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Abstract

In this paper, we prove that the Ricci tensor of an almost Kenmotsu 3-h-manifold is cyclic-parallel if
and only if it is parallel and hence, the manifold is locally isometric to either the hyperbolic space H3(−1)
or the Riemannian product H2(−4)× R. c©2016 All rights reserved.
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1. Introduction

Let us recall the following notions defined by Gray [13]. A pseudo-Riemannian manifold (M, g) is said
to belong to class A if its Ricci operator Q is cyclic-parallel, that is,

g((∇XQ)Y, Z) + g((∇YQ)Z,X) + g((∇ZQ)X,Y ) = 0 (1.1)

for any vector fields X,Y, Z tangent to M . It is known that (1.1) is equivalent to requiring that the Ricci
tensor is a Killing tensor, that is,

g((∇XQ)X,X) = 0 (1.2)

for any vector field X on M . Moreover, (M, g) is said to belong to class B if its Ricci operator Q is of
Codazzi-type, that is,

(∇XQ)Y = (∇YQ)X (1.3)
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for any vector fields X,Y tangent to M . Here, we remark that equation (1.3) is also equivalent to requiring
that the Riemannian curvature tensor is harmonic, that is, divR = 0. In addition, (M, g) is said to belong
to class P if its Ricci operator Q is parallel, that is,

∇Q = 0. (1.4)

A. Gray in [13] obtained an interesting result, namely E ⊂ P = A ∩ B, where E denotes the class of all
Einstein manifolds. A semi-Riemannian metric whose Ricci tensor satisfying relations (1.1), (1.3) or (1.4)
is called an Einstein-like metric.

Many authors studied equations (1.1)-(1.4) on some types of almost contact metric manifolds and some
other manifolds. For examples, Gouli-Andreou and Xenos in [12] proved that a k-contact metric manifold
of dimension 2n + 1 satisfying equation (1.3) is locally isomeric to either an Einstein-Sasakian manifold
or the product space Sn(4) × Rn+1. Moreover, they proved that a contact metric 3-τ -manifold satisfying
equation (1.3) is either flat or an Einstein-Sasakian manifold. Gouli-Andreou et al. in [11] proved that a
complete three-dimensional (κ, µ, ν)-contact metric manifold satisfying (1.1) is either Sasakian or a (κ, µ)-
contact metric manifold. De and Pathak [7] obtained that a three-dimensional Kenmotsu manifold has a
cyclic-parallel Ricci tensor if and only if the manifold is of constant sectional curvature −1. Generalizing
this result, the cyclic-parallel Ricci tensors on three-dimensional normal almost contact metric manifolds
were also studied by De and Mondal [6]. For more results regarding Equations (1.1)-(1.4) on some semi-
Riemannian manifolds and almost contact metric manifolds, we refer reader to De et al. [5, 8], Calvaruso
[2], Wang [18, 20, 22] and the present author [19].

We remark that Cho [3] and Wang [18] recently obtained an interesting local classification of an almost
Kenmotsu 3-manifold, namely any almost Kenmotsu 3-manifold is locally symmetric if and only if it is
locally isometric to either the hyperbolic space H3(−1) or the Riemannian product H2(−4)×R. We observe
that almost Kenmotsu 3-manifolds under some additional geometric conditions were also investigated by
Cho [4] and Wang [20, 21], respectively. Note that (1.4) implies (1.1) trivially, however the converse is not
necessarily true. Therefore, in this paper we aim to present an extension of the corresponding results shown
in [3, 18] on a special class of three-dimensional almost Kenmotsu manifolds. Our main results is to show
that the equations (1.1)-(1.4) are equivalent to each other on an almost Kenmotsu 3-h-manifold.

2. Almost Kenmotsu manifolds

A smooth manifold M2n+1 of dimensional 2n+ 1 is called an almost contact metric manifold if it admits
an almost contact structure (φ, ξ, η), that is, there exist a (1, 1)-type tensor field φ, a global vector field ξ
and a 1-form η such that

φ2 = −id + η ⊗ ξ, η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y )
(2.1)

for any vector fields X,Y tangent to M2n+1, where id denotes the identity map and ξ is called the Reeb
vector field. On the product manifold M2n+1 × R of an almost contact manifold M2n+1 and R, one can
define an almost complex structure J by

J

(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
,

where X denotes the vector field tangent to M2n+1, t is the coordinate of R and f is a smooth function. An
almost contact structure is said to be normal if the above almost complex structure J is integrable, that is,
J is a complex structure. According to Blair [1], the normality of an almost contact structure is given by
[φ, φ] = −2dη ⊗ ξ, where [φ, φ] denotes the Nijenhuis tensor of φ defined by

[φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ]
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for any vector fields X,Y on M2n+1. The fundamental 2-form Φ of an almost contact metric manifold
M2n+1 is defined by Φ(X,Y ) = g(X,φY ) for any vector fields X and Y .

From [1] and [15], an almost contact metric manifold is called

(1) a contact metric manifold if dη = Φ;

(2) an almost Kenmotsu manifold if dη = 0 and dΦ = 2η ∧ Φ;

(3) an almost cosymplectic manifold if dη = 0 and dΦ = 0.

A normal contact metric (resp. almost Kenmotsu, almost cosymplectic) manifold is called a Sasakian (resp.
Kenmotsu, cosymplectic) manifold.

We denote by h = 1
2Lξφ and h′ = h ◦ φ on an almost Kenmotsu manifold M2n+1. Following [9, 10], it is

seen that both h and h′ are symmetric operators and the following formulas are true.

hξ = lξ = 0, trh = tr(h′) = 0, hφ+ φh = 0, (2.2)

∇ξ = h′ + id− η ⊗ ξ, (2.3)

φlφ− l = 2(h2 − φ2), (2.4)

∇ξh = −φ− 2h− φh2 − φl, (2.5)

tr(l) = S(ξ, ξ) = g(Qξ, ξ) = −2n− trh2, (2.6)

where l := R(· , ξ)ξ is the Jacobi operator along the Reeb vector field and the Riemannian curvature tensor
R is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

tr and S denote the trace operator and the Ricci tensor, respectively.

3. Almost Kenmotsu 3-h-manifolds with cyclic-parallel Ricci tensors

We first give the following definition.

Definition 3.1. A three-dimensional almost Kenmotsu manifold is called an almost Kenmotsu 3-h-manifold
if it satisfies ∇ξh = 0.

It is known that on a three-dimensional Kenmotsu manifold there holds h = 0 and hence ∇ξh = 0
holds trivially. However, Dileo and Pastore [9, Proposition 6] proved that even on a locally symmetric
non-Kenmotsu almost Kenmotsu manifold there still holds ∇ξh = 0. By using this condition, Wang [20, 21]
gave some local classifications of three-dimensional almost Kenmotsu manifolds. He also presented some
examples of three-dimensional almost Kenmotsu manifolds on which ∇ξh = 0 but h 6= 0.

Example 3.2 ([21]). Let G be a three-dimensional non-unimodular Lie group (see [17]) with a left invariant
local orthonormal frame fields {e1, e2, e3} satisfying

[e1, e2] = αe2 + βe3, [e2, e3] = 0, [e1, e3] = βe2 + (2− α)e3

for α, β ∈ R. If either α 6= 1 or β 6= 0, G admits a left invariant non-Kenmotsu almost Kenmotsu structure
satisfying ∇ξh = 0 and h 6= 0.

For almost Kenmotsu structures defined on three-dimensional non-unimodular Lie groups we refer the
reader to Dileo and Pastore [10, Section 5]. From Example 3.2, although there exist many examples of
almost Kenmotsu 3-h-manifolds, but not all non-Kenmotsu almost Kenmotsu 3-manifolds satisfy ∇ξh = 0.
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Example 3.3 ([20]). Let M be a (k, µ, ν)-almost Kenmotsu manifold, that is, its Reeb vector field ξ satisfies
the (k, µ, ν)-nullity condition,

R(X,Y )ξ =k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ) + ν(η(Y )h′X − η(X)h′Y ) (3.1)

for any vector fields X,Y, Z and some smooth functions k, µ, ν. Then, if either µ 6= 0 or ν 6= −2, then we
have ∇ξh = µh′ − (ν + 2)h 6= 0 provided that h 6= 0 (or equivalently, k < −1).

Let us recall some useful formula shown in Cho [4]. Let U1 be the open subset of a three-dimensional
almost Kenmotsu manifold M3 such that h 6= 0 and U2 the open subset of M3 defined by U2 = {p ∈ M3 :
h = 0 in a neighborhood of p}. Hence, U1 ∪ U2 is an open and dense subset of M3 and there exists a local
orthonormal basis {ξ, e, φe} of three smooth unit eigenvectors of h for any point p ∈ U1 ∪ U2. On U1, we
set he = λe and hence hφe = −λφe, where λ is a positive function on U1. The eigenvalue function λ is
continuous on M3 and smooth on U1 ∪ U2.

Lemma 3.4 ([4, Lemma 6]). On U1 we have

∇ξξ = 0, ∇ξe = aφe, ∇ξφe = −ae,
∇eξ = e− λφe, ∇ee = −ξ − bφe, ∇eφe = λξ + be,

∇φeξ = −λe+ φe, ∇φee = λξ + cφe, ∇φeφe = −ξ − ce,
(3.2)

where a, b, c are smooth functions.

Applying Lemma 3.4 in the following Jacobi identity

[[ξ, e], φe] + [[e, φe], ξ] + [[φe, ξ], e] = 0,

we obtain {
e(λ)− ξ(b)− e(a) + c(λ− a)− b = 0,

φe(λ)− ξ(c) + φe(a) + b(λ+ a)− c = 0.
(3.3)

Moreover, applying Lemma 3.4 we have
Qξ = −2(λ2 + 1)ξ − (φe(λ) + 2λb)e− (e(λ) + 2λc)φe,

Qe = −(φe(λ) + 2λb)ξ − (f + 2λa)e+ (ξ(λ) + 2λ)φe,

Qφe = −(e(λ) + 2λc)ξ + (ξ(λ) + 2λ)e− (f − 2λa)φe,

(3.4)

where f = e(c) + φe(b) + b2 + c2 + 2.
We also need the following well known result (see also [13]).

Lemma 3.5. If the Ricci tensor of a Riemannian manifold is cyclic-parallel or of Codazzi-type, then the
scalar curvature is a constant.

We first give the following result for Kenmotsu 3-manifolds.

Proposition 3.6. On a three-dimensional Kenmotsu manifold the following statements are equivalent.

(1) The Ricci tensor is parallel;

(2) The Ricci tensor is of Codazzi-type;

(3) The Ricci tensor is cyclic-parallel;

(4) The manifold is of constant sectional curvature −1.
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Proof. It is known that on a three-dimensional Riemannian manifold the curvature tensor R is given by

R(Y, Z)W =g(Z,W )QY − g(Y,W )QZ + g(QZ,W )Y − g(QY,W )Z − r

2
(g(Z,W )Y − g(Y,W )Z)

for any vector fields Y, Z,W . Taking the covariant derivative of the above relation along arbitrary vector
field X gives

(∇XR)(Y,Z)W =g(Z,W )(∇XQ)Y − g(Y,W )(∇XQ)Z + g((∇XQ)Z,W )Y

− g((∇XQ)Y,W )Z − 1

2
X(r)(g(Z,W )Y − g(Y,W )Z)

for any vector fields X,Y, Z and W , where r denotes the scalar curvature.
If a three-dimensional Kenmotsu manifold M3 has a parallel Ricci tensor, then, the scalar curvature

of M3 is a constant and hence by the above relation we see that the manifold is locally symmetric. On
the other hand, K. Kenmotsu [16, Corollary 6] proved that a locally symmetric Kenmotsu manifold is of
constant sectional curvature −1. This means (1)⇒ (4).

If a three-dimensional Kenmotsu manifold M3 is of constant sectional curvature −1, that is, R(X,Y )Z =
−g(Y, Z)X + g(X,Z)Y for any vector fields X,Y, Z, then we obtain easily that the Ricci operator is given
by Q = −2id. This means that the Ricci tensor is parallel (that is, ∇Q = 0) and hence we obtain (4)⇒ (1),
(4)⇒ (2) and (4)⇒ (3).

It can be easily seen that a three-dimensional Riemannian manifold with a Codazzi-type or a cyclic-
parallel Ricci tensor is of constant scalar curvature (see also Gray [13]). Moreover, J. Inoguchi in [14] proved
that a three-dimensional Kenmotsu manifold having a constant scalar curvature is of constant sectional
curvature −1. This means (2)⇒ (4) and (3)⇒ (4). This completes the proof.

Next we give our main result, stating that the equations (1.1)-(1.4) are equivalent to each other even
on a special type of non-Kenmotsu almost Kenmotsu 3-manifolds, namely non-Kenmotsu almost Kenmotsu
3-h-manifolds.

Theorem 3.7. On an almost Kenmotsu 3-h-manifold with h 6= 0, the following statements are equivalent.

(1) The Ricci tensor is parallel;

(2) The Ricci tensor is of Codazzi-type;

(3) The Ricci tensor is cyclic-parallel;

(4) The manifold is locally isometric to the product space H2(−4)× R.

Proof. Recently, Wang [18] and Cho [3] independently obtained that any non-Kenmotsu almost Kenmotsu
3-manifold is locally symmetric if and only if it is locally isometric to the product space H2(−4)×R. Since
on a locally symmetric non-Kenmotsu almost Kenmotsu manifold there holds ∇ξh = 0, therefore, (1)⇔ (4)
follows from [18] and [3].

Very recently, Wang [20] obtained that a three-dimensional almost Kenmotsu manifold satisfying∇ξh = 0
and having a harmonic curvature tensor is locally isometric to either the hyperbolic space H3(−1) or the
product space H2(−4)× R. This means (2)⇔ (4).

Since the product space H2(−4) × R is locally symmetric, then in what follows we need only to show
that (3)⇒ (4).

Now, we suppose that M3 is a non-Kenmotsu almost Kenmotsu 3-h-manifold whose Ricci tensor is
cyclic-parallel. Firstly, by a direct calculation we obtain from Lemma 3.4 and relation (2.4) that

(∇ξh)e = ξ(λ)e+ 2aλφe and (∇ξh)φe = −ξ(λ)φe+ 2aλe.

In view of Definition 3.1 and λ being a positive function, we have

ξ(λ) = a = 0. (3.5)
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Then, using (3.5) in (3.4) we obtain from Lemma 3.4 that

(∇ξQ)ξ = −ξ(φe(λ) + 2λb)e− ξ(e(λ) + 2λc)φe, (3.6)

(∇ξQ)e = −ξ(φe(λ) + 2λb)ξ − ξ(f)e, (3.7)

(∇ξQ)φe = −ξ(e(λ) + 2λc)ξ − ξ(f)φe, (3.8)

(∇eQ)ξ =2(φe(λ)− 3λe(λ) + 2λb− 2λ2c)ξ

+ (f − 2− e(φe(λ) + 2λb)− b(e(λ) + 2λc))e

+ (2λ3 + b(φe(λ) + 2λb)− e(e(λ) + 2λc)− λf)φe,

(3.9)

(∇eQ)e =(f − 2− e(φe(λ) + 2λb)− b(e(λ) + 2λc))ξ

− (e(f) + 2φe(λ))e+ (e(λ) + λφe(λ) + 2λ2b− 2λc)φe,
(3.10)

(∇eQ)φe =(2λ3 − fλ+ b(φe(λ) + 2λb)− e(e(λ) + 2λc))ξ

+ (e(λ) + λφe(λ)− 2λc+ 2λ2b)e

+ (2λ(e(λ) + 2λc)− e(f)− 4λb)φe,

(3.11)

(∇φeQ)ξ =2(e(λ)− 3λφe(λ) + 2λc− 2λ2b)ξ

+ (2λ3 + c(e(λ) + 2λc)− φe(φe(λ) + 2λb)− λf)e

+ (f − 2− φe(e(λ) + 2λc)− c(φe(λ) + 2λb))φe,

(3.12)

(∇φeQ)e =(2λ3 − fλ+ c(e(λ) + 2λc)− φe(φe(λ) + 2λb))ξ

− (φe(f) + 4λc− 2λ(φe(λ) + 2λb))e

+ (φe(λ) + λe(λ) + 2λ2c− 2λb)φe,

(3.13)

(∇φeQ)φe =(f − 2− φe(e(λ) + 2λc)− c(φe(λ) + 2λb))ξ

+ (φe(λ) + λe(λ) + 2λ2c− 2λb)e− (φe(f) + 2e(λ))φe.
(3.14)

Since on M3 the Ricci tensor is assumed to be cyclic-parallel, substituting X with e and φe, respectively,
in (1.2) we have {

e(f) + 2φe(λ) = 0,

φe(f) + 2e(λ) = 0.
(3.15)

From (3.4) and (3.5) we get r = −2λ2 − 2 − 2f . By Lemma 3.5 we know that the scalar curvature is a
constant, then it follows that

e(f) = −2λe(λ) and φe(f) = −2λφe(λ).

Using this in (3.15) we observe that either λ = 1 or λ is a positive constant not equal to 1, where we have
used (3.5) and that λ is continuous.

Now let us consider the second case, that is, λ is a positive constant not equal to 1. Setting Y = Z in
Equation (1.1) and using the symmetry of the Ricci tensor give

g((∇XQ)Y, Y ) + 2g((∇YQ)Y,X) = 0. (3.16)

Putting X = e and Y = φe in (3.16) and using (3.11) and (3.14) we have

b− λc = 0. (3.17)

Similarly, putting X = φe and Y = e in (3.16) and using (3.10) and (3.13) we have

c− λb = 0. (3.18)
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Since λ 6= 1, it follows from (3.17) and (3.18) that

b = c = 0

and using this in (3.7), (3.11) and (3.12) gives

(∇ξQ)e = 0, (∇eQ)φe = 2λ(λ− 1)ξ, (∇φeQ)ξ = 2λ(λ− 1)e,

where we have used f = 2. Putting X = e, Y = φe and Z = ξ in equation (1.1) and using the above relation
we obtain λ = 1, a contradiction. Then, based on the above analysis we conclude that λ = 1. Next we prove
that in this context the cyclic-parallelism of the Ricci tensor implies the parallelism.

Putting X = e and Y = φe in (3.16) and using (3.11), (3.14) we get

b = c. (3.19)

Using (3.5), λ = 1 and (3.19) in the first term of Relation (3.3) we have

ξ(b) = 0. (3.20)

Similarly, using X = ξ and Y = e in (3.16) and applying (3.7), (3.10) we obtain

f − 2− 2e(b)− 2b2 = 0. (3.21)

It follows from the above relation, (3.4), and (3.19) that

e(b) = φe(b). (3.22)

Using (3.22) and putting X = e, Y = ξ, and Z = φe in (1.1) we have

f − 2 + 2e(b)− 2b2 = 0.

Comparing the above relation with (3.21) and making using of (3.20) and (3.22) we conclude that b = c is
a constant. Finally, applying λ = 1, f = 2 + 2b2, and b = c = constant in equations (3.6)-(3.14) it can be
easily seen that the Ricci operator Q is parallel and hence the manifold is locally symmetric.

Because Wang [18] and Cho [3] proved that any almost Kenmotsu 3-manifold is locally symmetric if and
only if it is locally isometric to either the hyperbolic space H3(−1) or the product space H2(−4)× R, then
the proof follows.

Remark 3.8. Proposition 3.4 and Theorem 3.7 can be regarded as some generalizations of the main results
proved in [3], [7] and [18].
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