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Abstract

We establish some common best proximity point results for generalized α − ψ-proximal contractive
non-self mappings. We provide some concrete examples. We also derive some consequences on some best
proximity results on a metric space endowed with a graph. c©2016 All rights reserved.
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1. Introduction and Preliminaries

Let A and B be two nonempty subsets of a metric space (X, d) and T : A→ B be a non-self mapping.
Clearly, if A∩T (A) = ∅, the fixed point equation Tx = x has no solution. In this case, we have d(x, Tx) > 0
for all x ∈ A. Also, d(A,B) ≤ d(x, Tx) for all x ∈ A. So, the aim of best proximity theory is to find x ∈ A
such that d(x, Tx) is minimum and so to guarantee the existence a best proximal point of T , named x ∈ X
that is, d(A,B) = d(x, Tx). In 2005, Eldred and Veeramani [4] gave existence and convergence of best
proximity points in the setting of a uniformly convex Banach space. Al-Thagafi and Shahzad [1] studied
convergence and existence results of best proximity points for cyclic ϕ-contraction maps. In 2011, Sadiq
Basha [17] stated some best proximity point theorems for proximal contractions. For some other results on
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best proximity points, see for example [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 25].
We recall some notations and definitions, which will be used in the sequel. Let A and B be two nonempty
subsets of a metric space (X, d).

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},
A0 = {a ∈ A : d(a, b) = d(A,B), for some b ∈ B},
B0 = {b ∈ B : d(a, b) = d(A,B), for some a ∈ A}.

Definition 1.1. Let (X, d) be a metric space. Consider A and B two nonempty subsets of X. An element
a ∈ X is said to be a common best proximity point of the mappings S, T : A→ B if

d(a, Sa) = d(a, Ta) = d(A,B).

It is clear that a common fixed point coincides with a common best proximity point if d(A,B) = 0. In
2013, Zhang et al. [26] introduced the concept of a weak (P )-property.

Definition 1.2 ([26]). Let A and B be nonempty subsets of a metric space (X, d) with A0 6= ∅. The pair
(A,B) is said to have the weak (P )-property if and only if{

d(x1, y1) = d(A,B)

d(x2, y2) = d(A,B)
⇒ d(x1, x2) ≤ d(y1, y2),

where x1, x2 ∈ A and y1, y2 ∈ B.

In 2012, Samet et al. [20] are the first who introduced the concept of α-admissible mappings. This nice
concept was generalized and extended in many directions. Now, as in [7], we introduce the concept of an
α-proximal admissible pair of non-self mappings.

Definition 1.3. Let A and B be nonempty subsets of a metric space (X, d) and α : X ×X → [0,∞). A
pair of non-self mappings S, T : A→ B is named α-proximal admissible if

α(x1, x2) ≥ 1

d(u1, Sx1) = d(A,B)

d(u2, Tx2) = d(A,B)

⇒ min{α(u1, u2), α(u2, u1)} ≥ 1

for all x1, x2, u1, u2 ∈ A.

Clearly, if d(A,B) = 0, the pair (S, T ) is α-proximal admissible implies that the pair (S, T ) is α-admissible
[2]. Now, let Ψ be the set of functions ψ : [0,∞)→ [0,∞) satisfying:
(ψ1)ψ is nondecreasing,

(ψ2)

∞∑
n=1

ψn(t) <∞ for each t ≥ 0, where ψn is the nth iterate of ψ.

Clearly, if ψ ∈ Ψ, then ψ(t) < t for all t > 0 and ψ(0) = 0. In the following, we give some generalized
α-proximal contractions.

Definition 1.4. Let A and B two nonempty subsets of a metric space (X, d). Take ψ ∈ Ψ and α : X×X →
[0,∞). Consider a pair of non-self mappings S, T : A→ B.
i) (S, T ) is called a generalized α− ψ-proximal contraction pair if

d(Sx, Ty) ≤ ψ(M(x, y)) (1.1)
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for all x, y ∈ A satisfying α(x, y) ≥ 1, where

M(x, y) = max{d(x, y),
d(x, Sx) + d(y, Ty)− 2d(A,B)

2
,
d(y, Sx) + d(x, Ty)− 2d(A,B)

2
}. (1.2)

ii) (S, T ) is called a generalized α− ψ-proximal contraction pair of the first kind if
α(x1, x2) ≥ 1

d(u1, Sx1) = d(A,B)

d(u2, Tx2) = d(A,B)

⇒ d(u1, u2) ≤ ψ(M(x1, x2)),

where x1, x2, u1, u2 ∈ A.

In this paper, we establish some existence results on common best proximity points for α− ψ-proximal
contractive pairs of non-self mappings. We will support the obtained theorems by some concrete examples.
Some corollaries and consequences are also provided.

2. Main results

The first main result is

Theorem 2.1. Let A and B be nonempty subsets of a complete metric space (X, d) such that A0 6= ∅ and
A is closed. Let S, T : A→ B be a generalized α− ψ-proximal contraction pair. Assume that

(i) S(A0) ⊆ B0, T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) (S, T ) is an α-proximal admissible pair;

(iii) there exist elements x0 and x1 in A0 such that

d(x1, Sx0) = d(A,B) and min{α(x0, x1), α(x1, x0)} ≥ 1;

(iv) S and T are continuous.

Then there exists u ∈ A such that d(u, Su) = d(u, Tu) = d(A,B), that is, u is a common best proximity
point of S and T .

Proof. By assumption (iii), there exist x0 and x1 ∈ A0 such that

d(x1, Sx0) = d(A,B) and min{α(x0, x1), α(x1, x0)} ≥ 1. (2.1)

From condition (i), we have Tx1 ∈ B0, so there exists x2 ∈ A0 such that

d(x2, Tx1) = d(A,B). (2.2)

By (2.1), (2.2) and from the fact that (S, T ) is an α-proximal admissible pair

min{α(x1, x2), α(x2, x1)} ≥ 1.

Again, from condition (i), we have Sx2 ∈ B0, so there exists x3 ∈ A0 such that

d(x3, Sx2) = d(A,B).

Similarly, we have
min{α(x2, x3), α(x3, x2)} ≥ 1.

Repeating the above strategy, by induction, we construct a sequence {xn} in A0 such that

min{α(xn, xn+1), α(xn+1, xn)} ≥ 1 for all n ≥ 0 (2.3)
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and
d(x2n+1, Sx2n) = d(x2n+2, Tx2n+1) = d(A,B) for all n ≥ 0. (2.4)

From condition (i), the pair (A,B) satisfies the weak (P )-property, so

d(x2n+1, x2n+2) ≤ d(Sx2n, Tx2n+1) for all n ≥ 0. (2.5)

Similarly,
d(x2n, x2n+1) ≤ d(Sx2n, Tx2n−1) for all n ≥ 1.

The pair (S, T ) is a generalized α−ψ-proximal contraction, so for all n ≥ 1, using (2.3), (α(x2n, x2n+1)≥1),
(2.5) and (1.1),

d(x2n+1, x2n+2) ≤ d(Sx2n, Tx2n+1) ≤ ψ(M(x2n, x2n+1)),

where

M(x2n, x2n+1) = max{d(x2n, x2n+1),
d(x2n, Sx2n) + d(x2n+1, Tx2n+1)− 2d(A,B)

2
,

d(x2n+1, Sx2n) + d(x2n, Tx2n+1)− 2d(A,B)

2
}.

By a triangular inequality, using (2.4), we have

M(x2n, x2n+1) ≤ max{d(x2n, x2n+1),

d(x2n, x2n+1) + d(x2n+1, Sx2n) + d(x2n+1, x2n+2) + d(x2n+2, Tx2n+1)− 2d(A,B)

2
,

1

2
(d(x2n, x2n+1) + d(x2n+1, x2n+2))},

= max{d(x2n, x2n+1),
d(x2n, x2n+1) + d(x2n+1, x2n+2)

2
},

≤ max{d(x2n, x2n+1), d(x2n+1, x2n+2)}.

Taking in consideration that ψ is a nondecreasing function, we get

d(x2n+1, x2n+2) ≤ ψ(max{d(x2n, x2n+1), d(x2n+1, x2n+2)}). (2.6)

A similar reasoning shows that

d(x2n, x2n+1) ≤ ψ(max{d(x2n−1, x2n), d(x2n, x2n+1)}).

If d(x2n0 , x2n0+1) = 0 for some n0, then from (2.6),

d(x2n0+1, x2n0+2) ≤ ψ(max{0, d(x2n+1, x2n+2)}) = ψ(d(x2n0+1, x2n0+2)),

which necessarily yields that d(x2n0+1, x2n0+2) = 0. So, we have x2n0 = x2n0+1 = x2n0+2 and from (2.4),
we obtain d(x2n0 , Sx2n0) = d(x2n0 , Tx2n0) = d(A,B), that is x2n0 is a common best proximity point of S
and T . Similarly, if d(x2n0+1, x2n0+2) = 0 for some n0, then we get that x2n0+1 is a common best proximity
point of S and T and the proof is completed.

Now, we suppose that
d(xn, xn+1) > 0, for all n ≥ 0.

Suppose that max{d(x2n, x2n+1), d(x2n+1, x2n+2)} = d(x2n+1, x2n+2) for some n, then from (2.6) and since
ψ(t) < t for all t > 0, we obtain

d(x2n+1, x2n+2) ≤ ψ(d(x2n+1, x2n+2)) < d(x2n+1, x2n+2),

which is a contradiction. Then, we have

d(x2n+1, x2n+2) ≤ ψ(d(x2n, x2n+1)), for all n ≥ 0.
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Similarly,
d(x2n, x2n+1) ≤ ψ(d(x2n−1, x2n)), for all n ≥ 1.

We deduce
d(xn, xn+1) ≤ ψ(d(xn−1, xn)) for all n ≥ 1.

Therefore,
d(xn, xn+1) ≤ ψn(d(x0, x1)) for all n ≥ 0.

Then, for all k ≥ 0

d(xn, xn+k) ≤
n+k−1∑
m=n

d(xm, xm+1) ≤
∞∑

m=n

d(xm, xm+1) ≤
∞∑

m=n

ψm(d(x0, x1)).

Since ψ ∈ Ψ, it follows that {xn} is a Cauchy sequence in A, which is a closed subset of the complete metric
space (X, d), then there exists u ∈ A such that xn → u as n → ∞. The mapping S is continuous at u,
so lim

n→∞
Sx2n = Su. Moreover the continuity of the metric function d implies that lim

n→∞
d(x2n+1, Sx2n) =

d(u, Su). Then, by (2.4), we obtain d(A,B) = d(u, Su). Similarly, by the continuity of T we have d(A,B) =
d(u, Tu). So, u is a common best proximity point of S and T .

In the next result, we replace the continuity hypothesis by the following condition on A.

(H) If{xn} is a sequence in A such that min{α(xn, xn+1), α(xn+1, xn)} ≥ 1 for all n and xn → x ∈ A as
n → ∞, then there exists a subsequence {xn(k)} of {xn} such that min{α(u, xn(k)), α(xn(k), u)} ≥ 1
for all k.

Theorem 2.2. Let A and B be nonempty subsets of a complete metric space (X, d) such that A0 6= ∅ and
A is closed. Let S, T : A→ B be a generalized α− ψ-proximal contraction pair. Assume that

(i) S(A0) ⊆ B0, T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) (S, T ) is an α-proximal admissible pair;

(iii) there exist elements x0 and x1 in A0 such that

d(x1, Sx0) = d(A,B) and min{α(x0, x1), α(x1, x0)} ≥ 1;

(iv) (H) holds.

Then, there exists u ∈ A such that d(u, Su) = d(u, Tu) = d(A,B).

Proof. Following the proof of Theorem 2.1, there exists a sequence {xn} in A0 such that (2.3) and (2.4)
hold. Also, {xn} is a Cauchy sequence in the subset A, which is closed in the complete metric space (X, d),
then there exists u ∈ A such that xn → u as n→∞. By hypothesis (H), we have α(u, x2n(k)+1) ≥ 1.

On the other hand, by a triangular inequality, using (1.1) and (2.4), we get

d(u, Su) ≤ d(u, x2n(k)+2) + d(x2n(k)+2, Tx2n(k)+1) + d(Tx2n(k)+1, Su)

≤ d(u, x2n(k)+2) + d(A,B) + ψ(M(u, x2n(k)+1)),

where

M(u, x2n(k)+1) = max{d(u, x2n(k)+1),
d(u, Su) + d(x2n(k)+1, Tx2n(k)+1)− 2d(A,B)

2
,

d(x2n(k)+1, Su) + d(u, Tx2n(k)+1)− 2d(A,B)

2
}.
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Again, by a triangular inequality, using (2.4), we have

M(u, x2n(k)+1) ≤ max{d(u, x2n(k)+1),
d(u, Su) + d(x2n(k)+1, x2n(k)+2)− d(A,B)

2
,

d(x2n(k)+1, u) + d(u, Su) + d(u, x2n(k)+2)− d(A,B)

2
}.

We get d(u, Su)− d(A,B) ≥ 0. Suppose that d(u, Su)− d(A,B) > 0. We know that

lim
k→∞

d(u, x2n(k)+1) = lim
k→∞

d(x2n(k)+1, x2n(k)+2) = lim
k→∞

d(u, x2n(k)+2) = 0.

Then, there exists N ∈ N such that for all k ≥ N,

M(u, x2n(k)+1) ≤
3

4
[d(u, Su)− d(A,B)]

ψ in a nondecreasing function, so we obtain for all k ≥ N,

d(u, Su)− d(A,B) ≤ d(u, x2n(k)+2) + ψ(
3

4
[d(u, Su)− d(A,B)]).

Having ψ(t) < t for all t > 0, then letting k →∞, we get

d(u, Su)− d(A,B) ≤ ψ(
3

4
[d(u, Su)− d(A,B)]) <

3

4
[d(u, Su)− d(A,B)],

which is a contradiction. Hence, we find that d(u, Su) − d(A,B) = 0, that is, d(u, Su) = d(A,B). By a
similar reasoning, we find that d(u, Tu) = d(A,B). Thus, u is a common best proximity point of S and
T.

Now, we prove the uniqueness of such common best proximity point. Here, we need the following
additional condition.

(U): For all x, y ∈ CB(S, T ), we have α(x, y) ≥ 1, where CB(S, T ) denotes the set of common best
proximity points of S and T.

Theorem 2.3. Adding condition (U) to the hypotheses of Theorem 2.1 (resp. Theorem 2.2), we obtain that
u is the unique common best proximity point of S and T.

Proof. We argue by contradiction, that is, there exist u, v ∈ A such that d(A,B) = d(u, Su) = d(u, Tu) =
d(v, Sv) = d(v, Tv) with u 6= v. By assumption (U), we have α(u, v) ≥ 1. So, as the pair (A,B) satisfies the
weak (P )-property, by (1.1), we have

0 < d(u, v) ≤ d(Su, Tv) ≤ ψ(M(u, v)), (2.7)

where

M(u, v) = max{d(u, v),
d(u, Su) + d(v, Tv)− 2d(A,B)

2
,
d(v, Su) + d(u, Tv)− 2d(A,B)

2
}

= max{d(u, v), 0,
d(v, Su) + d(u, Tv)− 2d(A,B)

2
}.

By a triangular inequality, we have

M(u, v) ≤ max{d(u, v),
d(v, u) + d(u, Su) + d(u, v) + d(v, Tv)− d(A,B)

2
}

= max{d(u, v), d(u, v)} = d(u, v).
(2.8)

Using (2.7), (2.8) and the fact that ψ in a nondecreasing function together with the property ψ(t) < t for
all t > 0,

0 < d(u, v) ≤ ψ(d(u, v)) < d(u, v),

which is a contradiction. Hence, u = v.
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The following example illustrates Theorem 2.1.

Example 2.4. Let X = [0,∞)×[0,∞) be endowed with the metric d((x1, x2), (y1, y2)) = |x1−y1|+|x2−y2|.
Take A = {1} × [0,∞) and B = {0} × [0,∞). Remark that d(A,B) = d((1, 0), (0, 0)) = 1. Also, A0 = A
and B0 = B. Moreover, A is closed. Consider the mappings S, T : A→ B as

S(1, x) =

{
(0, x2 ) if 0 ≤ x ≤ 1

(0, x− 1
2) if x > 1,

and T (1, x) =

{
(0, x2 ) if 0 ≤ x ≤ 1

(0, 2x− 3
2) if x > 1.

We have S(A0) ⊆ B0 and T (A0) ⊆ B0. Now, let (1, x1), (1, x2) ∈ A and (0, u1), (0, u2) ∈ B such that{
d((1, x1), (0, u1)) = d(A,B) = 1

d((1, x2), (0, u2)) = d(A,B) = 1.

Necessarily, (x1 = u1 ∈ [0, 1]) and (x2 = u2 ∈ [0, 1]). In this case,

d((1, x1), (1, x2)) = d((0, u1), (0, u2)),

that is, the pair (A,B) has the weak (P )-property.
Take ψ(t) = 1

2 t for all t ≥ 0. Define α : X ×X → [0,∞) as follows{
α((x, y), (s, t)) = 1 if (x, y), (s, t) ∈ [0, 1]× [0, 1]

α((x, y), (s, t)) = 0 if not.

Let (1, x1), (1, x2), (1, u1) and (1, u2) in A such that
α((1, x1), (1, x2)) ≥ 1

d((1, u1), S(1, x1)) = d(A,B) = 1

d((1, u2), T (1, x2)) = d(A,B) = 1.

Then, necessarily, (x1, x2) ∈ [0, 1]× [0, 1]. We also have (u1 = x1
2 and u2 = x2

2 ). So

min{α((1, u1), (1, u2)), α((1, u2), (1, u1))} ≥ 1,

that is, (S, T ) is α-proximal admissible pair.
Let (1, x) and (1, y) ∈ A such that α((1, x), (1, y)) ≥ 1. Then, x, y ∈ [0, 1]. In this case, we have

d(S(1, x), T (1, y)) = d((0,
x

2
), (0,

y

2
))

= |x
2
− y

2
| = ψ(d((1, x), (1, y))) ≤ ψ(M((1, x), (1, y))).

We deduce that (1.1) holds. Furthermore, S and T are continuous. Moreover, the condition (iii) of Theorem
2.1 is verified. Indeed, for x0 = (1, 1) and x1 = (1, 12), we have

d(x1, Sx0) = d((1,
1

2
), (0,

1

2
)) = 1 = d(A,B) and min{α(x0, x1), α(x1, x0)} ≥ 1.

Hence, all hypotheses of Theorem 2.1 are verified. So, the pair (S, T ) admits a common best proximity point
which is u = (1, 0). It is also unique.

Theorem 2.5. Let A and B be nonempty subsets of a complete metric space (X, d) such that A0 6= ∅ and
A is closed. Let S, T : A → B be a generalized α − ψ-proximal contraction pair of the first kind. Assume
that
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(i) S(A0) ⊆ B0, T (A0) ⊆ B0;

(ii) (S, T ) is an α-proximal admissible pair;

(iii) there exist elements x0 and x1 in A0 such that

d(x1, Sx0) = d(A,B) and min{α(x0, x1), α(x1, x0)} ≥ 1;

(iv) S and T are continuous.

Then, there exists u ∈ A such that d(u, Su) = d(u, Tu) = d(A,B).

Proof. Following the proof of Theorem 2.1, we construct a sequence {xn} in A0 such that

min{α(xn, xn+1), α(xn+1, xn)} ≥ 1 for all n ≥ 0 (2.9)

and
d(x2n+1, Sx2n) = d(x2n+2, Tx2n+1) = d(A,B) for all n ≥ 0. (2.10)

Since (S, T ) is a generalized α − ψ-proximal contraction pair of the first kind, from (2.9), (2.10) and (2.1),
we have

d(x2n+1, x2n+2) ≤ ψ(M(x2n, x2n+1))

and
d(x2n+1, x2n) ≤ ψ(M(x2n, x2n−1)).

Then, following the proof of Theorem 2.1, we have

d(xn, xn+1) ≤ ψ(d(xn−1, xn) for all n ≥ 0.

Consequently, {xn} is a Cauchy sequence in the subset A, which is closed in the complete metric space
(X, d), then there exists u ∈ A such that xn → u as n→∞. Also, using the continuity of S and T, we get
that d(u, Su) = d(u, Tu) = d(A,B). Thus, u is a common best proximity point of S and T .

Theorem 2.6. Adding condition (U) to the hypotheses of Theorem 2.5, we obtain that u is the unique
common best proximity point of S and T.

Proof. We argue by contradiction, that is, there exist u, v ∈ A such that d(A,B) = d(u, Su) = d(u, Tu) =
d(v, Sv) = d(v, Tv) with u 6= v. By assumption (U), we have α(u, v) ≥ 1. So, as the pair (S, T ) is a
generalized α− ψ-proximal contraction of the first kind, then

0 < d(u, v) ≤ ψ(M(u, v)) = ψ(d(u, v)) < d(u, v),

which is a contradiction. Hence, u = v.

We provide the following example.

Example 2.7. Let X = [0,∞)×[0,∞) be endowed with the metric d((x1, x2), (y1, y2)) = |x1−y1|+|x2−y2|.
Take A = {1}× [0,∞) and B = {0}× [0,∞). We mention that d(A,B) = 1, A0 = A and B0 = B. Consider
the mappings S, T : A→ B as

S(1, x) =

{
(0, x

2+1
4 ) if 0 ≤ x ≤ 1

(0, x− 1
2) if x > 1,

and T (1, x) =

{
(0, x

2+1
4 ) if 0 ≤ x ≤ 1

(0, 2x− 3
2) if x > 1.

We have S(A0) ⊆ B0 and T (A0) ⊆ B0.
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Take ψ(t) = 1
2 t for all t ≥ 0. Define α : X ×X → [0,∞) as follows{

α((x, y), (s, t)) = 1 if (x, y), (s, t) ∈ [0, 1]× [0, 1]

α((x, y), (s, t)) = 0 if not.

Let (1, x1), (1, x2), (1, u1) and (1, u2) in A such that
α((1, x1), (1, x2)) ≥ 1

d((1, u1), S(1, x1)) = d(A,B) = 1

d((1, u2), T (1, x2)) = d(A,B) = 1.

Then, necessarily, (x1, x2) ∈ [0, 1]× [0, 1]. Also, we have (u1 =
1+x2

1
4 and u2 =

1+x2
2

4 ). So

min{α((1, u1), (1, u2)), α((1, u2), (1, u1))} ≥ 1

that is, (S, T ) is an α-proximal admissible pair.
Moreover,

d((1, u1), (1, u2)) = d((1,
1 + x21

4
), (1,

1 + x22
4

))

= |1 + x21
4
− 1 + x22

4
| = |x

2
1

4
− x22

4
| = 1

4
(x1 + x2)|x1 − x2|

≤ 1

2
|x1 − x2| = ψ(d((1, x1), (1, x2))) ≤ ψ(M((1, x1), (1, x2))).

Then, (S, T ) is a generalized α − ψ-proximal contraction pair of the first kind. Furthermore, S and T are
continuous. Moreover, the condition (iii) of Theorem 2.1 is verified. Indeed, for x0 = (1, 1) and x1 = (1, 12),
we have

d(x1, Sx0) = d((1,
1

2
), (0,

1

2
)) = 1 = d(A,B) and min{α(x0, x1), α(x1, x0)} ≥ 1.

Hence, all hypotheses of Theorem 2.5 are verified. So, the pair (S, T ) admits a common best proximity point
which is u = (1, 2−

√
3). It is also unique.

3. Consequences

In this paragraph, we present some consequences of our obtained results.

3.1. Some classical best proximity point results

We have the following natural results.

Corollary 3.1. Let A and B be nonempty subsets of a complete metric space (X, d) such that A0 6= ∅ and
A is closed. Let S, T : A→ B and α : X ×X → [0,∞) be given non-self mappings such that

α(x, y)d(Sx, Ty) ≤ ψ(M(x, y)),

for all x, y ∈ A, where ψ ∈ Ψ and M(x, y) is defined by (1.2).
Also, assume that

(i) S(A0) ⊆ B0, T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) (S, T ) is an α-proximal admissible pair;

(iii) there exist elements x0 and x1 in A0 such that

d(x1, Sx0) = d(A,B) and min{α(x0, x1), α(x1, x0)} ≥ 1;



H. Aydi, A. Felhi, E. Karapinar, J. Nonlinear Sci. Appl. 9 (2016), 2658–2670 2667

(iv) S and T are continuous or (H) holds.

Then, there exists u ∈ A such that d(u, Su) = d(u, Tu) = d(A,B).

Corollary 3.2. Let A and B be nonempty subsets of a complete metric space (X, d) such that A0 6= ∅ and
A is closed. Let S, T : A → B and α : X × X → [0,∞) be given non-self mappings. Suppose there exists
k ∈ [0, 1) such that

d(Sx, Ty) ≤ kM(x, y),

for all x, y ∈ A, satisfying α(x, y) ≥ 1, where M(x, y) is defined by (1.2). Also, assume that

(i) S(A0) ⊆ B0, T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) (S, T ) is an α-proximal admissible pair;

(iii) there exist elements x0 and x1 in A0 such that

d(x1, Sx0) = d(A,B) and min{α(x0, x1), α(x1, x0)} ≥ 1;

(iv) S and T are continuous or (H) holds.

Then, there exists u ∈ A such that d(u, Su) = d(u, Tu) = d(A,B).

Proof. It suffices to take ψ(t) = kt in Theorem 2.1 (resp. Theorem 2.2).

Corollary 3.3. Let A and B be nonempty subsets of a complete metric space (X, d) such that A0 6= ∅ and
A is closed. Let S, T : A → B and α : X × X → [0,∞) be given non-self mappings. Suppose there exists
k ∈ [0, 1) such that

d(Sx, Ty) ≤ kd(x, y),

for all x, y ∈ A. Also, assume that

(i) S(A0) ⊆ B0, T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) (S, T ) is an α-proximal admissible pair;

(iii) there exist elements x0 and x1 in A0 such that

d(x1, Sx0) = d(A,B) and min{α(x0, x1), α(x1, x0)} ≥ 1;

(iv) S and T are continuous or (H) holds.

Then, there exists u ∈ A such that d(u, Su) = d(u, Tu) = d(A,B).

In the case A = B, we have the following common fixed point result.

Corollary 3.4. Let A be nonempty closed subset of a complete metric space (X, d). Let S, T : A→ A be a
generalized α− ψ-proximal contraction pair. Assume that

(i) (S, T ) is an α-proximal admissible pair;

(ii) there exists x0 in A0 such that

min{α(x0, Sx0), α(Sx0, x0)} ≥ 1;

(iii) S and T are continuous or (H) holds.

Then, the pair (S, T ) admits a common fixed point.

Corollary 3.5. Let A and B be nonempty subsets of a complete metric space (X, d) such that A0 6= ∅ and
A is closed. Take ψ ∈ Ψ. Let S, T : A→ B be given non-self mappings such that

d(Sx, Ty) ≤ ψ(M(x, y))

for all x, y ∈ A, where M(x, y) is defined by (1.2).
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Assume that S(A0) ⊆ B0, T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property. Then, the pair (S, T )
admits a unique common best proximity point.

Proof. It suffices to take α(x, y) = 1 in Theorem 2.2.

Corollary 3.6. Let A and B be nonempty subsets of a complete metric space (X, d) such that A0 6= ∅ and
A is closed. Take ψ ∈ Ψ. Let T : A→ B be a given non-self mapping such that

d(Tx, Ty) ≤ ψ(M(x, y))

for all x, y ∈ A, where M(x, y) is defined by (1.2).
Assume that T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property. Then, T has a unique best proximity

point.

Corollary 3.7. Let A and B be nonempty subsets of a complete metric space (X, d) such that A0 6= ∅ and
A is closed. Let S, T : A→ B be given continuous non-self mappings such that{

d(u1, Sx1) = d(A,B)

d(u2, Tx2) = d(A,B)
⇒ d(u1, u2) ≤ ψ(M(x1, x2)),

where x1, x2, u1, u2 ∈ A, M(x, y) is defined by (1.2) and ψ ∈ Ψ. Assume that S(A0) ⊆ B0 and T (A0) ⊆ B0.
Then, there exists u ∈ A such that d(u, Su) = d(u, Tu) = d(A,B).

Proof. It suffices to take α(x, y) = 1 in Theorem 2.5.

Corollary 3.8. Let A and B be nonempty subsets of a complete metric space (X, d) such that A0 6= ∅ and
A is closed. Let T : A→ B be a given continuous non-self mapping such that{

d(u1, Tx1) = d(A,B)

d(u2, Tx2) = d(A,B)
⇒ d(u1, u2) ≤ ψ(M(x1, x2)),

where x1, x2, u1, u2 ∈ A, M(x, y) is defined by (1.2) and ψ ∈ Ψ. Assume that T (A0) ⊆ B0. Then, T has a
best proximity point.

3.2. Some best proximity results on a metric space endowed with a graph

Let (X, d) be a metric space and ∆ := {(x, x) : x ∈ X} be the diagonal of X ×X. Let G be a directed
graph such that the set V (G) of its vertices coincides with X and ∆ ⊂ E(G), where E(G) is the set of
edges of the graph. Assume also that G has no parallel edges, and thus one can identify G with the pair
(V (G), E(G)) .

We need in the sequel the following hypothesis.

(HG) If {xn} is a sequence in A such that (xn, xn+1), (xn+1, xn) ∈ E(G) for all n and xn → x ∈ A as
n→∞, then there exists a subsequence {xn(k)} of {xn} such that (xn(k), x), (x, xn(k)) ∈ E(G) for all
k.

Again, we introduce the following definition.

Definition 3.9. Let A and B be nonempty subsets of a metric space (X, d) endowed with a graph G.
S, T : A→ B is named a G-proximal pair of mappings if

(x1, x2) ∈ E(G)

d(u1, Sx1) = d(A,B)

d(u2, Tx2) = d(A,B)

⇒ (u1, u2), (u2, u1) ∈ E(G),

where x1, x2, u1, u2 ∈ A.
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We have two best proximity point results on a metric space endowed with a graph.

Corollary 3.10. Let A and B be nonempty subsets of a complete metric space (X, d) endowed with a graph
G such that A0 6= ∅ and A is closed. Let S, T : A→ B be given non-self mappings such that

d(Sx, Ty) ≤ ψ(M(x, y)) (3.1)

for all x, y ∈ A such that (x, y) ∈ E(G), where ψ ∈ Ψ and M(x, y) is defined by (1.2). Suppose that

(i) S(A0) ⊆ B0, T (A0) ⊆ B0 and (A,B) satisfies the weak (P )-property;

(ii) (S, T ) is a G-proximal pair;

(iii) there exist elements x0 and x1 in A0 such that

d(x1, Sx0) = d(A,B) and (x0, x1), (x1, x0) ∈ E(G);

(iv) S and T are continuous or (HG) holds.

Then, there exists u ∈ A such that

d(u, Su) = d(u, Tu) = d(A,B).

Proof. It suffices to consider α : X ×X → [0,∞) such that

α(x, y) =

{
1 if (x, y) ∈ E(G)

0 if not.

All hypotheses of Theorem 2.1 (resp. Theorem 2.2) are satisfied. This completes the proof.

Similar to Corollary 3.10, we may state the following result.

Corollary 3.11. Let A and B be nonempty subsets of a complete metric space (X, d) endowed with a graph
G such that A0 6= ∅ and A is closed. Let S, T : A→ B be a given non-self mappings such that{

d(u1, Sx1) = d(A,B)

d(u2, Tx2) = d(A,B)
⇒ d(u1, u2) ≤ ψ(M(x1, x2)),

where x1, x2, u1, u2 ∈ A such that (x1, x2) ∈ E(G), where ψ ∈ Ψ and M(x, y) is defined by (1.2). Suppose
that

(i) S(A0) ⊆ B0, T (A0) ⊆ B0;

(ii) (S, T ) is a G-proximal pair;

(iii) there exist elements x0 and x1 in A0 such that

d(x1, Sx0) = d(A,B) and (x0, x1), (x1, x0) ∈ E(G);

(iv) S and T are continuous.

Then, there exists u ∈ A such that

d(u, Su) = d(u, Tu) = d(A,B).

3.3. More consequences

It is easy to see that more consequences can be derived from our results by taking:

(a) S = T ;

(b) A = B;

(c) α(x, y) in a proper way like in [9];

(d) ψ(t) in a proper way like in [9];

(e) M(x, y) in a proper way.
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The case of (a) is clear. Notice that in case of (b), we derive several existing fixed point theorems. For
example, by using (c) together with (b), we conclude a number of existing fixed point results in the frame
of cyclic mappings as well as fixed point results in the context of partially ordered metric spaces. It is
worth mentioning that (d) implies several famous results by choosing ψ(t) in a proper way. The number of
elements in M(x, y) can be restricted and each restriction gives another corollary.
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