rn−1
rn

)(JBrnwn − wn−1) +
rn−1
rn

(wn − wn−1)‖

+ |βn − βn−1|‖yn − Tyn‖+ en−1 + en

≤ ‖(1− rn−1
rn

)(JBrnwn − wn) + (wn − wn−1)‖

+ |βn − βn−1|‖yn − Tyn‖+ en−1 + en

≤ |rn − rn−1|
rn

‖wn − JBrnwn‖+ ‖wn−1 − wn‖

+ |βn − βn−1|‖yn − Tyn‖+ en−1 + en.

(2.3)

Combining (2.2) with (2.3), one has

‖xn − xn+1‖ ≤
|rn − rn−1|

rn
‖wn − JBrnwn‖+ |αn − αn−1|‖xn−1 − f(xn−1)‖

+
(
1− αn(1− α)

)
‖xn−1 − xn‖+ |rn − rn−1|‖Azn−1‖

+ |βn − βn−1|‖yn − Tyn‖+ en−1 + en.

Using the restrictions imposed on {rn}, {en}, {αn} and {βn} and Lemma 1.1, we find limn→∞ ‖xn−xn+1‖ =
0. Since αn → 0 as n→∞, we find

lim
n→∞

‖xn − zn‖ = 0. (2.4)
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Since ‖ · ‖2 is convex, we have

‖zn − p‖2 ≤ αn‖f(xn)− p‖2 + (1− αn)‖xn − p‖2

≤ ‖xn − p‖2 + αn‖f(xn)− p‖2.

This in turn implies

‖xn+1 − p‖2 ≤ ‖yn − JBrn(zn − rnAzn)‖2 + ‖JBrn(zn − rnAzn)− p‖2

+ 2‖JBrn(zn − rnAzn)− p‖‖yn − JBrn(zn − rnAzn)‖
≤ ‖(zn − rnAzn)− (p− rnAp)‖2 + 2en‖JBrn(zn − rnAzn)− p‖+ e2n

≤ ‖zn − p‖2 − rn(2κ− rn)‖Azn −Ap‖2 + 2en‖zn − p‖+ e2n

≤ ‖xn − p‖2 + αn‖f(xn)− p‖2 − rn(2κ− rn)‖Azn −Ap‖2 + 2en‖zn − p‖+ e2n.

It follows that

rn(2κ− rn)‖Azn −Ap‖2 ≤ ‖xn − p‖2 + αn‖f(xn)− p‖2 − ‖xn+1 − p‖2 + (2‖zn − p‖+ en)en.

Therefore, one finds
lim
n→∞

‖Ap−Azn‖ = 0. (2.5)

Since JBrn is firmly nonexpansive, one has

‖JBrn(zn − rnAzn)− p‖2 ≤ 〈(zn − rnAzn)− (p− rnAp), JBrn(zn − rnAzn)− p〉

≤ 1

2

(
‖(zn − rnAzn)− (p− rnAp)‖2 + ‖JBrn(zn − rnAzn)− p‖2

− ‖zn − JBrn(zn − rnAzn)− rn(Azn −Ap)‖2
)
.

It follows that

‖JBrn(zn − rnAzn)− p‖2 ≤ ‖zn − p‖2 − ‖zn − JBrn(zn − rnAzn)‖2

− rn‖Azn −Ap‖2 + 2rn‖zn − JBrn(zn − rnAzn)‖‖Azn −Ap‖.

Hence, one has

‖xn+1 − p‖2 ≤ ‖yn − JBrn(zn − rnAzn)‖2 + ‖JBrn(zn − rnAzn)− p‖2

+ 2‖JBrn(zn − rnAzn)− p‖‖yn − JBrn(zn − rnAzn)‖
≤ ‖JBrn(zn − rnAzn)− p‖2 + en(2‖JBrn(zn − rnAzn)− p‖+ en)

≤ ‖zn − p‖2 − ‖zn − JBrn(zn − rnAzn)‖2

+ 2rn‖zn − JBrn(zn − rnAzn)‖‖Azn −Ap‖
+ en(2‖JBrn(zn − rnAzn)− p‖+ en)

≤ ‖xn − p‖2 + αn‖f(xn)− p‖2 − ‖zn − JBrn(zn − rnAzn)‖2

+ 2rn‖zn − JBrn(zn − rnAzn)‖‖Azn −Ap‖
+ en(2‖JBrn(zn − rnAzn)− p‖+ en),

which further implies from (2.5)

lim
n→∞

‖zn − JBrn(zn − rnAzn)‖ = 0. (2.6)
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Since Tn is nonexpansive, one has

‖βnxn + (1− βn)Txn − xn‖ ≤ ‖βnxn + (1− βn)Txn − βnyn − (1− βn)Tyn‖
+ ‖xn − βnyn − (1− βn)Tyn‖
≤ ‖xn − yn‖+ ‖xn − xn+1‖
≤ ‖xn − zn‖+ ‖zn − JBrn(zn − rnAzn)‖+ ‖xn − xn+1‖+ en.

In view of (2.4) and (2.6), one has limn→∞ ‖βnxn + (1− βn)Txn − xn‖ = 0. Note that

‖Txn − xn‖ ≤ ‖Txn − βnxn − (1− βn)Txn‖+ ‖βnxn + (1− βn)Txn − xn‖
≤ βn‖xn − Txn‖+ ‖βnxn + (1− βn)Txn − xn‖.

From the restriction imposed on sequence {βn}, one finds that limn→∞ ‖Txn − xn‖ = 0.
Next, we show that

lim sup
n→∞

〈f(x̄)− x̄, zn − x̄〉 ≤ 0, (2.7)

where x̄ is the unique fixed point of the mapping Proj(A+B)−1(0)∩Fix(T )f. To show this inequality, we choose
a subsequence {zni} of {zn} such that

lim sup
n→∞

〈f(x̄)− x̄, zn − x̄〉 = lim
i→∞
〈f(x̄)− x̄, zni − x̄〉 ≤ 0.

Since {zni} is bounded, we find that there exists a subsequence {znij
} of {zni} which converges weakly to x̂.

Without loss of generality, we assume that zni ⇀ x̂. Putting µn = JBrn(zn − rnAzn), we find that µni ⇀ x̂.
Next, we show x̂ ∈ (A+B)−1(0). Notice that zn − rnAzn ∈ µn + rnBµn; that is,

zn − rnAzn − µn
rn

∈ Bµn.

Let µ ∈ Bν. Since B is maximal monotone, we find〈
zn − µn
rn

−Azn − µ, µn − ν
〉
≥ 0.

It follows that 〈−Ax̂− µ, x̂− ν〉 ≥ 0. This in turn implies that −Ax̂ ∈ Bx̂, that is, x̂ ∈ (A+B)−1(0).
Now, we are in a position to show that x̂ is also in Fix(T ). Since xni ⇀ x̂, we find from Lemma 1.5 that

x̂ ∈ Fix(T ) immediately. This proves that (2.7) holds.
Finally, we show that {xn} converges strongly to x̄, where x̄ is the unique fixed point of mapping

Proj(A+B)−1(0)∩Fix(T )f.
Note that

‖zn − x̄‖2 ≤ αn〈f(x̄)− x̄, zn − x̄〉+
(
1− αn(1− α)

)
‖zn − x̄‖‖xn − x̄‖.

It follows that ‖zn − x̄‖2 ≤ 2αn〈f(x̄)− x̄, zn − x̄〉+
(
1− αn(1− α)

)
‖xn − x̄‖2. Hence, one has

‖xn+1 − x̄‖2 ≤ ‖yn − x̄‖2

≤ ‖JBrn(zn − rnAzn)− x̄‖2 + en(2‖JBrn(zn − rnAzn)− x̄‖+ en)

≤ ‖zn − x̄‖2 + en(2‖JBrn(zn − rnAzn)− x̄‖+ en)

≤ 2αn〈f(x̄)− x̄, zn − x̄〉+
(
1− αn(1− α)

)
‖xn − x̄‖2

+ en(2‖JBrn(zn − rnAzn)− x̄‖+ en).

An application of Lemma 1.2 to the above inequality yields that limn→∞ ‖xn − x̄‖ = 0. This completes the
proof.
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From Theorem 2.1, the following results are not hard to derive.

Corollary 2.2. Let C be a nonempty convex closed subset of a real Hilbert space H. Let A : C → H be an
inverse κ-strongly monotone mapping and let B be a maximal monotone operator on H. Let f : C → C be
a fixed α-contraction and let T : C → C be a nonexpansive mapping. Assume that (A + B)−1(0) ∩ Fix(T )
is not empty. Let {αn}, {βn} be real number sequences in (0, 1) and let {rn} be a real number sequence in
(0, 2κ). Let {xn} be a sequence in C generated in the following process: x0 ∈ C, xn+1 = βnyn+(1−βn)Tyn,
∀n ≥ 0, where {yn} is a sequence in C such that ‖yn− (I + rnB)−1

(
αnf(xn) + (1−αn)xn− rnA

(
αnf(xn) +

(1 − αn)xn
))
‖ ≤ en. Assume that the control sequences satisfy the following restrictions: limn→∞ αn = 0,∑∞

n=0 αn = ∞,
∑∞

n=1 |αn − αn−1| < ∞, 0 < a ≤ rn ≤ a′ < 2κ,
∑∞

n=1 |rn − rn−1| < ∞,
∑∞

n=0 ‖en‖ < ∞,∑∞
n=1 |βn − βn−1| < ∞, and 0 ≤ βn ≤ a′′ < 1, where a, a′ and a′′ are three real numbers. Then {xn}

converges strongly to a point x̄ ∈ Fix(T ) ∩ (A + B)−1(0), where x̄ = ProjFix(T )∩(A+B)−1(0)f(x̄), that is, x̄
solves the following variational inequality 〈f(x̄)− x̄, x̄− x〉 ≥ 0, ∀x ∈ Fix(T ) ∩ (A+B)−1(0).

Corollary 2.3. Let C be a nonempty convex closed subset of a real Hilbert space H. Let A : C → H be an
inverse κ-strongly monotone mapping and let B be a maximal monotone operator on H. Let f : C → C be
a fixed α-contraction. Assume that (A + B)−1(0) is not empty. Let {αn}, {βn} be real number sequences
in (0, 1) and let {rn} be a real number sequence in (0, 2κ). Let x0 ∈ C and {xn} be a sequence in C such
that ‖xn+1 − (I + rnB)−1

(
αnf(xn) + (1 − αn)xn − rnA

(
αnf(xn) + (1 − αn)xn

))
‖ ≤ en. Assume that the

control sequences satisfy the following restrictions: limn→∞ αn = 0,
∑∞

n=0 αn =∞,
∑∞

n=1 |αn−αn−1| <∞,
0 < a ≤ rn ≤ a′ < 2κ,

∑∞
n=1 |rn − rn−1| < ∞,

∑∞
n=0 ‖en‖ < ∞, where a and a′ are three real numbers.

Then {xn} converges strongly to a point x̄ ∈ (A+B)−1(0), where x̄ = Proj(A+B)−1(0)f(x̄), that is, x̄ solves
the following variational inequality 〈f(x̄)− x̄, x̄− x〉 ≥ 0, ∀x ∈ (A+B)−1(0).

Let C be a nonempty closed and convex subset of a Hilbert space H. Let iC be the indicator function
of C, that is,

iC(x) =

{
0, x ∈ C,
∞, x /∈ C.

Since iC is a proper lower and semicontinuous convex function on H, the subdifferential ∂iC of iC is maximal
monotone. So, we can define the resolvent J∂iCr of ∂iC for r > 0, i.e., J∂iCr := (I+r∂iC)−1. Letting x = J∂iCr y,
we find that

y ∈ x+ r∂iCx⇐⇒ y ∈ x+ rNCx

⇐⇒ 〈y − x, v − x〉 ≤ 0,∀v ∈ C
⇐⇒ x = ProjCy,

where ProjC is the metric projection from H onto C and NCx := {e ∈ H : 〈e, v − x〉, ∀v ∈ C}.

From Theorem 2.1, we have the following results on variational inequality (1.1).

Corollary 2.4. Let C be a nonempty convex closed subset of a real Hilbert space H. Let A : C → H be
an inverse κ-strongly monotone mapping. Let f : C → C be a fixed α-contraction and let T : C → C
be a λ-strict pseudocontraction. Assume that V I(C,A) ∩ Fix(T ) is not empty. Let {αn}, {βn} be real
number sequences in (0, 1) and let {rn} be a real number sequence in (0, 2κ). Let {xn} be a sequence in C
generated in the following process: x0 ∈ C, xn+1 = βnyn + (1 − βn)Tyn, ∀n ≥ 0, where {yn} is a sequence
in C such that ‖yn − ProjC

(
αnf(xn) + (1− αn)xn − rnA

(
αnf(xn) + (1− αn)xn

))
‖ ≤ en. Assume that the

control sequences satisfy the following restrictions: limn→∞ αn = 0,
∑∞

n=0 αn =∞,
∑∞

n=1 |αn−αn−1| <∞,
0 < a ≤ rn ≤ a′ < 2κ,

∑∞
n=1 |rn−rn−1| <∞,

∑∞
n=0 ‖en‖ <∞,

∑∞
n=1 |βn−βn−1| <∞, and λ ≤ βn ≤ a′′ < 1,

where a, a′ and a′′ are three real numbers. Then {xn} converges strongly to a point x̄ ∈ Fix(T ) ∩ V I(C,A),
where x̄ = ProjFix(T )∩V I(C,A)f(x̄), that is, x̄ solves the following variational inequality 〈f(x̄)− x̄, x̄−x〉 ≥ 0,
∀x ∈ Fix(T ) ∩ V I(C,A).
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