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Abstract

Legendrian dualities between spherical indicatrixes of curves in Euclidean 3-space are investigated by
using the theory of Legendrian duality. Moreover, the singularities of the ruled surfaces according to Bishop
frame which are deeply related to space curves are classified from the viewpoints of wave fronts. We also
give some more detail descriptions on the conditions of those singularities. c©2016 All rights reserved.
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1. Introduction

Bishop [1] introduced that there exists an orthonormal relatively parallel adapted frame, which we call
Bishop frame, other than the Frenet frame and compared features of them with the Frenet frame. The Bishop
frame has many properties that make it ideal for mathematical research and Computer Graphics[5, 6, 7, 16].
Inspired by the work of Bishop, in [19], the authors introduced a new version of Bishop frame using a common
vector field as binormal vector field of a regular curve and called this frame as “Type-2 Bishop frame”. There
are many applications of Bishop frames in differential geometry such as [1, 3, 8, 9, 10, 11, 12, 17, 19, 20].
Up to now, different types of surfaces and curves such as ruled surfaces [9, 20], tubular surfaces [8], special
Bishop motion and Bishop Darboux rotation axis of the space curve [3] and B-canal surfaces in terms of
biharmonic B-slant helices in Heisenberg group Heis3 [10] have been studied according to Bishop frames.
Inspired by the work of Bishop, in [9], the authors introduced the ruled surface with Bishop frame N2(s) as
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its directrix, i.e., ϕ(s, t) = γ(s)+uN2(s), which they also called N2(s)-ruled surface with the Bishop frame.
They studied the shape operator and the fundamental forms of the N2(s)-ruled surface. In [20], N. Yüksel
studied the ruled surfaces generated by a straight line in Bishop frame moving along a spacelike curve in
Minkowski 3-space. He obtained the distribution parameters, mean curvatures and gave some results and
theorems related to the developable and minimal of them. He pointed out that, if the base curve of the
ruled surface is also an asymptotic curve and striction line, then the ruled surface is developable. Because
of their work, we will use Bishop frame and the technique of singularity theory as basic tools to study the
ruled surfaces whose ruling are Bishop frames and Legendrian dualities between spherical indicatrixes of
curves in Euclidean 3-space.

For a regular unit speed curve γ : I → E3, we define the ruled surface with Bishop frame Ni(s)
as its directrix (i.e. Ni(s)-ruled surface), BSi : I × R → R3 by BSi(s, µi) = γ(s) + µiNi(s), where
i = 1, 2. Although the ruled surfaces with Bishop frame N2(s) as their directrix have been well studied
from the standpoint of differential geometry when they are regular surfaces, there are little papers on their
singularity. Actually, sometimes they are singular. Two questions are: what about their singularities and
how to recognize the types of their singularities? Thus the current study hopes to answer these questions and
it is inspired by the works of Bishop [1], Kiliçouǧlu and Hacisalihoǧlu [9], N. Yüksel [20], Pei and Sano [15].
On the other hand, for the reason that the vector parameterized equations of the ruled surfaces with Bishop
frame Ni(s) as their directrix are very complicated (see Ex. 6.1), it is very hard to recognize their singular
points by normal way. In this paper, we will give a simple sufficient condition to describe their singular
points by using the technique of singularity theory. To do this, we hope that the BSi(s, µi) can be seen as
the wave front of unfoldings of some functions. Adopting Bishop frame as the basic tool, we construct Bishop
rectifying height functions (denoted byHi : I×R3 → R, Hi(s,v) = 〈v−γ(s),Ni(s)〉, where i = 1, 2 and Ni(s)
is the first Bishop spherical indicatrix or the second Bishop spherical indicatrix) locally around the point
(s0,v0). These functions are the unfoldings of these singularities in the local neighborhood of (s0,v0) and
depend only on the germ that they are unfolding. Applying the theory of singularity [2, 4, 15], we find that
Ni(s)-ruled surfaces can be seen as two dimensional wave front which are locally diffeomorphic to a plane,
cuspidal edge or swallowtail. Moreover, we see the Ak-singularity (k = 1, 2, 3) of hiv are closely related to the
derivative of Bishop curvatures. We find that the degenerate singular points of the BSi(s, µi) correspond
to the points where the first derivatives of Bishop curvatures vanished and the second derivatives are not
equal to zero and it also corresponds to the point of the curve which has degenerated contact with its Bishop
rectifying bundle. As a consequence, the function k

′
i(s) describes the contact between the Bishop rectifying

bundle and the curve γ(s). Thus, we get the main results in this paper which are stated in Theorems 3.1
and 3.2. On the other hand, we investigate Legendrian dualities between spherical indicatrixes of curves in
Euclidean 3-space by using the theory of Legendrian duality [14]. These results are stated in Proposition
2.1. As applications of our main results, we give an example.

The rest of this paper is organized as follows. Firstly, we introduce some basic concepts and the main
results in the next two sections. Then, we introduce two different families of functions on γ that will be
useful to the study of the Bishop ruled surfaces. Afterwards, some general results on the singularity theory
are used for families of function germs, and the main results are proved. Finally, we give one example to
illustrate the main results.

2. Legendrian dualities between spherical indicatrixes of curves

In this section, we investigate Legendrian dualities between spherical indicatrixes of curves in Euclidean
3-space by using the theory of Legendrian duality.

Let γ = γ(s) be a regular unit speed Frenet curve in E3. We know that there exists an accompanying
three-frames called Frenet frame for Frenet curve. Denote by (T(s),N(s),B(s)) the moving Frenet frame
along the unit speed Frenet curve γ(s). Then, the Frenet formulas are given by T′(s)

N′(s)
B′(s)

 =

 0 k(s) 0
−k(s) 0 τ(s)

0 −τ(s) 0

 T(s)
N(s)
B(s)

 .
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Here, k(s) and τ(s) are called curvature and torsion respectively, see [2]. The Bishop frame of the γ(s) is
expressed by the alternative frame equations T′(s)

N′1(s)
N′2(s)

 =

 0 k1(s) k2(s)
−k1(s) 0 0
−k2(s) 0 0

 T(s)
N1(s)
N2(s)

 .

Here, we will call the set (T(s),N1(s),N2(s)) as Bishop frame and k1(s) = 〈T′(s),N1(s)〉 and k2(s) =
〈T′(s),N2(s)〉 as Bishop curvatures. The relation matrix can be expressed as T(s)

N(s)
B(s)

 =

 1 0 0
0 cos θ(s) sin θ(s)
0 − sin θ(s) cos θ(s)

 T(s)
N1(s)
N2(s)

 .

One can show that

k(s) =
√
k2

1(s) + k2
2(s), θ(s) = arctan(

k2(s)

k1(s)
), where k1(s) 6= 0, τ(s) =

dθ(s)

ds
,

so that k1(s) and k2(s) effectively correspond to a Cartesian coordinate system for the polar coordinates
k(s) and θ(s) with θ =

∫
τ(s)ds. Here, Bishop curvatures are also defined by{

k1(s) = k(s) cos θ(s)

k2(s) = k(s) sin θ(s).

The orientation of the parallel transport frame includes the arbitrary choice of integration constant θ0, which
disappears from τ (and hence from the Frenet frame) due to the differentiation [1].

The “Type-2 Bishop Frame” of the γ(s) is defined by the alternative frame equations, see [19], ζ′1(s)
ζ′2(s)
B′(s)

 =

 0 0 −ε1(s)
0 0 −ε2(s)

ε1(s) ε2(s) 0

 ζ1(s)
ζ2(s)
B(s)

 .

The relation matrix between Frenet-Serret and “Type-2 Bishop Frame” can be expressed T(s)
N(s)
B(s)

 =

 sin θ(s) − cos θ(s) 0
cos θ(s) sin θ(s) 0

0 0 1

 ζ1(s)
ζ2(s)
B(s)

 .

Here, the type-2 Bishop curvatures are defined by{
ε1(s) = −τ(s) cos θ(s),

ε2(s) = −τ(s) sin θ(s).

We shall call the set (ζ1(s), ζ2(s),B(s)) as “Type-2 Bishop Frame” which is properly oriented and ε1(s) =

〈B′(s), ζ1(s)〉 and ε2(s) = 〈B′(s), ζ2(s)〉 as type-2 Bishop curvatures. One also can show that κ(s) = dθ(s)
ds ,

so that ε1(s) and ε2(s) also effectively correspond to a Cartesian coordinate system for the polar coordinates
τ(s), θ(s) with θ =

∫
κ(s)ds.

The following notions are the main objects in this paper. The unit sphere with center in the origin in
the space E3 is defined by

S2 = {x ∈ E3 | 〈x,x〉 = 1}.

Translating frame’s vector fields to the center of unit sphere, we obtain Bishop spherical images or Bishop
spherical indicatrixes. The first Bishop spherical indicatrix and the second Bishop spherical indicatrix is
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denoted by FBN (s) = N1(s) and SBN (s) = N2(s) separately. The first type-2 Bishop spherical indicatrix
and the second type-2 Bishop spherical indicatrix in [19] is denoted by FNBN (s) = ζ1(s) and SNBN (s) =
ζ2(s) separately.

We define one-forms 〈dv,w〉 =
∑3

i=1widvi and 〈v, dw〉 =
∑3

i=1 vidwi on R3 × R3 and consider the
following double fibration:

(a) S2(1)× S2(1) ⊃ ∆ = {(v,w)|〈v,w〉 = 0},
(b) π11 : ∆ −→ S2(1), π12 : ∆ −→ S2(1),
(c) θ11 = 〈dv,w〉|∆, θ12 = 〈v, dw〉|∆.

Here π11(v,w) = v, π12(v,w) = w. θ−1
11 (0) and θ−1

12 (0) define the same tangent plane field on ∆, which is
denoted by K. Theorem 3.1 in [14] indicates that (∆,K) is a contact manifold and each of π1j ( j = 1, 2 )
is Legendrian fibration. If there exists an isotropic mapping i : L −→ ∆, which means that i∗θ11 = 0, we
say that π11(i(L)) and π12(i(L)) are ∆-dual to each other. It is easy to see that the condition i∗θ11 = 0 is
equivalent to i∗θ12 = 0.

Then we have the following proposition.

Proposition 2.1. Let γ : I → E3 be a regular unit speed curve, we have the followings:
(1) N1(s) and N2(s) is ∆-dual to each other;
(2) ζ1(s) and ζ2(s) is ∆-dual to each other;
(3) T(s) and B(s) is ∆-dual to each other.

Proof. (1) Consider the mapping L1(s) = (N1(s),N2(s)). Then we have

〈N1(s),N2(s)〉 = 0

and

L∗1θ11(s) = 〈N′1(s),N2(s)〉
= 〈−k1(s)T(s),N2(s)〉
= 0.

The assertion (1) holds.
(2) Consider the mapping L2(s) = (ζ1(s), ζ2(s)). Then we have

〈ζ1(s), ζ2(s)〉 = 0

and

L∗2θ11(s) = 〈ζ′1(s), ζ2(s)〉
= 〈−ε1(s)B(s), ζ2(s)〉
= 0.

The assertion (2) holds.
(3) Consider the mapping L3(s) = (T(s),B(s)). Then we have

〈T(s),B(s)〉 = 0

and

L∗3θ11(s) = 〈T′(s),B(s)〉
= 〈k(s)N(s),B(s)〉
= 0.

The assertion (3) holds.
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3. Singularities of ruled surfaces according to Bishop frame

In this section, we will investigate the singularities of ruled surfaces according to Bishop frame of regular
unit speed curve in Euclidean 3-space. The first (Resp. second) Bishop ruled surface of γ(s) is defined by
BSi : I ×R→ R3, BSi(s, µi) = γ(s) + µiNi(s), when i = 1 (Resp. i = 2). For any fixed v0 ∈ R3, defining
the set

BRj(v0) = {u ∈ R3 | 〈v0 − u,Nj(s)〉 = 0}, where j = 1, 2.

We call it the first (Resp. second) Bishop rectifying bundle of curves γ(s) through v0 when j = 1 (Resp.
j = 2). To illustrate the main results, we should consider the following notion on contact of curves with
some surfaces. Let F : R3 → R be a submersion and γ : I → E3 be a regular unit speed Frenet curve. We
say that γ(s) and F−1(0) have k-point contact for s = s0 if the function g(s) = F ◦ γ(s) satisfies g(s0) =
g
′
(s0) = g

′′
(s0) = · · · = g(k−1)(s0) = 0, g(k)(s0) 6= 0. We also say that γ(s) and F−1(0) have at least k-point

contact for s = s0 if the function g(s) = F ◦ γ(s) satisfies g(s0) = g
′
(s0) = g

′′
(s0) = · · · = g(k−1)(s0) = 0.

The main results of this paper are in the following theorems.

Theorem 3.1. Let γ : I → E3 be a regular unit speed curve with k1(s) 6= 0 and k2(s) 6= 0. One have the
followings.

(1) For v0 = BS1(s0, µ10) and the Bishop rectifying bundle BR2(v0) = {u ∈ R3 | 〈v0−u,N2(s)〉 = 0} of
the curve. One have the followings.

(a) The curve γ(s) and BR2(v0) have at least 2-point contact for s0.

(b) The curve γ(s) and BR2(v0) have at least 3-point contact for s0 if and only if

v0 = γ(s0) +
1

k1(s0)
N1(s0), k′1(s0) 6= 0.

Under this condition, the germ of image BS1(s, µ1) at BS1(s0, µ10) is locally diffeomorphic to
the cuspidal edge C(2, 3)×R and BS1(s0,

1
k1(s0)) is locally diffeomorphic to the line (cf., Fig. 1).

(c) The curve γ(s) and BR2(v0) have at least 4-point contact for s0 if and only if

v0 = γ(s0) +
1

k1(s0)
N1(s0), k′1(s0) = 0, k

′′
1 (s0) 6= 0.

Under this condition, the germ of image BS1(s, µ1) at BS1(s0, µ10) is locally diffeomorphic to
the swallowtail SW and BS1(s0,

1
k1(s0)) is locally diffeomorphic to the (2, 3, 4)-cusp (cf., Fig. 2).

(2) For v0 = BS2(s0, µ20) and the Bishop rectifying bundle BR1(v0) = {u ∈ R3 | 〈v0−u,N1(s)〉 = 0} of
the curve. One have the following.

(a) The curve γ(s) and BR1(v0) have at least 2-point contact for s0.

(b) The curve γ(s) and BR1(v0) have at least 3-point contact for s0 if and only if

v0 = γ(s0) +
1

k2(s0)
N2(s0), k′2(s0) 6= 0.

Under this condition, the germ of image BS2(s, µ2) at BS2(s0, µ20) is locally diffeomorphic to
the cuspidal edge C(2, 3)×R and BS2(s0,

1
k2(s0)) is locally diffeomorphic to the line (cf., Fig. 1).

(c) The curve γ(s) and BR1(v0) have at least 4-point contact for s0 if and only if

v0 = γ(s0) +
1

k2(s0)
N2(s0), k′2(s0) = 0, k

′′
2 (s0) 6= 0.

Under this condition, the germ of image BS2(s, µ2) at BS2(s0, µ20) is locally diffeomorphic to
the swallowtail SW and BS2(s0,

1
k2(s0)) is locally diffeomorphic to the (2, 3, 4)-cusp (cf., Fig. 2).
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Here, the parametric equation of the cuspidal edge is C(2, 3)× R = {(x1, x2) | x2
1 = x3

2} × R, the
swallowtail is SW = {(x1, x2, x3) | x1 = 3u4 +u2v, x2 = 4u3 + 2uv, x3 = v}, and the (2, 3, 4)-cusp
is C(2, 3, 4) = {(t2, t3, t4) ∈ R3 | t ∈ R}. The pictures of cuspidal edge and swallowtail with the
(2, 3, 4)-cusp (the red curve), will be seen in Fig. 1 and Fig. 2. Note that the red curve is the
locus of singularity.

Figure 1: Cuspidal edge with a line Figure 2: Swallowtail with (2, 3, 4)-cusp

The other main result of this paper are in the following theorem.

Theorem 3.2. If γ : I → E3 be a regular unit speed curve with k1(s) 6= 0 and k2(s) 6= 0. Then, there
exists an open and dense subset Oi ⊂ EmbB(I,E3) such that for any γ ∈ Oi, the Bishop ruled surface
BSi(s, µi) = γ(s) + µiNi(s), (i = 1, 2) of γ(s) is locally diffeomorphic to the cuspidal edge or swallowtail if
the point is singular.

4. Geometric invariants of space curve and Bishop rectifying height functions

In this section, we will introduce two different families of functions on γ that will be useful to the study
of geometric invariants of regular curve. Let γ : I → E3 be a regular unit speed curve. Now, we define two
families of smooth functions on I as follows:

Hi : I × E3 → R by Hi(s,v) = 〈v − γ(s),Ni(s)〉,

where i = 1, 2. We call it the first (Resp. second) Bishop rectifying height function for the case i = 1 (Resp.
i = 2). For any fixed v ∈ E3, we denote hiv(s) = Hi(s,v). Then we have the following proposition.

Proposition 4.1. Let γ : I → E3 be a regular unit speed curve with k1(s) 6= 0 and k2(s) 6= 0. Then, one
has the followings.

(A)

(1) h1v(s) = 0 if and only if there are real numbers λ and µ such that v − γ(s) = λT(s) + µN2(s).

(2) h1v(s) = h′1v(s) = 0 if and only if v = γ(s) + µN2(s).

(3) h1v(s) = h′1v(s) = h′′1v(s) = 0 if and only if v = γ(s) + 1
k2(s)N2(s).
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(4) h1v(s) = h′1v(s) = h′′1v(s) = h
(3)
1v (s) = 0 if and only if v = γ(s) + 1

k2(s)N2(s) and k′2(s) = 0.

(5) h1v(s) = h′1v(s) = h′′1v(s) = h
(3)
1v (s) = h

(4)
1v (s) = 0 if and only if v = γ(s) + 1

k2(s)N2(s) and

k′2(s) = k′′2(s) = 0.

(B)

(1) h2v(s) = 0 if and only if there are real numbers λ and µ such that v − γ(s) = λT(s) + µN1(s).

(2) h2v(s) = h′2v(s) = 0 if and only if v = γ(s) + µN1(s).

(3) h2v(s) = h′2v(s) = h′′2v(s) = 0 if and only if v = γ(s) + 1
k1(s)N1(s).

(4) h2v(s) = h′2v(s) = h′′2v(s) = h
(3)
2v (s) = 0 if and only if v = γ(s) + 1

k1(s)N1(s) and k′1(s) = 0.

(5) h2v(s) = h′2v(s) = h′′2v(s) = h
(3)
2v (s) = h

(4)
2v (s) = 0 if and only if v = γ(s) + 1

k1(s)N1(s) and

k′1(s) = k′′1(s) = 0.

Proof. (A)

(1) If h1v(s) = 〈v − γ(s),N1(s)〉 = 0, then we have that there are real numbers λ and µ such that
v − γ(s) = λT(s) + µN2(s).

(2) When h1v(s) = 0, the assertion (2) follows from the fact that

h′1v(s) = 〈v − γ(s),−k1(s)T(s)〉
= −k1(s)λ

and k1(s) 6= 0. Thus, we get that h1v(s) = h′1v(s) = 0 if and only if v = γ(s) + µN2(s).

(3) When h1v(s) = h′1v(s) = 0, the assertion (3) follows from the fact that

h′′1v(s) = k1(s) + 〈v − γ(s),−k′1(s)T(s)− k2
1(s)N1(s)− k1(s)k2(s)N2(s)〉

= k1(s)(1− k2(s)µ).

Thus, we get that h1v(s) = h′1v(s) = h′′1v(s) = 0 if and only if v = γ(s) + 1
k2(s)N2(s).

(4) Under the condition that h1v(s) = h′1v(s) = h′′1v(s) = 0, this derivative is computed as follows:

h
(3)
1v (s) = 2k′1(s) + 〈v − γ(s), (k3

1(s) + k1(s)k2
2(s)− k′′1(s))T(s)

− 3k1(s)k′1(s)N1(s)− (2k′1(s)k2(s) + k1(s)k′2(s))N2(s)〉

= −k1(s)k′2(s)

k2(s)

= 0.

Since k1(s) 6= 0, we get that h
(3)
1v (s) = 0 is equivalent to the condition k′2(s) = 0. The assertion (4)

follows.

(5) Under the condition that h1v(s) = h′1v(s) = h′′1v(s) = h
(3)
1v (s) = 0, this derivative is computed as

follows:

h
(4)
1v (s) = 3k

′′
1 (s)− (k3

1(s) + k1(s)k2
2(s))− 〈v − γ(s), λ0T(s) + λ1N1(s) + λ2N2(s)〉,
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where

λ0 = k′′1(s)− 3k
′
1(s)(k2(s))2 − 6k

′
1(s)(k1(s))2 − 3k1(s)k2(s)k

′
2(s),

λ1 = 3(k
′
1(s))2 + 4k1(s)k

′′
1 (s)− (k1(s))4 − (k1(s)k2(s))2,

λ2 = 3k′′1(s)k2(s) + 3k
′
1(s)k

′
2(s)− (k1(s))3k2(s)− k1(s)(k2(s))3 + k1(s)k

′′
2 (s).

Note that v − γ(s) = 1
k2(s)N2(s). We have that

h
(4)
1v (s) = 3k

′′
1 (s)− (k3

1(s) + k1(s)k2
2(s))− 1

k2(s)
[3k′′1(s)k2(s) + 3k

′
1(s)k

′
2(s)

− (k1(s))3k2(s)− k1(s)(k2(s))3 + k1(s)k
′′
2 (s)]

= −3k
′
1(s)k

′
2(s) + k1(s)k

′′
2 (s)

k2(s)
.

Since k1(s) 6= 0, k
′
2(s) = 0, we get that h

(4)
1v (s) = 0 is equivalent to the condition k

′′
2 (s) = 0. The

assertion (5) follows.

(B) Using the same computation as the proof of (A), we can get (B).

By making simple calculations, we have the following proposition.

Proposition 4.2. Let γ : I → E3 be a regular unit speed curve. One have the following claims.

(1) Suppose that k2(s) 6= 0. Then k2
′(s) = 0 if and only if v = γ(s) + 1

k2(s)N2(s) is a constant vector.

(2) Suppose that k1(s) 6= 0. Then k
′
1(s) = 0 if and only if v = γ(s) + 1

k1(s)N1(s) is a constant vector.

5. The proof of the main results

In order to prove the main results, we will use some general results on the singularity theory for families
of function germs and generic properties of regular curves in E3. Detailed descriptions can be found in [2].
Let function germ F : (R × Rr, (s0,x0)) → R be an r-parameter unfolding of f(s), where f(s) = F (s,x0).
We say that f(s) has Ak-singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k, and f (k+1)(s0) 6= 0. We also say
that f(s) has A≥k-singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k. Let F (s,x) be an unfolding of f(s) and
f(s) has Ak-singularity (k ≥ 1) at s0. We denote the (k − 1)-jet of the partial derivative ∂F

∂xi
(s,x) at s0 by

j(k−1)

(
∂F

∂xi
(s,x0)

)
(s0) =

k−1∑
j=1

aji(s− s0)j , i = 1, · · · , r.

Then F (s,x) is called an R-versal unfolding if the k × r matrix of coefficients (a0i, aji) has rank k (k ≤ r),
where a0i = ∂F

∂xi
(s0,x0). We now introduce an important set concerning the unfolding. We define the

following set

Dl
F =

{
x ∈ Rr | ∃s ∈ R, F (s,x) =

∂F

∂s
(s,x) = · · · = ∂lF

∂sl
(s,x) = 0

}
,

which is called a discriminant set of order l. Then D1
F = DF and D2

F is the set of singular points of DF .
We need the following well-known result (cf., [2]).

Theorem 5.1. Let F : (R × Rr, (s0,x0)) −→ R be an r-parameter unfolding of f(s) which has the Ak
singularity at s0. Suppose that F (s,x) is an R-versal unfolding, then we have the following claims.

(a) If k = 1, then DF is locally diffeomorphic to {0} × Rr−1 and D2
F = ∅.
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(b) If k = 2, then DF is locally diffeomorphic to C(2, 3) × Rr−2, D2
F is diffeomorphic to {0} × Rr−2 and

D3
F = ∅.

(c) If k = 3, then DF is locally diffeomorphic to SW × Rr−3, D2
F is diffeomorphic to C(2, 3, 4) × Rr−3,

D3
F is diffeomorphic to {0} × Rr−3 and D4

F = ∅.

Here, we respectively call C(2, 3)× R = {(x1, x2) | x2
1 = x3

2} × R a cuspidal edge,

SW = {(x1, x2, x3) | x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v}

a swallowtail, C(2, 3, 4) = {(t2, t3, t4) ∈ R3 | t ∈ R} a (2, 3, 4)-cusp (cf., Fig.1).

By Proposition 4.1 and the definition of discriminant set, we have the following proposition.

Proposition 5.2. We consider the functions defined in Proposition 4.1, then we have that the discriminant
sets of H1 and H2 are, respectively,

DH1 = {v = γ(s) + µ2N2(s) | s ∈ I, µ2 ∈ R}

and
DH2 = {v = γ(s) + µ1N1(s) | s ∈ I, µ1 ∈ R}.

We have the following proposition on the Bishop rectifying height functions.

Proposition 5.3. Under the conditions of Proposition 4.1, we have the following claims.

(1) If h1v0(s) has Ak-singularity (k = 1, 2, 3) at s0, then H1(s,v) is an R-versal unfolding of h1v0(s).

(2) If h2v0(s) has Ak-singularity (k = 1, 2, 3) at s0, then H2(s,v) is an R-versal unfolding of h2v0(s).

Proof. (1) We denote that

γ(s) = (x1(s), x2(s), x3(s)),N1(s) = (n11(s), n12(s), n13(s)),v = (v1, v2, v3).

Under this notation, we have that

H1(s,v) = (v1 − x1(s))n11(s) + (v2 − x2(s))n12(s) + (v3 − x3(s))n13(s).

Thus, we have that

∂H1

∂vi
= n1i(s),

∂

∂s

∂H1

∂vi
= n′1i(s),

∂2

∂s2

∂H1

∂vi
= n′′1i(s), i = 1, 2, 3.

Let j2(∂H1
∂vi

(s, v0))(s0) denote the 2-jet of ∂H1
∂vi

(s,v)(i = 1, 2, 3) at s0 and so

∂H1

∂vi
(s, v0) + j2(

∂H1

∂vi
(s, v0))(s0) =

∂H1

∂vi
(s, v0) +

∂

∂s

∂H1

∂vi
(s− s0) +

1

2

∂2

∂s2

∂H1

∂vi
(s− s0)2

= a0i + a1i(s− s0) +
1

2
a2i(s− s0)2.

It is enough to show that the rank of the matrix A is 3, where

A =

 n11(s0) n12(s0) n13(s0)
n′11(s0) n′12(s0) n′13(s0)
1
2n
′′
11(s0) 1

2n
′′
12(s0) 1

2n
′′
13(s0)

 .
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Then, we have that

detA =
1

2
〈N1(s0) ∧N

′
1(s0),N

′′
1(s0)〉

=
1

2
〈N1(s0) ∧ (−k1(s0))T(s0),−k′1(s0)T(s0)− k2

1(s0)N1(s0)− k1(s0)k2(s0)N2(s0)〉

=
1

2
〈k1(s0)T(s0) ∧N1(s0),−k′1(s0)T(s0)− k2

1(s0)N1(s0)− k1(s0)k2(s0)N2(s0)〉

=
1

2
〈k1(s0)N2(s0),−k′1(s0)T(s0)− k2

1(s0)N1(s0)− k1(s0)k2(s0)N2(s0)〉

=− 1

2
k2

1(s0)k2(s0) 6= 0,

which implies that the rank of A is 3. If we consider the matrix which consists of the first and the second
row of the matrix A, so that the rank of this matrix is two. This completes the proof.

(2) Using the same computation as the proof of (1), we can get (2).

Proof of Theorem 3.1. Let γ : I → E3 be a regular unit speed curve with k1(s) 6= 0 and k2(s) 6= 0. For
v0 = γ(s0) + µ0Ni(s0), where i = 1, 2, we give a function Hi : R3 → R by Hi(u) = 〈v0 − u,Ni(s)〉, where
i = 1, 2 , then we have hiv0(s) = Hi(γ(s)).

(1) First, we consider the assertion (1). For v0 = BS1(s0, µ0), since BR2(v0) = H−1
2 (0) and 0 is a

regular value of H2, h2v0(s) has the Ak-singularity at s0 if and only if γ and BR2(v0) have (k + 1)-point
contact for s0. On the other hand, by Proposition 5.2, the discriminant set DH2 of H2 is

DH2 = {v = γ(s) + µ1N1(s) | s ∈ I}.

The assertion (1) follows from Proposition 5.3 and Theorem 5.1. Since the locus of the singularities of CE is
locally diffeomorphic to the line, the assertion (b) holds. Since the locus of singularities of SW is C(2, 3, 4),
the assertion (c) holds.

(2) For the proof of the assertion (2), we apply Proposition 5.2, Proposition 5.3 and Theorem 5.1 similar
to the assertion (1). This completes the proof.

To prove Theorem 3.2, we should consider generic properties of regular curves in E3. The main tool is
a kind of transversality theorems. Let EmbB(I,E3) be the space of embeddings γ : I → E3 with ki(s) 6= 0
equipped with Whitney C∞-topology. Here i = 1, 2. We also consider the function Hk : E3 × E3 → R
defined by Hk(u,v) = 〈v − u,Ni(s)〉. Here k = 1, 2. We claim that Hkv is a submersion for any v ∈ E3,
where hkv(u) = Hk(u,v). For any γ ∈ EmbB(I,E3), we have Hk = Hk ◦ (γ × idE3). We also have the
`-jet extension j`1Hk : I × E3 → J `(I,R) defined by j`1Hk(s,v) = j`hkv(s). We consider the trivialization

J `(I,R) ≡ I×R×J `(1, 1). For any submanifold Q ⊂ J `(1, 1), we denote that Q̃ = I×{0}×Q. It is evident
that both j`1Hk is a submersion and Q̃ is an immersed submanifold of j`(I,R). Then j`1Hk is transversal to

Q̃. We have the following proposition as a corollary of Lemma 6 in Wassermann [18].

Proposition 5.4. Let Q be a submanifold of J `(1, 1). Then the set

TQ = {γ ∈ EmbB(I,E3) | j`Hkis transversal to Q}

is a residual subset of EmbB(I,E3). If Q is a closed subset, then TQ is open.

Let f : (R, 0)→ (R, 0) be a function germ which has an Ak-singularity at 0. It is well known that there
exists a diffeomorphism germ φ : (R, 0) → (R, 0) such that f ◦ φ = ±sk+1. This is the classification of
Ak-singularities. For any z = jlf(0) in J `(1, 1), we have the orbit Ll(z) given by the action of the Lie group
of l-jet diffeomorphism germs. If f has an Ak-singularity, then the codimension of the orbit is k. There is
another characterization of R-versal unfoldings as follows [4, 13].
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Proposition 5.5. Let F : (R×Rr, 0)→ (R, 0) be an r-parameter unfolding of f : (R, 0)→ (R, 0) which has

an Ak-singularity at 0. Then F is an R-versal unfolding if and only if jl1F is transversal to the orbit Ll(j̃lf(0))
for l ≥ k + 1. Here, jl1F : (R× Rr, 0)→ J `(R,R) is the l-jet extension of F given by jl1F (s,x) = jlFx(s).

Proof of Theorem 3.2. For l ≥ 4, we consider the decomposition of the jet space J `(1, 1) into Ll(1) orbits.
We now define a semialgebraic set by

Σl = {z = jlf(0) ∈ J `(1, 1) | f has an A≥4 -singularity}.

Then the codimension of Σl is 4. Therefore, the codimension of Σ̃l
0 = I × {0} × Σl is 5. We have the orbit

decomposition of J `(1, 1)− Σl into

J `(1, 1)− Σl = Ll0 ∪ Ll1 ∪ Ll2 ∪ Ll3,

where Llk is the orbit through an Ak-singularity. Thus, the codimension of LLk is k + 1. We consider the
l-jet extension j`1Hk of the rectifying Bishop height function Hk. By Proposition 5.5, there exists an open
and dense subset Oi ⊂ EmbB(I,E3) such that j`1Hk is transversal to Llk, (k = 0, 1, 2, 3) and the orbit

decomposition of Σ̃l. This means that j`1Hk(I × E3) ∩ Σ̃l = ∅ and Hk is a versal unfolding of hkv at any
point (s0,v0). By Theorem 5.1, the discriminant set of Hk (i.e., the Bishop ruled surface of γ) is locally
diffeomorphic to cuspidal edge or swallowtail if the point is singular.

6. Example

As application and illustration of the main results, we give an example in this section.

Example 6.1. Let γ(s) be a unit speed curve of E3 defined by

γ(s) = ( 3 cos (1/5 s) , 3 sin (1/5 s) , 4/5 s )

with respect to an arc length parameter s.
Using the Bishop curvature equations, we obtain the following:{

k1(s) = 3
25 cos

(
4
25s
)

k2(s) = 3
25 sin

(
4
25s
)
.

We obtain the vector parametric equations of BS1(s, µ) and BS2(s, µ) as follows:

BS1(s, µ) =

{
3 cos

(1

5
s
)

+ µ
(
− cos

( 4

25
s
)

cos
(1

5
s
)
− 4

5
sin
( 4

25
s
)

sin
(1

5
s
))
,

3 sin
(1

5
s
)

+ µ
(
− cos

( 4

25
s
)

sin
(1

5
s
)

+
4

5
sin
( 4

25
s
)

cos
(1

5
s
))
,

4

5
s− 3

5
µ sin

( 4

25
s
)}

,

BS2(s, µ) =

{
3 cos

(1

5
s
)

+ µ
(
− sin

( 4

25
s
)

cos
(1

5
s
)

+
4

5
cos
( 4

25
s
)

sin
(1

5
s
))
,

3 sin
(1

5
s
)

+ µ
(
− sin

( 4

25
s
)

sin
(1

5
s
)
− 4

5
cos
( 4

25
s
)

cos
(1

5
s
))
,

4

5
s+

3

5
µ cos

( 4

25
s
)}

.

We can obtain the vector parametric equations of the singular locus of Bishop ruled surface as follows:
SBS1(s) = (SBS11(s),SBS12(s),SBS13(s)), where
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

SBS11(s) = 3 cos
(1

5
s
)

+
25

3 cos
(

4
25s
)(− cos

( 4

25
s
)

cos
(1

5
s
)
− 4

5
sin
( 4

25
s
)

sin
(1

5
s
))

,

SBS12(s) = 3 sin
(1

5
s
)

+
25

3 cos
(

4
25s
)(− cos

( 4

25

)
sin
(1

5
s
)

+
4

5
sin
( 4

25
s
)

cos
(1

5
s
))

,

SBS13(s) =
4

5
s− 5

cos
(

4
25s
) sin

( 4

25
s
)
,

and SBS2(s) = (SBS21(s),SBS22(s),SBS23(s)), where

SBS21(s) = 3 cos
(1

5
s
)

+
25

3 sin
(

4
25s
)(− sin

( 4

25
s
)

cos
(1

5
s
)

+
4

5
cos
( 4

25
s
)

sin
(1

5
s
))

,

SBS22(s) = 3 sin
(1

5
s
)

+
25

3 sin
(

4
25s
)(− sin

( 4

25
s
)

sin
(1

5
s
)
− 4

5
cos
( 4

25
s
)

cos
(1

5
s
))

,

SBS23(s) =
4

5
s+

5

sin
(

4
25s
) cos

( 4

25
s
)
.

We consider a local part of this curve when s ∈ [25
24π,

25
12π]. We see that k′1(s) = − 12

625sin( 4
25s) 6= 0 for

s ∈ [25
24π,

25
12π]. This means that the first Bishop ruled surface is locally diffeomorphic to cuspidal edge and

the singular locus of first Bishop ruled surface is locally diffeomorphic to a line (the red line), see Fig. 3.
On the other hand, we consider another local part of this curve when s ∈ [25

24π,
125
24 π]. The equation

k
′
2(s) = 0 gives one real root s = 25

8 π. This means that the second Bishop ruled surface is locally differmorphic
to cuspidal edge and the singular locus of the second Bishop ruled surface is locally diffeomorphic to a line
(the red line) at s 6= 25

8 π, see Fig. 4. We can also get that k
′′
2 (25

8 π) = − 48
15625 6= 0, but k1(25

8 π) = 0. This
means that H2(s, v) fails to be a versal unfolding of the h2v(s) at s = 25

8 π. So, the second Bishop ruled
surface fails to be locally diffeomorphic to swallowtail and the singular locus of the second Bishop ruled
surface is not locally diffeomorphic to the C(2,3,4)-cusp at s = 25

8 π, see Fig. 4.

Figure 3: The first Bishop ruled surface Figure 4: The second Bishop ruled surface
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