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Abstract

The aim of the paper is to study some calculating problems of topological degrees of semi-closed 1-set-
contractive operators in M-PN-spaces. Under some weak and natural conditions, several calculation results
are obtained. Finally, in order to verify the validity of our results, a support example is given at the end of
the paper. c©2016 all rights reserved.
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1. Introduction

Since Menger in 1942 introduced the concept of probabilistic metric spaces, many results based on
probabilistic metric spaces have been gotten. For example, Schweizer and Sklar [8] described detailedly the
topological structure of probabilistic metric space; the authors in [9] summarized the current development
of probabilistic metric spaces; and in 2001, the authors in [2] established the topological degree theory of
completely continuous operators in M-PN-spaces and obtained some important properties as well as some
fixed point theorems under the condition that t-norm 4 satisfies 4(t, t) ≥t for all t ∈ [0, 1]. The topological
degrees of k-set-contractive operators, condensing operators and the A-proper degree in M-PN-spaces were
widely studied (see [4, 7, 12] and the references therein). However, the topological degree for 1-set-contractive
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field in PN-spaces had not been discussed before 2006. In [11], the authors filled that gap. Of course, all the
established topological degree theories provide an important theoretical tool for the future investigations of
some nonlinear problems, especially for the existence of fixed points of nonlinear operators on M-PN-spaces
(see [6, 13]). And since then, the calculation problems of topological degrees about nonlinear operators on
M-PN-spaces have naturally become one of the main considerable topics in this field. This work aims to deal
with such a topic. Under some weak and natural conditions, several calculation problems on topological
degrees of semi-closed 1-set contractive operators on M-PN-spaces are studied and some new results are
obtained. A part of the presented results generalize some known conclusions. Before introducing the main
results in this paper, let us recall some basic concepts.

Denote by R, R+ and N the sets of real numbers, non-negative real numbers and positive integers,
respectively. A function f : R → R+ is called a distribution function if it is non-decreasing and left
continuous and satisfies the following conditions:

inf
t∈R

f(t) = 0, sup
t∈R

f(t) = 1.

Use D to denote the collection of distribution functions. Define a specific distribution function H(t) as
follows:

H(t) =

{
1, t > 0,

0, t ≤ 0.

A mapping 4 : [0, 1]× [0, 1]→ [0, 1] is called a triangular norm (a t-norm for short) if for any a, b, c, d ∈
[0, 1], the following conditions are satisfied:

(1) 4(a, 1) = a;

(2) 4(a, b) = 4(b, a);

(3) a ≥ b, c ≥ d⇒4(a, c) ≥ 4(b, d);

(4) (4(a,4(b, c)) = 4(4(a, b), c).

Next, we review the conception of Menger PN spaces.

Definition 1.1 ([10]). An Menger probabilistic normed linear space (Menger PN space or M-PN-space in
brief) is an ordered triple (E,F ,4), where E is a real normed linear space (the zero element of E is denoted
by θ), 4 is a t-norm, and F is a mapping from E into D (in the following, we replace F (x) with fx, and use
fx(t) to denote the value of the distribution function fx at t ∈ R), and fx satisfies the following conditions:

(PN-1) fx(0) = 0, ∀x ∈ E;

(PN-2) fx(t) = H(t), ∀t ∈ R if and only if x = θ;

(PN-3) for any α ∈R and α 6= 0, we have fαx(t) = fx( t
|α|);

(PN-4) for any x, y ∈ E and all t1, t2 ∈ R+, we have fx+y(t1 + t2) ≥ 4(fx(t1), fy(t2)).

For convenience, the conception of probabilistically bounded set in the following definition is needed.

Definition 1.2 ([3]). Let (E,F) be a PN-space and A a nonempty subset of E. Then the function

DA(t) = sup
s<t

inf
x,y∈A

Fx−y(s), t ∈ R

is called the probabilistic diameter of A. If supt>0DA(t) = 1, then A is said to be probabilistically bounded;
if 0 < supt>0DA(t) < 1, then A is said to be probabilistically semi-bounded; if supt>0DA(t) = 0, then A is
said to be probabilistically unbounded.
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Based on the notion of probabilistically bounded set, Bocşan and Constantin [1] introduced the concept
of Kuratowski’s function which is a technical tool for others to establish the topological degree of k-set
contractive operator in M-PN-spaces.

Definition 1.3 ([1]). Let (E,F ,4) be an M-PN-space. A Kuratowski’s function for a probabilistically
bounded subset A of E is the function αA on R defined by

αA(t) = sup{ε : ε > 0, there is a finite cover of A such that DB(t) ≥ ε for all B ∈ A}.

Let p be a point in an M-PN-space (E,F ,4). An (ε, λ)-neighborhood of p with ε > 0 and λ > 0 is
Np(ε, λ) = {q ∈ E : Fp−q(ε) > 1− λ}.

In the sequel, for simplicity, we denote by τ the topology induced by the family Np(ε, λ) of (ε, λ)-
neighborhoods.

The Kuratowski’s function has the following important properties.

Lemma 1.4 ([1]). Let (E,F) be a PN-space and let A and B be probabilistically bounded subsets of E.
Then the following properties hold:

(i) αA(t) ≥ DA(t), t ∈ R;

(ii) A ⊂ B ⇒ DA(t) ≥ DB(t), t ∈ R;

(iii) α(A∪B)(t) = min{αA(t), αB(t)}, t ∈ R;

(iv) αA(t) = αA(t) for t ∈ R, where A is the closure of A under the τ -topology on E;

(v) A is relatively compact if and only if αA(t) = H(t) for all t ∈ R;

(vi) If (E,F ,4) is an M-PN-space with 4 = min, then αA = αcoA.

Under the preparation of Kuratowski’s functions, Chang et al. [2] naturally introduced the conception
of k-set-contractive operator as follows.

Definition 1.5 ([2]). Let (X,F) be a PN-space and let T : D(T ) ⊂ X → X be a mapping and A a
probabilistically bounded subset of D(T ). If there exists k > 0 such that

αTA(t) ≥ αA(
t

k
)

for all t ∈ R, then T is called a k-set-contractive operator.

Inspired by the works of [2] and [5], Wu and Zhu [11] introduced the conception of semi-closed 1-set-
contractive operator in M-PN-spaces.

Definition 1.6 ([11]). Let (X,F) be a PN-space, τ the topology induced by the family of (ε, λ)- neighbor-
hoods on E and T : Ω → X a 1-set-contractive operator. Then T is called a semi-closed 1-set-contractive
operator if I − T is a τ -closed operator.

Suppose that (E,F ,4) is an M-PN-space and the t-norm 4 is continuous and satisfies 4(t, t) ≥ t for
all t ∈ [0, 1]. Assume that Ω is a nonempty open subset of E, T : Ω→ E is a semi-closed 1-set-contractive
operator, S = I − T and p /∈ S(∂Ω). The topological degree deg(S,Ω, p) of S in M-PN-spaces was defined
in [11] (see [11] for more details). The topological degree deg(S,Ω, p) defined in [11] is just for the case of
p = θ. By the similar method, we can easily define the topological degree deg(S,Ω, p) for any p /∈ S(∂Ω),
and deg(S,Ω, p) has also the following classical properties.

(i) (Normalization) deg(I,Ω, p) = 1, ∀p ∈ Ω;

(ii) (Solution property) if deg(S,Ω, p) 6= 0, then S(x) = p has at least one solution in Ω;

(iii) (Additivity) suppose that Ω1 and Ω2 are two disjoint open subsets of Ω, and p /∈ S(Ω \ (Ω1 ∪ Ω2)),
then deg(S,Ω, p) = deg(S,Ω1, p) + deg(S,Ω2, p);

(iv) (Homotopy invariance) suppose that H(t, x) is a semi-closed 1-set-contractive operator on [0, 1] × Ω
and p /∈ (I −H(t, ·))(∂Ω) for all t ∈ [0, 1], then deg(I −H(t, ·),Ω, p) is independent of t ∈ [0, 1].



J. Yin, P. Yan, Q. Leng, J. Nonlinear Sci. Appl. 9 (2016), 5229–5237 5232

2. Main results

In this section, we always suppose that (E,F ,4) is an Menger PN space and the t-norm 4 is continuous
and satisfies 4(t, t) ≥ t for all t ∈ [0, 1], and Ω is a nonempty open subset of E.

Theorem 2.1. Suppose that F : Ω → E and F1 : Ω → E are two semi-closed 1-set-contractive operators.
Let S = I − F , S1 = I − F1. If p ∈ E \ (S(∂Ω) ∪ S1(∂Ω)) and there exists λ ∈ [0, 1] such that

fF1(x)−F (x)(s) ≥ fx−λF1(x)−(1−λ)F (x)−p(s) ∀s > 0, ∀x ∈ ∂Ω,

then deg(S1,Ω, p) = deg(S,Ω, p).

Proof. Let Ht(x) = F1(x) + t[F (x) − F1(x)], t ∈ [0, 1], x ∈ Ω, then H is continuous and H([0, 1] × Ω) is
probabilistically bounded.

(1) We prove that I −H is τ -closed. Let S be a τ -closed subset of [0, 1] × Ω of the form S = M ×N with
M a closed subset of [0, 1] and N a τ -closed subset of Ω. Suppose that yn ∈ (I − H)(M × N) such that
yn → y0 as n → ∞. We now prove that y0 ∈ (I −H)(M × N). Since I(t, x) = x for x ∈ Ω and t ∈ [0, 1],
and yn = (I − H)(tn, xn) with tn, xn ∈ M × N , we have xn − tnF (xn) − (1 − tn)F1(xn) → y0. Taking a
subsequence if necessary, we may assume that tn → t0 as n→∞. Clearly, t0 ∈M and 0 ≤ t0 ≤ 1, and

[I − t0F − (1− t0)F1](xn) = xn − tnF (xn)− (1− tn)F1(xn)− t0F (xn)− (1− t0)F1(xn)

+ tnF (xn) + (1− tn)F1(xn).

Hence, [I−t0F−(1−t0)F1](xn)→ y0, as n→∞. By the definition of semi-closed 1-set-contractive operator,
it is easy to prove that t0F+(1−t0)F1 is a semi-closed 1-set-contractive operator, so y0 ∈ (t0F+(1−t0)F1)N .
Thus there exists x0 ∈ N such that y0 = x0− [t0F + (1− t0)F1](x0). Therefore y0 ∈ (I −H)(M ×N), which
means that I −H is a τ -closed operator.

(2) Let A be a nonempty subset of Ω such that αA(s) 6= H(s). Then we have αH([0, 1]×A)(s) ≥ αA(s) for
s ∈ R. In fact, for any t ∈ [0, 1],

H(t, A) = tF (A) + (1− t)F1(A) ⊂ co(F (A) ∪ F1(A)).

Since H : [0, 1]× Ω→ X is probabilistically bounded and H(·, x) : [0, 1]→ X is uniformly continuous with
respect to x ∈ Ω, from the properties (iii), (iv) and (vi) of Lemma 1.4, for s ∈ R, we have

αH([0,1]×A)(s) = min
t∈[0,1]

αH(t,A)(s) ≥ αco(F (A)∪F1(A))(t)

= αF (A)∪F1(A)(t) = min{αF (A)(t), αF1(A)(t)} ≥ αA(t).

(3) Put ht(x) = x−Ht(x). Next, we show that p /∈ ht(∂Ω) for all t ∈ [0, 1]. In fact, if there exists x0 ∈ ∂Ω
and 0 ≤ t0 ≤ 1 such that p = ht0(x0), then

x0 − λF1(x0)− (1− λ)F (x0)− (1− λ− t0)[F1(x0)− F (x0)] = p.

So
x0 − λF1(x0)− (1− λ)F (x0)− p = (1− λ− t0)[F1(x0)− F (x0)]. (2.1)

By the given conditions, t0 6= 0 and t0 6= 1, so 0 < t0 < 1. Furthermore, ones can prove that F1(x0) 6= F (x0).
Otherwise, F1(x0) = F (x0). Then from (2.1), it is easy to see that x0 − F (x0) = p, so S(x0) = p which
is contrary to p /∈ S(∂Ω). This contradiction gives that F1(x0) 6= F (x0). Also it is not difficult to prove
0 < |1 − λ − t0| < 1. In fact, since 0 < t0 < 1, −λ < 1 − λ − t0 < 1 − λ. It follows from 0 ≤ λ ≤ 1 that
|1− λ− t0| < 1. If 1− λ− t0 = 0, then from (2.1) and the given assumptions, for any s > 0,

fF1(x0)−F (x0)(s) ≥ fx0−λF1(x0)−(1−λ)F (x0)−p(s) = fθ(t) = 1,
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so F1(x0) = F (x0), which contradicts F1(x0) 6= F (x0). So 1− λ− t0 6= 0, and 0 < |1− λ− t0| < 1. Hence,
from (2.1), it holds

fx0−λF1(x0)−(1−λ)F (x0)−p(s) = fF1(x0)−F (x0)

(
s

|1− λ− t0|

)
. (2.2)

Then for any s > 0, by (2.2) and the given condition (2) as well as the non-decreasing property of distribution
function, one can obtain that

fF1(x0)−F (x0)(s) = fF1(x0)−F (x0)

(
s

|1− λ− t0|

)
= fF1(x0)−F (x0)

(
s

|1− λ− t0|2

)
...

= fF1(x0)−F (x0)

(
s

|1− λ− t0|n

)
, n = 1, 2, 3 · · · .

Since 0 < |1 − λ − t0| < 1 and fF1(x0)−F (x0) is a distribution function, let n → ∞ in the above formula,
it is easy to see that F1(x0) = F (x0) which is in contradiction with F1(x0) 6= F (x0). So for any t ∈ [0, 1],
p /∈ ht(∂Ω). By the homotopy invariance of topological degree, deg(S1,Ω, p) = deg(S,Ω, p).

Remark 2.2. In Theorem 2.1, if let p = θ and θ ∈ Ω, then by the normalization and solution property of
topological degrees, F as well as F1 has a fixed point in Ω.

Corollary 2.3. Let F : Ω → E and F1 : Ω → E be two semi-closed 1-set-contractive operators and
S = I − F , S1 = I − F1. If p ∈ E \ (S(∂Ω) ∪ S1(∂Ω)) and

fF1(x)−F (x)(s) ≥ fx−F1(x)−p(s), ∀s > 0, ∀x ∈ ∂Ω,

then deg(S1,Ω, p) = deg(S,Ω, p).

Proof. It only needs to put λ = 1 in Theorem 2.1.

Corollary 2.4. Let θ ∈ Ω and F : Ω → E be a semi-closed 1-set-contractive operator. Suppose that there
exists 0 ≤ λ ≤ 1 such that

x 6= F (x), fF (x)(s) ≥ fx−λF (x)(s), ∀s > 0,∀x ∈ ∂Ω,

then deg(I − F,Ω, θ) = 1, so F has a fixed point in Ω .

Proof. It suffices to put F1 = θ and p = θ in Theorem 2.1.

Corollary 2.5. Let θ ∈ Ω, F : Ω→ E be a semi-closed 1-set-contractive operator. If

fF (x)(s) ≥ fx(s), ∀s > 0,∀x ∈ ∂Ω,

then F has a fixed point in Ω.

Proof. Without loss of generality, assume that F (x) 6= x for all x ∈ ∂Ω. Otherwise Corollary 2.5 is proved.
For the rest, it only needs to let λ = 0 in Corollary 2.4.

Remark 2.6. Corollaries 2.3 and 2.5 come from [2] (see Theorems 13.4.5 and 13.4.6 in [2]), thus Theorem
2.1 generalizes Theorems 13.4.5 and 13.4.6 in [2].
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Theorem 2.7. Let F : Ω→ E and F1 : Ω→ E be two semi-closed 1-set-contractive operators and S = I−F ,
S1 = I − F1. If p ∈ E \ (S(∂Ω) ∪ S1(∂Ω)) and for every x ∈ ∂Ω and λ ∈ (−1, 1),

fF1(x)+F (x)(s) > fx+λF1(x)−p(s), ∀s > 0, (2.3)

then deg(S1,Ω, p) = deg(S,Ω, p).

Proof. Let Ht(x) = tF (x) + (1 − t)F1(x) for all x ∈ Ω, t ∈ [0, 1]. Similar to the proof of Theorem 2.1, we
can verify that Ht : Ω → E is a semi-closed 1-set-contractive operator. For every t ∈ [0, 1] and x ∈ Ω, let
ht(x) = x−Ht(x). It only needs to prove that p /∈ ht(∂Ω) for all t ∈ [0, 1]. Otherwise, suppose that there
exist t0 ∈ [0, 1] and x0 ∈ ∂Ω such that p = ht0(x0), then

p = x0 −Ht0(x0),

that is,
p = x0 − t0F (x0)− (1− t0)F1(x0). (2.4)

By the given conditions, it is easy to see t0 6= 0 and t0 6= 1, so t0 ∈ (0, 1). Then it follows from (2.4) that

F (x0) =
1

t0
[x0 − (1− t0)F1(x0)− p],

thus

F1(x0) + F (x0) =
1

t0
[x0 + (2t0 − 1)F1(x0)− p] .

So for every s > 0, it holds that

fF1(x0)+F (x0)(s) = f 1
t0

[x0+(2t0−1)F1(x0)−p](s)

= fx0+(2t0−1)F1(x0)−p(s · t0)
≤ fx0+(2t0−1)F1(x0)−p(s).

Let λ = 2t0 − 1, since 0 < t0 < 1, then −1 < 2t0 − 1 < 1. Hence there exists a contradiction with the given
condition (2.3), this contradiction yields that p /∈ ht(∂Ω) for all t ∈ [0, 1]. By the homotopy invariance of
topological degree, deg(S1,Ω, p) = deg(S,Ω, p).

Theorem 2.8. Let A : Ω→ E be a semi-closed 1-set-contractive operator and θ ∈ Ω. If for every x ∈ ∂Ω,

fA(x)−x(s) + fx(s) < fA(x)+x(s) + fA(x)(s), ∀s > 0, (2.5)

then A has a fixed point in Ω.

Proof. Without loss of generality, suppose that A has no fixed point in ∂Ω, otherwise Theorem 2.8 is proved.
For every t ∈ [0, 1], let Ht(x) = tA(x), then by a proof similar to that of Theorem 2.1, we can check that

Ht(x) : [0, 1] × Ω :→ E is a semi-closed 1-set-contractive operator. Next, it needs to show that for every
t ∈ [0, 1] and x ∈ ∂Ω, x 6= Ht(x).

Suppose on contrary that there exists t0 ∈ [0, 1] and x0 ∈ ∂Ω such that x0 = Ht0(x0), that is, x0 =
t0A(x0). Since θ ∈ Ω and A has no fixed point in ∂Ω, t0 6= 0 and t0 6= 1, that is t0 ∈ (0, 1). Thus

Ax0 =
x0
t0
.

Noting the given condition (2.5), one has that

fx0
t0
−x0(s) + fx0(s) < fx0

t0
+x0

(s) + fx0
t0

(s), ∀s > 0.
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According to the non-decreasing property of distribution function, it holds that

fx0

(
st0

1− t0

)
+ fx0(s) < fx0

(
st0

1 + t0

)
+ fx0(t0s), ∀s > 0. (2.6)

However, by the definition of distribution function and t0 ∈ (0, 1), it is easy to see that there exists a
contradiction between (2.6) and the fact that fx0 is a distribution function. So for every t ∈ [0, 1] and
x ∈ ∂Ω, x 6= Ht(x). By the homotopy invariance of topological degree, deg(I −A,Ω, θ) = deg(I,Ω, θ). Also
from the normalization property of topological degree, one has that deg(I,Ω, θ) = 1, thus deg(I−A,Ω, θ) = 1.
So A has a fixed point in Ω. In summary, A has a fixed point in Ω.

Corollary 2.9. Let A : Ω → E be a semi-closed 1-set-contractive operator and θ ∈ Ω. Suppose that for
every x ∈ ∂Ω, one of the following conditions is satisfied:

(H1) fA(x)−x(s) + fx(s) < fA(x)+x(s), ∀s > 0;

(H2) fA(x)−x(s) + fx(s) < fA(x)(s), ∀s > 0;

then A has a fixed point in Ω.

Proof. Suppose that the condition (H1) or (H2) is satisfied. According to the non-decreasing property of
distribution functions, it can be easily seen that all the conditions of Theorem 2.8 are satisfied. So Corollary
2.9 holds.

3. Applications

As an application, we use the results in Section 2 to study the existence of solutions for a system of
integral equations in M-PN-spaces. For simplicity, we give only one example.

Let [0, a] be a fixed real interval with 0 < a < ∞, R be the Banach space consisting of real numbers
in which the norm is defined as usual, and C([0, a],R) be the Banach space of all real-valued continuous
functions defined on [0, a] with the norm defined by

‖x‖ = sup
0≤t≤a

|x(t)|, x ∈ C([0, a],R).

The space C([0, a],R) can be endowed with another norm

‖x‖1 = sup
0≤t≤a

(e−Lt|x(t)|),

where L is a given positive number. Obviously, the norms ‖ · ‖ and ‖ · ‖1 are equivalent.
Let (C([0, a],R),F ,min) be the induced M-PN-space, where F is the set of mappings from C([0, a],R)

into D defined by fx(t) = H(t− ‖x‖1), x ∈ C([0, a],R), t ∈ R.
We now study the existence of solutions for the system of nonlinear Volterra integral equations

x(t) = z(t) +

∫ t

0
K1(t, s, x(s))ds,

y(t) = z(t) +

∫ t

0
K2(t, s, y(s))ds,

(3.1)

where z ∈ C([0, a],R) is a given function.

Theorem 3.1. The system of integral equations (3.1) has a solution in C([0, a],R) if the following conditions
are fulfilled:
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(1) for i = 1, 2, Ki(t, s, x(s)) ∈ C([0, a]×[0, a]×C([0, a],R),R) and Ki(t, s,Nθ(ε, λ)) are relatively compact
subsets of R, and

‖Ki‖ = sup
t,s∈[0,a],x∈C([0,a],R)

|Ki(t, s, x(s))| <∞;

(2) there exist constants r, s > 0 with 0 < r + s < 1 such that for any x, y ∈ Nθ(ε, λ) and t ∈ [0, a], if
x 6= y, then

s(y(t)− x(t)) ≤
∫ t

0
(K1(t, s, x(s))−K2(t, s, y(s))) ds ≤ r(x(t)− y(t)),

and

∫ t

0
(Ki(t, s, x(s))−Ki(t, s, y(s))) ds ≤ r(x(t)− y(t)), i = 1, 2;

(3) there exists p with 0 < p < 1 such that for any x ∈ ∂(Nθ(ε, λ)) and t ∈ [0, a],∫ t

0
(K1(t, s, x(s))−K2(t, s, x(s))ds ≤ x(t)− p

∫ t

0
K1(t, s, x(s))ds− (1− p)

∫ t

0
K2(t, s, x(s))ds,

and for each i ∈ {1, 2}, Ai(Nθ(ε, λ)) is probabilistically bounded, where Ai is defined by

(Aix)(t) = z(t) +

∫ t

0
Ki(t, s, x(s))ds.

Proof. For each i ∈ {1, 2}, Ki is continuous, so Ai is continuous. Due to the condition (1) we know that Ai
is compact, hence I −Ai is τ -closed for each i ∈ {1, 2}. From the given condition (2), it follows that for any
x, y ∈ Nθ(ε, λ) and t ∈ R,

fAix−Aiy(t) ≥ fx−y(t), i = 1, 2. (3.2)

Next we show that for each i ∈ {1, 2}, Ai is 1-set contractive on Nθ(ε, λ). In fact, for arbitrary proba-
bilistically bounded subset G of Nθ(ε, λ) and any ε > 0, there exists a partition

G ⊂
n⋃
l=1

Gl,

such that DGl
(t) > αG(t)− ε for l = 1, 2, · · · , n and any t ∈ R. Clearly,

Aj(G) ⊂
n⋃
l=1

Aj(Gl), j = 1, 2.

By (3.2), we get that for j = 1, 2 and any t ∈ R,

DAj(Gl)(t) ≥ DGl
(t) > αG(t)− ε

for l = 1, 2, · · · , n. By virtue of Lemma 1.4, we have, for each j ∈ {1, 2} and any t ∈ R, αAj(G)(t) ≥ αG(t)

which shows that Aj is a semi-closed 1-set contractive operator on Nθ(ε, λ).

From the given condition (3), for any x ∈ ∂(Nθ(ε, λ)),

(A1x)(t)− (A2x)(t) ≤ x(t)− p(A1x)(t)− (1− p)(A2x)(t)

for any t ∈ [0, a]. Then we have

‖A1x−A2x‖1 ≤ ‖x− p(A1x)− (1− p)(A2x)‖1,
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which yields that
H(t− (A1x−A2x)) ≥ H(t− (x− p(A1x)− (1− p)(A2x))).

In this way, for any x ∈ ∂(Nθ(ε, λ)) and t ∈ R,

f(A1x−A2x)(t) ≥ fx−p(A1x)−(1−p)(A2x)(t).

Hence for each i ∈ {1, 2}, Ai : Nθ(ε, λ) → (C([0, a],R),F ,4) satisfies all the conditions of Theorem 2.1.
Noting that θ ∈ Nθ(ε, λ), by Remark 2.2, we get that A1 and A2 have fixed points in Nθ(ε, λ). Denote by
x∗(t) and y∗(t) the fixed points of A1 and A2, respectively.

In the sequel, we prove that x∗(t) = y∗(t). In fact, if not, noting that

x∗(t) = z(t) +

∫ t

0
K1(t, s, x

∗(s))ds,

and

y∗(t) = z(t) +

∫ t

0
K2(t, s, y

∗(s))ds,

by the given condition (ii), it is clear that x∗(t)− y∗(t) ≤ r(x∗(t)− y∗(t)) and y∗(t)−x∗(t) ≤ (r+ s)(y∗(t)−
x∗(t)) for any t ∈ [0, a]. Notice that 0 < r, r + s < 1, we get x∗(t) = y∗(t), which is a solution of the system
of integral equations (3.1).
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