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Abstract

In this paper, we consider the spacelike curves in de Sitter space and we investigate the singularities of
lightcone dual surfaces and hyperbolic dual surfaces of these spacelike curves in the framework of the theory
of Legendrian dualities between pseudo-spheres in Minkowski space. We classify the singularities of these
subjects and reveal the relationships between their singularities and geometric invariants of spacelike curves
under the action of the Lorentz group. As application and illustration of the main results, an example is
given. c©2016 All rights reserved.
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1. Introduction

In the theory of relativity, the future lightcone of an event is the boundary of its causal future in
Minkowski space-time [11]. Up to now, different types of surfaces and curves in the future lightcone such
as spacelike surfaces and null curves have been studied [7, 8, 9, 10]. In fact, any simply connected two
dimensional Riemannian manifold can be isometrically immersed in a lightcone in Minkowski four space and
a famous global geometry property is that a compact spacelike surface in a lightcone is diffeomorphic to a
two dimensional sphere S2. Moreover, from the relations between the conformal transformation group and
the Lorentzian group of Rn1 , and the submanifolds of the Riemannian sphere Sn and the submanifolds of
the lightcone LCn+1, we know that it is important to study submanifolds of the lightcone [8].
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In this paper, we investigate generic singularities of lightcone dual surfaces, which are spacelike surfaces
in the lightcone (cf., Proposition 2.1), and hyperbolic dual surfaces generated by spacelike curves in de Sitter
space. Our findings indicate that there are two kinds of spacelike dual surfaces of spacelike curves. One is
the dual of the spacelike curve of the de Sitter 3-space embedded in the lightcone and another is the dual
of the spacelike curve of the de Sitter 3-space embedded in the hyperbolic space (cf., Proposition 3.1). By
definition, these two kinds of dual surfaces are different. The main results are Theorems 5.3 and 6.3. These
results give a classification of the singularities of lightcone dual surfaces and hyperbolic dual surfaces for
generic spacelike curves in de Sitter 3-space.

The rest of this paper is organized as follows. Firstly, we introduce some basic concepts. In Section
3, we investigate the relationships among the hyperbolic dual surfaces, the lightcone dual surfaces and
the spacelike curves by Legendrian dualities [4]. Then, we introduce two different families of functions
on spacelike curves γ that will be useful to study the singularities of the lightcone dual surfaces and the
hyperbolic dual surfaces in Section 4. Afterwards, some general results on the singularity theory are used
for families of function germs and the main results (Theorem 5.3 and Theorem 6.3) are proved in Section 5
and Section 6. As application and illustration of the main results, we give an example in Section 7.

All maps considered here are of class C∞ unless otherwise stated.

2. The basic concepts

In this section, we will use some basic concepts and results in [2, 11]. Let R4 be a four-dimensional
vector space, for any two vectors x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) in R4, their pseudo scalar product
is defined by 〈x,y〉 = −x0y0 + x1y1 + x2y2 + x3y3. The pair (R4, 〈, 〉) is called Minkowski space-time. We
denote it as R4

1.
For any vectors x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) and z = (z0, z1, z2, z3) in R4

1, their pseudo vector
product is defined by

x ∧ y ∧ z =

∣∣∣∣∣∣∣∣
−e0 e1 e2 e3

x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

∣∣∣∣∣∣∣∣ ,
where e0, e1, e2, e3 is the canonical basis of R4

1. We remark that 〈x∧ y ∧ z,w〉 = det(x,y, z,w). A non-zero
vector x in R4

1 is called spacelike, lightlike or timelike if 〈x,x〉 > 0, 〈x,x〉 = 0, 〈x,x〉 < 0, respectively. The
norm of x ∈ R4

1 is defined by ‖ x ‖=
√
| 〈x,x〉 |.

We define de Sitter three-space by

S3
1 = {x ∈ R4

1 | 〈x,x〉 = 1}.

Let γ : I → S3
1 ⊂ R4

1 be a smooth regular curve in S3
1 (i.e., γ̇(t) 6= 0 for any t ∈ I ), where I is

an open interval. The curve γ is called a spacelike curve, if its velocity is 〈γ̇(t), γ̇(t)〉 > 0 for any t ∈ I.
The arc-length of a spacelike curve γ(t), measured from γ(t0)(t0 ∈ I) is s(t) =

∫ t
t0
‖ γ̇(t) ‖ dt. Then the

parameter s is determined such that ‖ γ ′(s) ‖= 1, where γ ′(s) =
dγ
ds . So we say that a spacelike curve γ

is parameterized by arc-length if it satisfies that ‖ γ ′(s) ‖= 1. Throughout the remainder in this paper we
denote the parameter s of γ as the arc-length parameter. Employing the usual terminology, the spacelike
unit vector fields t(s) = γ ′(s) is call the tangent vector of γ at s. Under the assumption that 〈t′(s), t′(s)〉 6= 1,

one can construct a unit vector n(s) =
t
′
(s)+γ(s)

‖t′ (s)+γ(s)‖ . Moreover, define e(s) = γ(s) ∧ t(s) ∧ n(s), then we can

define a pseudo orthonormal frame {γ(s), t(s),n(s), e(s)} of R4
1 along γ(s). By the standard arguments, we

can show the following Frenet-Serret type formula:
γ ′(s)
t′(s)
n′(s)
e′(s)

 =


0 1 0 0
−1 0 kg(s) 0
0 kg(s)δ(s) 0 τg(s)
0 0 τg(s) 0




γ(s)
t(s)
n(s)
e(s)

 .
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Here, δ(s) = −〈n(s),n(s)〉, kg(s) =‖ t′(s) + γ(s) ‖ and τg(s) = 1
k2g(s)

det(γ(s),γ
′
(s),γ

′′
(s),γ

′′′
(s)).

We define hyperbolic three-space by

H3
+ = {x ∈ R4

1 | 〈x,x〉 = −1, x0 ≥ 1}.

In addition, we define the future lightcone at the origin by

LC3
+ = {x ∈ R4

1 | 〈x,x〉 = 0, x0 > 0}.

For the case that δ(s) = −1, we define the first lightcone dual surface of the spacelike curve by

FLSγ : I × R→ LC3
+, FLSγ(s, θ) = γ(s) + sinh θn(s) + cosh θe(s).

Under this assumption, we also define the first hyperbolic dual surface of the spacelike curve by

FHDγ : I × R→ H3
+, FHDγ(s, θ) = sinh θn(s) + cosh θe(s).

For the case that δ(s) = 1, we define the second lightcone dual surface of the spacelike curve by

SLSγ : I × R→ LC3
+, SLSγ(s, θ) = γ(s) + cosh θn(s) + sinh θe(s).

We also define the second hyperbolic dual surface of the spacelike curve by

SHDγ : I × R→ H3
+, SHDγ(s, θ) = cosh θn(s) + sinh θe(s).

In this paper, we consider the singularities of these surfaces. Then we have the following proposition.

Proposition 2.1. Let γ : I → S3
1 be a unit speed spacelike curve with kg(s) 6= 0 and τg(s) 6= 0, then we

have the following claims.

(1) FLSγ(s, θ) is a spacelike surface in the lightcone and (s, θ) is a singular point of FLSγ(s, θ) if and
only if sinh θ = 1

kg(s) . i.e.

FLSγ(s, θ(s)) = γ(s) +
1

kg(s)
n(s) +

√
1 + k2

g(s)

kg(s)
e(s).

(2) FHDγ(s, θ) is a spacelike surface and (s, θ) is a singular point of FHDγ(s, θ) if and only if sinh θ = 0,
i.e.

FHDγ(s, θ(s)) = e(s).

(3) SLSγ(s, θ) is a regular spacelike surface.

(4) SHDγ(s, θ) is a regular spacelike surface.

Proof. By some calculations, we can get that〈
∂FLSγ
∂s

(s, θ),
∂FLSγ
∂s

(s, θ)

〉
= (1− kg(s) sinh θ)2 + τ2

g (s) > 0

and 〈
∂FLSγ
∂θ

(s, θ),
∂FLSγ
∂θ

(s, θ)

〉
= (kg(s) sinh θ)2 + τ2

g (s) > 0.

This means that they are spacelike vectors. By the definitions of spacelike surfaces in the lightcone
and first lightcone dual surface, this means that FLSγ(s, θ) is a spacelike surface lightcone. On the other
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hand,
∂FLSγ
∂s (s, θ) and

∂FLSγ
∂θ (s, θ) are linearly dependent if and only if 1−kg(s) sinh θ = 0. This means that

sinh θ = 1
kg(s) . The assertion (1) follows.

(2) By the similar reason, we have the assertion (2).
(3) By some calculations, we can get that〈

∂SLSγ
∂s

(s, θ),
∂SLSγ
∂s

(s, θ)

〉
= (1 + kg(s) cosh θ)2 + τ2

g (s) > 0

and 〈
∂SLSγ
∂θ

(s, θ),
∂SLSγ
∂θ

(s, θ)

〉
= (kg(s) cosh θ)2 + τ2

g (s) > 0.

This means that they are spacelike vectors. By the definitions of spacelike surfaces in the lightcone and
second lightcone dual surface, this means that SLSγ(s, θ) is a spacelike surface in the lightcone. On the

other hand,
∂SLSγ
∂s (s, θ) and

∂SLSγ
∂θ (s, θ) are linearly dependent if and only if 1+kg(s) cosh θ = 0. This means

that cosh θ = − 1
kg(s) . Note that it is impossible for the reason that kg(s) =‖ t′(s)+γ(s) ‖> 0 and cosh θ > 0.

This means that
∂SLSγ
∂s (s, θ) and

∂SLSγ
∂θ (s, θ) are linearly independent. The assertion (3) follows.

(4) By the similar reason, we have the assertion (4).

By Proposition 2.1, both the second lightcone dual surface and the second hyperbolic dual surface are
regular surfaces, this means that they are locally diffeomorphic to a plane R2. For our purpose, we know
that only the first lightcone dual surface and the first hyperbolic dual surface have special interested in
singularity theory (i.e. we only care for the case that δ(s) = −1 ). To describe their singularities, we find
the lightcone invariants of γ as follows:

ρ(s) = k2
g(s)τ

2
g (s)[1 + k2

g(s)]− [k
′
g(s)]

2

and
σ(s) = k

′′
g (s) + kg(s)τ

2
g (s)− (2k

′
g(s)τg(s) + kg(s)τ

′
g(s))

√
1 + k2

g(s).

3. Legendrian dualities among lightcone dual surfaces, hyperbolic dual surfaces and spacelike
curves

We introduce the Legendrian dualities between pseudo-spheres in Minkowski space-time which has been
proved to be a basic tool for the study of surfaces in pseudo-spheres in Minkowski space [3, 4, 5, 6, 12].
We define one-forms 〈dv, ω〉 = −ω0dv0 +

∑3
i=1 ωidvi and 〈v, dω〉 = −v0dω0 +

∑3
i=1 vidωi on R4

1 × R4
1 and

consider the following three double fibrations.

(1) (a) H3
+ × S3

1 ⊃ ∆1 = {(v,w) | 〈v,w〉 = 0},
(b) π11 : ∆1 −→ H3

+, π12 : ∆1 −→ S3
1 ,

(c) θ11 = 〈dv,w〉|∆1 , θ12 = 〈v, dw〉|∆1 ;

(2) (a) H3
+ × LC3

+ ⊃ ∆2 = {(v,w) | 〈v,w〉 = −1},
(b) π21 : ∆2 −→ H3

+, π22 : ∆2 −→ LC3
+,

(c) θ21 = 〈dv,w〉|∆2 , θ22 = 〈v, dw〉|∆2 ;

(3) (a) LC3
+ × S3

1 ⊃ ∆3 = {(v,w) | 〈v,w〉 = 1},
(b) π31 : ∆3 −→ LC3

+, π32 : ∆3 −→ S3
1 ,

(c) θ31 = 〈dv,w〉|∆3 , θ32 = 〈v, dw〉|∆3 .

Here πi1(v,w) = v, πi2(v,w) = w. We remark that θ−1
i1 (0) and θ−1

i2 (0) define the same tangent hyperplane
field over ∆i which is denoted by Ki (i = 1, 2, 3). The basic duality theorem is that each (∆i,Ki) is a
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contact manifold and both of πij(j = 1, 2) are Legendrian fibrations. If there exists an isotropic mapping
i : L −→ ∆i, which means that i∗θi1 = 0, we say that πi1(i(L)) and πi2(i(L)) are ∆i-dual to each other
(i = 1, 2, 3). It is easy to see that the condition i∗θi1 = 0 is equivalent to i∗θi2 = 0. Then we have the
following proposition on the relationships among the lightcone dual surfaces, the hyperbolic dual surfaces,
and the spacelike curves with the help of the above Legendrian dualities.

Proposition 3.1. Let γ : I → S3
1 be a unit speed spacelike curve with kg(s) 6= 0, then we have the following

claims.

(A) For the case that δ(s) = −1, we have the followings.
(1) γ(s) and FHDγ(s, θ) are ∆1-dual to each other.
(2) γ(s) and FLSγ(s, θ) are ∆3-dual to each other.
(3) FLSγ(s, θ) and FHDγ(s, θ) are ∆2-dual to each other.

(B) For the case that δ(s) = 1, we have the followings.
(1) γ(s) and SHDγ(s, θ) are ∆1-dual to each other.
(2) γ(s) and SLSγ(s, θ) are ∆3-dual to each other.
(3) SLSγ(s, θ) and SHDγ(s, θ) are ∆2-dual to each other.

Proof. (A) Consider the mapping
L1(s, θ) = (FHDγ(s, θ),γ(s)).

Then we have 〈FHDγ(s, θ),γ(s)〉 = 0 and

L∗1θ12(s, θ) = 〈FHDγ(s, θ),γ ′(s)〉
= 〈sinh θn(s) + cosh θe(s), t(s)〉
= 0.

The assertion (1) holds.
Consider the mapping L3(s, θ) = (FLSγ(s, θ),γ(s)). Then we have

〈FLSγ(s, θ),γ(s)〉 = 1

and L∗3θ32(s, θ) = 0. The assertion (2) holds.
To prove the claim (3), we consider the mapping

L2(s, θ) = (FHDγ(s, θ),FLSγ(s, θ)).

We also define a mapping
Ψ12 : ∆1 → ∆2 by Ψ12(v,w) = (v,v + w),

and the converse mapping
Ψ21 : ∆2 → ∆1 by Ψ21(v,w) = (v,w − v).

Moreover, we have that

Ψ∗12θ22(v,w) = 〈v, dv + dw〉
= 〈v, dw〉
= θ12.

Thus Ψ12 is a contact diffeomorphism from ∆1 to ∆2. By definition we have

Ψ12 ◦ L1(s, θ) = L2(s, θ),

so that the image of L2(s, θ) is a Legendrian submanifold in ∆2. Then we have the assertion (3) follows.
(B) Using the same computation as the proof of (A), we can get (B).
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4. Lightcone height functions and timelike height functions

In order to study the singularities of the lightcone dual surfaces and the hyperbolic dual surfaces of
spacelike curves in S3

1 , we introduce two very useful different families of functions on spacelike curves in de
Sitter 3-space. Let γ : I → S3

1 be a unit speed spacelike curve, we define two families of functions as follows:

HL : I × LC3
+ −→ R, HL(s,v) = 〈γ(s),v〉 − 1,

HT : I ×H3
+ −→ R, HT (s,v) = 〈γ(s),v〉.

We call HL a lightcone height function of the curve γ. For any fixed v ∈ LC3
+, we denote (hLv )(s) =

HL(s,v).
We callHT a timelike height function of the curve γ. For any fixed v ∈ H3

+, we denote (hTv )(s) = HT (s,v).
By making tedious calculations, we have the following propositions which contain some geometric in-

variants ρ(s), σ(s) and τg(s).

Proposition 4.1. Let γ : I → S3
1 be a unit speed spacelike curve with kg(s) 6= 0 and δ(s) = −1, then we

have the following claims.

(1) (hLv )(s) = 0 if and only if there are real numbers λ, µ, ν ∈ R such that v = γ(s)+λt(s)+µn(s)+νe(s)
and λ2 + µ2 − ν2 = −1.

(2) (hLv )(s) = (hLv )′(s) = 0 if and only if there is a real number θ ∈ R such that v = γ(s) + sinh θn(s) +
cosh θe(s).

(3) (hLv )(s) = (hLv )′(s) = (hLv )′′(s) = 0 if and only if

v = γ(s) +
1

kg(s)
n(s) +

√
1 + k2

g(s)

kg(s)
e(s).

(4) (hLv )(s) = (hLv )′(s) = (hLv )′′(s) = (hLv )(3)(s) = 0 if and only if

v = γ(s) +
1

kg(s)
n(s) +

√
1 + k2

g(s)

kg(s)
e(s)

and ρ(s) = 0.

(5) (hLv )(s) = (hLv )′(s) = (hLv )′′(s) = (hLv )(3)(s) = (hLv )(4)(s) = 0 if and only if

v = γ(s) +
1

kg(s)
n(s) +

√
1 + k2

g(s)

kg(s)
e(s)

and ρ(s) = σ(s) = 0.

Proof. By definition and the Frenet-Serret type formulae, we have

(a) (hLv )′(s) = 〈t(s),v〉,

(b) (hLv )′′(s) = 〈−γ(s) + kg(s)n(s),v〉,

(c) (hLv)(3)(s) = 〈(δ(s)k2
g(s)− 1)t(s) + k′g(s)n(s) + kg(s)τg(s)e(s),v〉,

(d) (hLv )(4)(s) = 〈3δ(s)kg(s)k′g(s)t(s) + (δ(s)k3
g(s) − kg(s) + k′′g (s) + kg(s)τ

2
g (s))n(s) + (2k

′
g(s)τg(s) +

kg(s)τ
′
g(s))e(s)− (δ(s)k2

g(s)− 1)γ(s),v〉.
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By the conditions that (hLv )(s) = 0, v ∈ LC3
+ and δ(s) = −1, we have that there are real numbers λ, µ, ν

such that v = γ(s)+λt(s)+µn(s)+νe(s) and λ2 +µ2−ν2 = −1. The converse direction also holds. By the
above formula (a), we have (hLv )(s) = (hLv )′(s) = 0 if and only if λ = 0. This means that µ2 − ν2 = −1. Let
µ = sinhθ, ν = coshθ, we have v = γ(s) + sinh θn(s) + cosh θe(s). By the above formula (b), the assertion
(3) holds. By the similar arguments to the above cases we can show that the assertion (4) and assertion (5)
holds.

Proposition 4.2. Let γ : I → S3
1 be a unit speed spacelike curve with δ(s) = −1 and kg(s) 6= 0, then we

have the following claims.

(1) (hTv )(s) = (hTv )′(s) = 0 if and only if there are real numbers θ such that v = sinh θn(s) + cosh θe(s).

(2) (hTv )(s) = (hTv )′(s) = (hTv )′′(s) = 0 if and only if v = e(s).

(3) (hTv )(s) = (hTv )′(s) = (hTv )′′(s) = (hTv )(3)(s) = 0 if and only if v = e(s) and τg(s) = 0

(4) (hTv )(s) = (hTv )′(s) = (hTv )′′(s) = (hTv )(3)(s) = (hTv )(4)(s) = 0 if and only if v = e(s) and τg(s) =
τ ′g(s) = 0.

Proof. By the calculations of fourth order derivatives of the timelike height function (hTv )(s), we can show
the assertions similar way to the proof of Proposition 4.1.

5. Singularities of lightcone dual surfaces and hyperbolic dual surfaces

In this section we use some general results on the singularity theory for families of function germs to
classify the singularities of the lightcone dual surfaces and the hyperbolic dual surfaces. Detailed descriptions
can be found in the book [1]. Let function germ F : (R× Rr, (s0,x0))→ R be an r-parameter unfolding of
f(s), where f(s) = F (s,x0). We say that f(s) has Ak-singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k, and
f (k+1)(s0) 6= 0. We also say that f(s) has A≥k-singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k. Let F (s,x)
be an unfolding of f(s) and f(s) has Ak-singularity (k ≥ 1) at s0. We denote the (k − 1)-jet of the partial
derivative ∂F

∂xi
(s,x) at s0 by

j(k−1)

(
∂F

∂xi
(s,x0)

)
(s0) =

k−1∑
j=1

aji(s− s0)j , i = 1, · · · , r.

Then F (s,x) is called an R-versal unfolding if the k×r matrix of coefficients (a0i, aji) has rank k (k ≤ r),
where a0i = ∂F

∂xi
(s0,x0). We now introduce an important set concerning the unfolding. We define the

following set

Dl
F =

{
x ∈ Rr | ∃s ∈ R, F (s,x) =

∂F

∂s
(s,x) = · · · = ∂lF

∂sl
(s,x) = 0

}
,

which is called a discriminant set of order l. Then D1
F = DF and D2

F is the set of singular points of DF .
We have the following classification result (cf.,[1]).

Theorem 5.1. Let F : (R × Rr, (s0,x0)) −→ R be an r-parameter unfolding of f(s) which has the Ak
singularity at s0. Suppose that F (s,x) is an R-versal unfolding, then we have the following claims.

(a) If k = 1, then DF is locally diffeomorphic to {0} × Rr−1 and D2
F = ∅.

(b) If k = 2, then DF is locally diffeomorphic to C(2, 3) × Rr−2, D2
F is diffeomorphic to {0} × Rr−2 and

D3
F = ∅.

(c) If k = 3, then DF is locally diffeomorphic to SW × Rr−3, D2
F is diffeomorphic to C(2, 3, 4) × Rr−3,

D3
F is diffeomorphic to {0} × Rr−3 and D4

F = ∅.
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Here, we respectively call C(2, 3)× R = {(x1, x2) | x2
1 = x3

2} × R a cuspidal edge,

SW = {(x1, x2, x3) | x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v}

a swallowtail, C(2, 3, 4) = {(t2, t3, t4) ∈ R3 | t ∈ R} a (2, 3, 4)-cusp (cf., Fig. 1).

Figure 1: Cuspidal edge and Swallowtail.

By Proposition 4.1, Proposition 4.2 and the definitions of the discriminant set, we have

DHL = {v = γ(s) + sinh θn(s) + cosh θe(s) | s ∈ I, θ ∈ R},
DHT = {v = sinh θn(s) + cosh θe(s) | s ∈ I, θ ∈ R}.

These are the first lightcone dual surface and the second hyperbolic dual surface of γ(s) respectively.
We have the following key propositions on HL(s,v) and HT (s,v).

Proposition 5.2. Under the conditions of Propositions 4.1 and 4.2, we have the following claims.

(1) If hLv0
(s) has Ak-singularity at s0 (k = 1, 2, 3), then HL is an R-versal unfolding of hLv0

.
(2) If hTv0(s) has Ak-singularity at s0 (k = 1, 2, 3), then HT is an R-versal unfolding of hTv0

.

Proof. (1) We consider the pseudo orthonormal basis e0 = γ(s), e1 = t(s), e2 = n(s), e3 = e(s) instead of
the canonical basis of R4

1. Then, we denote that γ(s) = (x0(s), x1(s), x2(s), x3(s)) and

v =

(
v0, v1, v2,±

√
v2

0 − v2
1 − v2

2

)
.

Under this notation, we have

HL(s,v) = −x0(s)v0 + x1(s)v1 + x2(s)v2 ± x3(s)
√
v2

0 − v2
1 − v2

2 − 1.

For a fixed v0 =
(
v0, v1, v2,±

√
v2

0 − v2
1 − v2

2

)
, the two-jet of ∂HL

∂vi
(s,v0)(i = 1, 2, 3) at s0 is given by

j2

(
∂HL

∂vi
(s,v0)

)
(s0) =

∂

∂s

∂HL

∂vi
(s− s0) +

1

2

∂2

∂s2

∂HL

∂vi
(s− s0)2.

It is enough to show that the rank of the following matrix A is three.
−x0(s0)± v0x3(s0)√

v20−v21−v22
x1(s0)∓ v1x3(s0)√

v20−v21−v22
x2(s0)∓ v2x3(s0)√

v20−v21−v22

−x′0(s0)± v0x
′
3(s0)√

v20−v21−v22
x
′
1(s0)∓ v1x

′
3(s0)√

v20−v21−v22
x
′
2(s0)∓ v2x

′
3(s0)√

v20−v21−v22

−x′′0(s0)± v0x
′′
3 (s0)√

v20−v21−v22
x
′′
1(s0)∓ v1x

′′
3 (s0)√

v20−v21−v22
x
′′
2(s0)∓ v2x

′′
3 (s0)√

v20−v21−v22

 .
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We denote that a =

 x0(s0)

x
′
0(s0)

x
′′
0(s0)

, bi =

 xi(s0)

x
′
i(s0)

x
′′
i (s0)

 , i = 1, 2, 3.

detA = ±v0det(b3,b1,b2)√
v2

0 − v2
1 − v2

2

± v1det(a,b3,b2)√
v2

0 − v2
1 − v2

2

± v2det(a,b1,b3)√
v2

0 − v2
1 − v2

2

− v3

v3
det(a,b1,b2)

=
v0det(b1,b2,b3)

±
√
v2

0 − v2
1 − v2

2

− v1det(a,b2,b3)

±
√
v2

0 − v2
1 − v2

2

− v2det(b1,a,b3)

±
√
v2

0 − v2
1 − v2

2

− v3

v3
det(b1,b2,a)

=
v0

v3
det(b1,b2,b3)− v1

v3
det(a,b2,b3)− v2

v3
det(b1,a,b3)− v3

v3
det(b1,b2,a).

Since

γ(s0) ∧ γ
′
(s0) ∧ γ

′′
(s0) = (−det(b1,b2,b3),−det(a,b2,b3),−det(b1,a,b3),−det(b1,b2,a))

and v0 ∈ DHL is a singular point, we have v0 = γ(s0) + 1
kg(s0)n(s0) +

√
1+k2g(s0)

kg(s0) e(s0). Therefore we have

detA =

〈(
v0

v3
,
v1

v3
,
v2

v3
,
v3

v3

)
,γ(s0) ∧ γ

′
(s0) ∧ γ

′′
(s0)

〉

=
1

v3

〈
γ(s0) +

1

kg(s0)
n(s0) +

√
1 + k2

g(s0)

kg(s0)
e(s0), kg(s0)e(s0)

〉
=

1

v3

√
1 + k2

g(s0) 6= 0.

Thus, we have rankA = 3. This completes the proof of claim (1).
(2) Using the same computation as the proof of (1), we can get (2).

Theorem 5.3. Let γ : I → S3
1 be a unit speed spacelike curve with kg(s) 6= 0 and δ(s) = −1.

(A) For the first lightcone dual surface FLSγ(s, θ) of γ, we have the following claims.

(1) The germ of the image of the first lightcone dual surface FLSγ(s, θ) is locally diffeomorphic to cuspidal
edge C(2, 3)× R at s0 if

v0 = γ(s0) +
1

kg(s0)
n(s0) +

√
1 + k2

g(s0)

kg(s0)
e(s0)

and ρ(s0) 6= 0. In this case the critical value set of the first lightcone dual surface

FLSγ(s0, θ(s0)) = γ(s0) +
1

kg(s0)
n(s0) +

√
1 + k2

g(s0)

kg(s0)
e(s0)

is locally diffeomorphic to a line.

(2) The germ of the image of the first lightcone dual surface FLSγ(s, θ) is locally diffeomorphic to swal-
lowtail SW at s0 if

v0 = γ(s0) +
1

kg(s0)
n(s0) +

√
1 + k2

g(s0)

kg(s0)
e(s0),

ρ(s0) = 0 and σ(s0) 6= 0. In this case the critical value set of the first lightcone dual surface

FLSγ(s0, θ(s0)) = γ(s0) +
1

kg(s0)
n(s0) +

√
1 + k2

g(s0)

kg(s0)
e(s0)

is locally diffeomorphic to the (2, 3, 4)-cusp.
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(B) For the first hyperbolic dual surface FHDγ(s, θ) of γ, we have the following claims.

(1) The germ of the image of the first hyperbolic dual surface FHDγ(s, θ) is locally diffeomorphic to
cuspidal edge C(2, 3) × R if v0 = e(s0) and τg(s0) 6= 0. In this case the critical value set of the first
hyperbolic dual surface FHDγ(s0, θ(s0)) = e(s0) is locally diffeomorphic to a line.

(2) The germ of the image of the first hyperbolic dual surface FHDγ(s, θ) is locally diffeomorphic to
swallowtail SW at s0 if v0 = e(s0), τg(s0) = 0 and τ ′g(s0) 6= 0. In this case the critical value set of the
first hyperbolic dual surface FHDγ(s0, θ(s0)) = e(s0) is locally diffeomorphic to the (2, 3, 4)-cusp.

Proof. (A) First, we consider the assertion (A). By Proposition 4.1, the discriminant set of HL(s,v) is

DHL = {v = γ(s) + sinh θn(s) + cosh θe(s) | s ∈ I, θ ∈ R}.

This means that the discriminant set of the lightcone height function is the image of the first lightcone dual
surface of γ(s). By Proposition 5.2, HL is an R-versal unfolding of of hLv0

at s0 if hLv0
has Ak-singularity for

k = 1, 2, 3. By Proposition 4.1, hLv0 has the A2-singularity at s0 if

v0 = γ(s0) +
1

kg(s0)
n(s0) +

√
1 + k2

g(s0)

kg(s0)
e(s0)

and ρ(s0) 6= 0. In this case, by Theorem 5.1, the germ of the image of the first lightcone dual surface
FLSγ(s, θ) is locally diffeomorphic to the cuspidal edge C(2, 3)×R. Moreover, hLv0 has A3-singularity at s0

for

v0 = γ(s0) +
1

kg(s0)
n(s0) +

√
1 + k2

g(s0)

kg(s0)
e(s0),

ρ(s0) = 0 and σ(s0) 6= 0. In this case, the germ of the image of the first lightcone dual surface FLSγ(s, θ) is
locally diffeomorphic to swallowtail SW . By Theorem 5.1, the critical value set of the first lightcone dual
surface is locally diffeomorphic to the line and the (2, 3, 4)-cusp respectively. This completes the proof of
claim (A).

(B) By the similar arguments to the above, if we consider the timelike height function HT , we can show
the assertion (B) of Theorem 5.3. This completes the proof.

6. Generic properties

In this section we consider generic properties of spacelike curves in S3
1 . The main tool is a transversality

theorem. Let EmbSD(I, S3
1) be the space of spacelike embeddings γ : I → S3

1 with 〈t′, t′〉 6= 1 equipped with
Whitney C∞-topology. We also consider the function HL : S3

1 ×LC3
+ → R defined by HL(u,v) = 〈u,v〉−1.

We claim that HLv is a submersion for any v ∈ LC3
+, where HLv(u) = HL(u,v). For any γ ∈ EmbSD(I, S3

1),
we have HL = HL ◦ (γ × idLC3

+
). We also have the `-jet extension j`1H

L : I × LC3
+ → J `(I,R) defined

by j`1H
L(s,v) = j`hLv(s). We consider the trivialization J `(I,R) ≡ I × R × J `(1, 1). For any submanifold

Q ⊂ J `(1, 1), we denote that Q̃ = I × {0} × Q. Then we have the following proposition as a corollary of
Lemma 6 in Wassermann [13].

Proposition 6.1. Let Q be a submanifold of J `(1, 1). Then the set

TQ = {γ ∈ EmbSD(I, S3
1) | j`HLis transversal to Q}

is a residual subset of EmbSD(I, S3
1). If Q is a closed subset, then TQ is open.
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Let f : (R, 0)→ (R, 0) be a function germ which has an Ak-singularity at 0. It is well known that there
exists a diffeomorphism germ φ : (R, 0) → (R, 0) such that f ◦ φ = ±sk+1. This is the classification of
Ak-singularities. For any z = jlf(0) in J `(1, 1), we have the orbit Ll(z) given by the action of the Lie group
of l-jet diffeomorphism germs. If f has an Ak-singularity, then the codimension of the orbit is k. There is
another characterization of R-versal unfoldings as follows.

Proposition 6.2. Let F : (R×Rr,0)→ (R, 0) be an r-parameter unfolding of f : (R, 0)→ (R, 0) which has

an Ak-singularity at 0. Then F is an R-versal unfolding if and only if jl1F is transversal to the orbit Ll(j̃lf(0))
for l ≥ k + 1. Here, jl1F : (R× Rr,0)→ J `(R,R) is the l-jet extension of F given by jl1F (s,x) = jlFx(s).

We can prove the following generic classification theorem.

Theorem 6.3. Let γ : I → S3
1 be a unit speed spacelike curve with kg(s) 6= 0 and δ(s) = −1. Then one have

the following generic classification.

(1) There exists an open and dense subset O1 ⊂ EmbSD(I, S3
1) such that for any γ ∈ O1, the first

lightcone dual surface of spacelike curve FLSγ(s, θ) of γ(s) is locally diffeomorphic to the cuspidal
edge or swallowtail if the point is singular.

(2) There exists an open and dense subset O2 ⊂ EmbSD(I, S3
1) such that for any γ ∈ O2, the first hyperbolic

dual surface FHDγ(s, θ) of γ(s) is locally diffeomorphic to the cuspidal edge or swallowtail if the point
is singular.

Proof. (1) For l ≥ 4, we consider the decomposition of the jet space J `(1, 1) into Ll(1) orbits. We now
define a semi-algebraic set by

Σl = {z = jlf(0) ∈ J `(1, 1) | f has an A≥4 -singularity}.

Then the codimension of Σl is 4. Therefore, the codimension of Σ̃l
0 = I × {0} × Σl is 5. We have the

orbit decomposition of J `(1, 1)− Σl into

J `(1, 1)− Σl = Ll0 ∪ Ll1 ∪ Ll2 ∪ Ll3,

where Llk is the orbit through an Ak-singularity. Thus, the codimension of L̃Lk is k+ 1. We consider the l-jet
extension j`1H

L of the lightcone height function HL. By Proposition 6.1, there exists an open and dense
subset O1 ⊂ EmbSD(I, S3

1) such that j`1H
L is transversal to Llk (k = 0, 1, 2, 3) and the orbit decomposition

of Σ̃l. This means that j`1H
L(I×LC3

+)∩ Σ̃l = ∅ and HL is an R-versal unfolding of hLv at any point (s0,v0).
By Theorem 5.1, the discriminant set of HL (i.e., the first lightcone dual surface) is locally diffeomorphic

to cuspidal edge or swallowtail if the point is singular.
(2) By the similar arguments to the above, if we consider the timelike height function HT , we can show

the assertion (2). This completes the proof.

7. Example

In order to better illustrate our results, we give one example that consists of a lightcone dual surface
and a hyperbolic dual surface. Furthermore, we depict these surfaces by computer.

Example 7.1. Let γ(s) be a unit speed spacelike curve on S3
1 defined by

γ(s) =

( √
2

2
sinh(

√
2s),

√
2

2
cosh(

√
2s),

√
2

2
sin(2s),

√
2

2
cos(2s)

)
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with respect to an arclength parameter s. It is easy to get the tangent vector t(s) which is given by

t(s) = ( cosh(
√

2s), sinh(
√

2s),
√

2 cos(2s), −
√

2 sin(2s) ).

Then we get that 〈t′(s), t′(s)〉 = 10 6= 1, kg(s) = 3 and

τg(s) =
1

k2
g(s)

det(γ(s),γ
′
(s),γ

′′
(s),γ

′′′
(s))

=
1

9

∣∣∣∣∣∣∣∣∣

√
2

2 sinh(
√

2s)
√

2
2 cosh(

√
2s)

√
2

2 sin(2s)
√

2
2 cos(2s)

cosh(
√

2s) sinh(
√

2s)
√

2cos(2s) −
√

2sin(2s)√
2sinh(

√
2s)

√
2cosh(

√
2s) −2

√
2sin(2s) −2

√
2cos(2s)

2cosh(
√

2s) 2sinh(
√

2s) −4
√

2cos(2s) −4
√

2sin(2s)

∣∣∣∣∣∣∣∣∣
= 2
√

2.

Thus, we can get ρ(s) = 720 and σ(s) = 24. We obtain one of normal vector n(s) which is given by

n(s) =

( √
2

2
sinh(

√
2s),

√
2

2
cosh(

√
2s),−

√
2

2
sin(2s),

√
2

2
cos(2s)

)
.

It is easy to get δ(s) = −1. The other normal vector e(s) is given by

e(s) = γ(s) ∧ t(s) ∧ n(s)

=

∣∣∣∣∣∣∣∣∣
−e0 e1 e2 e3√

2
2 sinh(

√
2s)

√
2

2 cosh(
√

2s)
√

2
2 sin(2s)

√
2

2 cos(2s)

cosh(
√

2s) sinh(
√

2s)
√

2 cos(2s) −
√

2 sin(2s)√
2

2 sinh(
√

2s)
√

2
2 cosh(

√
2s) −

√
2

2 sin(2s) −
√

2
2 cos(2s)

∣∣∣∣∣∣∣∣∣
= (
√

2 cosh(
√

2s),
√

2 sinh(
√

2s), cos(2s), − sin(2s) ).

Let sinh(θ) = u, cosh(θ) =
√

1 + u2. Thus, the first lightcone dual surface is given by

FLSγ(u, s) = (x1(u, s), x2(u, s), x3(u, s), x4(u, s)) ,

where 

x1(u, s) =

√
2

2
(1 + u) sinh(

√
2s) +

√
1 + u2

√
2 cosh(

√
2s),

x2(u, s) =

√
2

2
(1 + u) cosh(

√
2s) +

√
1 + u2

√
2 sinh(

√
2s),

x3(u, s) =

√
2

2
(1− u) sin(2s) +

√
1 + u2 cos(2s),

x4(u, s) =

√
2

2
(1− u) cos(2s)−

√
1 + u2 sin(2s).

The first hyperbolic dual surface is given by FHDγ(u, s) = (y1(u, s), y2(u, s), y3(u, s), y4(u, s)), where

y1(u, s) =

√
2

2
u sinh(

√
2s) +

√
1 + u2

√
2 cosh(

√
2s),

y2(u, s) =

√
2

2
u cosh(

√
2s) +

√
1 + u2

√
2 sinh(

√
2s),

y3(u, s) = −
√

2

2
u sin(2s) +

√
1 + u2 cos(2s),

y4(u, s) = −
√

2

2
u cos(2s)−

√
1 + u2 sin(2s).
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We obtain the vector parametric equations of the singular locus of the first lightcone dual surface and
the first hyperbolic dual surface as follows:

SFLSγ(s) =

(
2
√

2

3
sinh(

√
2s) +

2
√

5

3
cosh(

√
2s),

2
√

2

3
cosh(

√
2s) +

2
√

5

3
sinh(

√
2s),

√
2

3
sin(2s) +

√
10

3
cos(2s),

√
2

3
cos(2s)−

√
10

3
sin(2s)

)
,

SFHDγ(s) =

(√
2

6
sinh(

√
2s) +

2
√

5

3
cosh(

√
2s),

√
2

6
cosh(

√
2s) +

2
√

5

3
sinh(

√
2s),

−
√

2

6
sin(2s) +

√
10

3
cos(2s),−

√
2

6
cos(2s)−

√
10

3
sin(2s)

)
.

We see that ρ(s) = 720 6= 0 for arbitrary real numbers s > 0. Hence, we have that the first lightcone
dual surface FLSγ(s) is locally diffeomorphic to cuspidal edge at its singular points and the singular locus
of the first lightcone dual surface SFLSγ(s) is locally diffeomorphic to a line. We draw the pictures of the
first lightcone dual surface and its singular locus by projecting them into three dimensional spaces, see Fig.
2. On the other hand, we see that τg(s) = 2

√
2 6= 0 for arbitrary real numbers s > 0. Hence, we have that

the first hyperbolic dual surface FHDγ(s) is locally diffeomorphic to cuspidal edge at its singular points and
the singular locus of the first hyperbolic dual surface SFHDγ(s) is locally diffeomorphic to a line. We also
draw the pictures of the first hyperbolic dual surface and its singular locus by projecting them into three
dimensional spaces, see Fig. 3.

Figure 2: Projection of the first lightcone dual surface respectively on x2x3x4-space,x1x3x4-space,x1x2x4-space,x1x2x3-space.

Figure 3: Projection of the first hyperbolic dual surface respectively on y2y3y4-space,y1y3y4-space,y1y2y4-space,y1y2y3-space.
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