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Abstract

In this paper, we propose an iterative scheme for finding a common point of the fixed point set of a
Bregman relatively nonexpansive mapping and the solution set of a variational inequality problem for a
continuous monotone mapping. We prove a strong convergence theorem for the sequences produced by the
method. Our results improve and generalize various recent results. c©2016 All rights reserved.
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1. Introduction.

Let E denote a real reflexive Banach space with norm ||.|| and E∗ stands for the (topological) dual of E
endowed with the induced norm ||.||∗. Let C be a nonempty subset of E. A mapping A : C → E∗ is said to
be monotone if for any x, y ∈ C, we have

〈Ax−Ay, x− y〉 ≥ 0.
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We note that the class of monotone mappings includes the class of γ-inverse strongly monotone mappings,
where a mapping A : C → E∗ is called γ-inverse strongly monotone [7, 38] if there exists a positive real
number γ such that,

〈Ax−Ay, x− y〉 ≥ γ||Ax−Ay||2, for all x, y ∈ C. (1.1)

The monotone mapping A is called maximal, if its graph G(A) = {(x, y) : y ∈ Ax} is not properly
contained in the graph of any other monotone mapping.

The variational inequality problem for a monotone mapping A is the problem of finding a point x∗ ∈ C
satisfying

∀x ∈ C, 〈Ax∗, x− x∗〉 ≥ 0. (1.2)

We denote the solution set of this problem by V I(C,A). We note that if A is a continuous monotone
mapping then the solution set V I(C,A) is always closed and convex.

The monotone variational inequalities were initially investigated by Kinderlehrer and Stampacchia in
[9] and are related with the convex minimization problems, the zeros of monotone mappings and the com-
plementarity problems. Consequently, many researchers have studied variational inequality problems for
monotone mappings (see, e.g., [26, 27, 28, 31, 32]).

In this paper, f : E → (−∞,+∞] is always a proper, lower semi-continuous and convex function with
domf = {x ∈ E : f(x) < ∞}. For any x ∈ int(domf) and any y ∈ E, let f0(x, y) be the right-hand
derivative of f at x in the direction of y, that is,

f0(x, y) := lim
t→0+

f(x+ ty)− f(x)

t
. (1.3)

The function f is said to be Gâteaux differentiable at x, if limt→0
f(x+ty)−f(x)

t exists for any y. In this
case, f0(x, y) coincides with ∇f(x), the value of the gradient ∇f of f at x. The function f is said to
be Gâteaux differentiable if it is Gâteaux differentiable everywhere. The function f is said to be Frêchet
differentiable at x ∈ E (see, for example, [4]), if for all ε > 0, there exists δ > 0 such that ||x − y|| ≤ δ
implies that

|f(x)− f(y)− 〈x− y,∇f(y)〉| ≤ ε||x− y||. (1.4)

The function f is said to be Frêchet differentiable, if it is Frêchet differentiable everywhere. The function
f is said to be strongly coercive if

lim
||x||→∞

f(x)

||x||
=∞. (1.5)

Let f : E → (−∞,+∞] be a Gâteaux differentiable function. The function Df : domf × int(domf) →
[0,+∞) defined by

Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉,

is called the Bregman distance with respect to f [3]. A Bregman projection [3] of x ∈ int(domf) onto the

nonempty closed and convex set C ⊂ domf is the unique vector P fC(x) ∈ C satisfying

Df (P fC(x), x) = inf{Df (y, x) : y ∈ C}.

If E is a smooth Banach space, setting f(x) = ||x||2 for all x ∈ E, we have ∇f(x) = 2Jx, where J is
the normalized duality mapping from E into 2E

∗
defined by Jx := {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2} and

hence Df (x, y) reduces to φ(x, y) = ||x||2− 2〈x, Jy〉+ ||y||2 for all x, y ∈ E, which is the Lyapunov function

introduced by Alber [1]. In this case, the Bregman projection P fC reduces to the generalized projection, ΠC

(see [1]). If, in addition, E = H, a Hilbert space, then Df (x, y) becomes φ(x, y) = ||x − y||2 for x, y ∈ H
and the Bregman projection P fC(x) reduces to the metric projection PC from E onto C.

A point x ∈ C is a fixed point of T : C → C if Tx = x and we denote by F (T ) the set of fixed points
of T ; that is, F (T ) = {x ∈ C : Tx = x}. A point p in C is said to be an asymptotic fixed point of T (see
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[17]) if C contains a sequence {xn} which converges weakly to p such that lim
n→∞

||xn− Txn|| = 0. The set of

asymptotic fixed points of T will be denoted by F̂ (T ).
A mapping T : C → int(domf) with F (T ) := {x ∈ D(T ) : Tx = x} 6= ∅ is called:

(i) quasi-Bregman nonexpansive [21] if,

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F (T );

(ii) Bregman relatively nonexpansive [21] if,

Df (p, Tx) ≤ Df (p, x),∀x ∈ C, p ∈ F (T ), and F̂ (T ) = F (T ).

When E is a smooth Banach space and f(x) = ||x||2 for all x ∈ E, the above definitions reduce to the
following definitions using Lyapunov function.

A mapping T : C → int(domf) with F (T ) 6= ∅ is called:

(i) quasi-nonexpansive [21] if,
φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T );

(ii) relatively nonexpansive [21] if,

φ(p, Tx) ≤ φ(p, x),∀x ∈ C, p ∈ F (T ), and F̂ (T ) = F (T ).

Various methods have been introduced for approximating fixed points of relatively nonexpansive and
quasi-nonexpansive mappings (see, e.g., [8, 10, 13, 15, 21, 24, 30]). In 2011, Zhang et al. [39] introduced an
iteration method for finding fixed point of relatively nonexpansive mappings in a Banach space setting as
follows.

Theorem 1.1 ([39]). Let C be a nonempty, closed and convex subset of a uniformly convex and uniformly
smooth Banach space E and let T : C → C be a relatively nonexpansive mapping. Let {xn} be a sequence
in C defined by x1 ∈ C and

xn+1 = ΠCJ
−1(αnJx1 + (1− αn)JTxn), n ≥ 1, (1.6)

where {αn} is a sequence in [0, 1] such that limn→∞ αn = 0. If the interior of F (T ) is nonempty, then they
proved that the sequence {xn} converges strongly to a fixed point of T .

In 2005, Matsushita and Takahashi [14] proposed the following hybrid iteration method for a relatively
nonexpansive mapping T in a Banach space E. Let C be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Define the sequences {xn} by

x0 ∈ C = C1, chosen arbitrary,
yn = J−1(αnJxn + (1− αn)JTxn,
Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn(x0), n ≥ 1.

(1.7)

They proved that the sequence {xn} generated by (1.7) converges strongly to the point ΠF (T )(x0), where
ΠF (T ) is the generalized projection from C onto F (T ).

More recently, many authors have also considered the problem of finding a common element of the fixed
point set of a relatively nonexpansive or a Bregman relatively nonexpansive mapping and the solution set
of a variational inequality problem for γ−inverse strongly monotone mapping (see, e.g., [7, 11, 12, 26, 27,
28, 32, 33, 34, 35]). For other related results, we refer to [22, 23, 36, 37].
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In 2009, Inoue et al. [8] proposed the following hybrid iteration method in a uniformly convex and
uniformly smooth Banach space E for a sequence {xn} as follows:

x0 ∈ C = C1, chosen arbitrary,
un = J−1(αnJxn + (1− αn)JTJrnxn,
Cn = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn(x0), n ≥ 1,

(1.8)

where T : C → C is a relatively nonexpansive mapping and Jr = (J + rB)−1J , for B : C → E∗ maximal
monotone mapping and r > 0. They proved that the sequence {xn} converges strongly to the point
ΠF (T )∩B−1(0)(x0), where ΠF (T ) is the generalized projection from C onto F (T ).

In this paper, it is our purpose to investigate an iterative scheme for finding a common point of the fixed
point set of a Bregman relatively nonexpansive mapping and the solution set of a variational inequality
problem for a continuous monotone mapping in reflexive Banach spaces. We prove a strong convergence
theorem for the sequence produced by the method. Our results improve and generalize various recent results
(see, e.g., [8, 12]).

2. Preliminaries

Legendre function f from a general Banach space E into (−∞,+∞] were defined in [2]. The Fenchel
conjugate of f is the function f∗ : E∗ → (−∞,+∞] defined by f∗(y) = sup{〈y, x〉 − f(x) : x ∈ E}. If E is a
reflexive Banach space and f : E → (−∞,+∞] is a Legendre function, then in view of [2],

∇f = (∇f∗)−1, ran ∇f = dom∇f∗ = int(domf∗) and ran∇f∗ = int(domf),

where ran∇f denotes the range of∇f . When E is a smooth and strictly convex Banach space, one important
and interesting example of Legendre function is f(x) := 1

p ||x||
p(1 < p <∞). In this case the gradient ∇f of

f coincides with the generalized duality mapping of E, i.e., ∇f = Jp(1 < p < ∞). In particular, ∇f = I,
the identity mapping in Hilbert spaces.

Lemma 2.1 ([29]). Let f : E → R be a continuous convex function which is strongly coercive. Then the
following assertions are equivalent:

(i) f is bounded on bounded subsets and uniformly smooth on bounded subsets of E;

(ii) f∗ is Fréchet differentiable and ∇f∗ is uniformly norm-to-norm continuous on bounded subsets of E∗;

(iii) domf∗ = E∗, f∗ is strongly coercive and uniformly convex on bounded subsets of E∗.

Let f : E → (−∞,+∞] be a Gâteaux differentiable function. The modulus of total convexity of f at
x ∈ domf is the function νf (x, .) : [0,+∞)→ [0,+∞] defined by

νf (x, t) := inf{Df (y, x) : y ∈ domf, ||y − x|| = t}.

The function f is called totally convex at x if νf (x, t) > 0, whenever t > 0. The function f is called totally
convex if it is totally convex at any point x ∈ int(domf) and is said to be totally convex on bounded sets if
νf (B, t) > 0 for any nonempty bounded subset B of E and t > 0, where the modulus of total convexity of
the function f on the set B is the function νf : int(domf)× [0,+∞)→ [0,+∞] defined by

νf (B, t) := inf{νf (x, t) : x ∈ B ∩ domf}.

We know that f is totally convex on bounded sets if and only if f is uniformly convex on bounded sets
(see [5], Theorem 2.10).
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Let Br := {z ∈ E : ||z|| ≤ r}, for all r > 0 and SE = {x ∈ E : ||x|| = 1}. Then a function f : E → R
is said to be uniformly convex on bounded subsets of E ([29], pp. 203) if ρr(t) > 0 for all r, t > 0, where
ρr : [0,∞)→ [0,∞] is defined by

ρr(t) := inf
x,y∈Br,||x−y||=t,α∈(0,1)

αf(x) + (1− α)f(y)− f(αx+ (1− α)y)

α(1− α)

for all t ≥ 0.
In the sequel, we shall need the following lemmas.

Lemma 2.2 ([15]). Let E be a Banach space, let r > 0 be a constant and let f : E → R be a uniformly
convex on bounded subsets of E. Then

f(

n∑
k=0

αkxk) ≤
n∑
k=0

αkf(xk)− αiαjρr(||xi − yj ||)

for all i, j ∈ {0, 1, 2, ..., n}, xk ∈ Br, αk ∈ (0, 1) and k = 0, 1, 2, ..., n with
∑n

k=0 αk = 1, where ρr is the
gauge of uniform convexity of f .

Lemma 2.3 ([19]). Let f : E → (−∞,+∞] be uniformly Fréchet differentiable and bounded on bounded
sets of E. Then ∇f is uniformly continuous on bounded subsets of E from the strong topology of E to the
strong topology of E∗.

Lemma 2.4 ([18]). Let f : E → (−∞,+∞] be a Legendre function. Let C be a nonempty closed convex
subset of int(domf) and T : C → C be a quasi-Bregman nonexpansive mapping. Then F (T ) is closed and
convex.

Lemma 2.5 ([4]). The function f : E → (−∞,+∞) is totally convex on bounded subsets of E if and only if
for any two sequences {xn} and {yn} ∈ int(domf) and domf , respectively, such that the first one is bounded,

lim
n→∞

Df (yn, xn) = 0 =⇒ lim
n→∞

||yn − xn|| = 0.

Lemma 2.6 ([16]). Let f : E → (−∞,+∞] be a proper, lower semi-continuous and convex function, then
f∗ : E∗ → (−∞,+∞] is a proper, weak∗ lower semi-continuous and convex function. Thus, for all z ∈ E,
we have

Df (z,∇f∗(
N∑
i=1

ti∇f(xi))) ≤
N∑
i=1

tiDf (z, xi).

Lemma 2.7 ([13]). Let f : E → R be a Gâteaux differentiable on int(domf) such that ∇f∗ is bounded on
bounded subsets of domf∗. Let x ∈ E and {xn} ⊂ E. If {Df (x, xn)} is bounded, so is the sequence {xn}.

Lemma 2.8 ([5]). Let C be a nonempty, closed and convex subset of E. Let f : E → R be a Gâteaux
differentiable and totally convex function and let x ∈ E. Then

(i) z = P fC(x) if and only if 〈∇f(x)−∇f(z), y − z〉 ≤ 0, ∀y ∈ C.
(ii) Df (y, P fC(x)) +Df (P fC(x), x) ≤ Df (y, x), ∀y ∈ C.

Let f : E → R be a Legendre and Gâteaux differentiable function. Following [1] and [6], we make use of
the function Vf : E × E∗ → [0,+∞) associated with f , which is defined by

Vf (x, x∗) = f(x)− 〈x, x∗〉+ f∗(x∗), ∀x ∈ E, x∗ ∈ E∗. (2.1)

Then Vf is nonnegative and

Vf (x, x∗) = Df (x,∇f∗(x∗)) for all x ∈ E and x∗ ∈ E∗. (2.2)
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Moreover, by the subdifferential inequality,

Vf (x, x∗) + 〈y∗,∇f∗(x∗)− x〉 ≤ Vf (x, x∗ + y∗), (2.3)

∀x ∈ E and x∗, y∗ ∈ E∗ (see [10]).

Lemma 2.9 ([25]). Let {an} be a sequence of nonnegative real numbers satisfying the following relation:

an+1 ≤ (1− αn)an + αnδn, n ≥ n0,

where {αn} ⊂ (0, 1) and {δn} ⊂ R satisfying the following conditions: lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞, and

lim sup
n→∞

δn ≤ 0. Then, lim
n→∞

an = 0.

Lemma 2.10 ([12]). Let {an} be sequences of real numbers such that there exists a subsequence {ni} of {n}
such that ani < ani+1 for all i ∈ N. Then there exists an increasing sequence {mk} ⊂ N such that mk →∞
and the following properties are satisfied by all (sufficiently large) numbers k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk is the largest number n in the set {1, 2, ..., k} such that the condition an ≤ an+1 holds.

Following the agreement in [20] we have the following lemma.

Lemma 2.11. Let f : E → (−∞,+∞] be a coercive Legendre function and C be a nonempty, closed and
convex subset of E. Let A : C → E∗ be a continuous monotone mapping. For r > 0 and x ∈ E, define the
mapping Fr : E → C as follows:

Frx := {z ∈ C : 〈Az, y − z〉+
1

r
〈∇f(z)−∇f(x), y − z〉 ≥ 0, ∀ y ∈ C}

for all x ∈ E. Then the following hold:

(1) Fr is single- valued;

(2) F (Fr) = V I(C,A);

(3) Df (p, Frx) +Df (Frx, x) ≤ φ(p, x), for p ∈ F (Fr);

(4) V I(C,A) is closed and convex.

3. Main Results

Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive real Banach
space E. Let A : C → E∗ be a continuous monotone mapping and let f : E → R be a strongly coercive
Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets
of E. Then in what follows, for each n, let Frn : E → C be defined by

Frn(x) := {z ∈ C : 〈Az, y − z〉+
1

rn
〈∇f(z)−∇f(x), y − z〉 ≥ 0, ∀ y ∈ C},

for all x ∈ E, where {rn} ⊂ (a,∞) for some a > 0.
We now prove the following theorem.
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Theorem 3.1. Let C be a nonempty, closed and convex subset of int(domf). Let T : C → E be a
Bregman relatively nonexpansive mapping and A : C → E∗ be a continuous monotone mapping. Assume
that F := F (T ) ∩ V (C,A) is nonempty. For u, x0 ∈ C let {xn} be a sequence generated by{

yn = ∇f∗
(
an∇f(xn) + bn∇f(Frn(xn)) + cn∇f(T (xn))

)
,

xn+1 = P fC∇f∗(αn∇f(u) + (1− αn)∇f(yn)), ∀n ≥ 0,
(3.1)

where {an}, {bn}, {cn} ⊂ [c, d] ⊂ (0, 1) such that an+ bn+ cn = 1 and {αn} ⊂ (0, 1) satisfies limn→∞ αn = 0,∑∞
n=1 αn =∞. Then, {xn} converges strongly to p = P fF (u).

Proof. From Lemmas 2.4 and 2.11 we get that F is closed and convex. Thus, P fF is well-defined. Let

p = P fF (u) and un = Frn(xn). Now, since f is bounded and uniformly smooth on bounded subsets of E by
Lemma 2.1 we get that f∗ is uniformly convex on bounded subsets of E∗. Then, from (3.1), (2.1), (2.2) and
Lemmas 2.2, 2.11 together with the property of Df we obtain

Df (p, yn) = Df (p,∇f∗(an∇f(xn) + bn∇f(un) + cn∇f(T (xn)))

= Vf (p, an∇f(xn) + bn∇f(un) + cn∇f(T (xn)))

≤ f(p)− 〈p, an∇f(xn) + bn∇f(un) + cn∇f(T (xn))〉
+ f∗(an∇f(xn) + bn∇f(un) + cn∇f(T (xn))

≤ f(p)− an〈p,∇f(xn)〉 − bn〈p,∇f(un)〉 − cn〈p,∇f(T (xn))〉
+ anf

∗(∇f(xn)) + bn∇f∗(f(un)) + cnf
∗(∇f(T (xn))

− anbnρ∗r(||∇f(xn)−∇f(un)||)

(3.2)

and
Df (p, yn) ≤anVf (p,∇f(xn)) + bnVf (p,∇f(un)) + cnVf (p,∇f(T (xn)))

− anbnρ∗r(||∇f(xn)−∇f(un)||)
=anDf (p, xn) + bnDf (p, un) + cnDf (p, T (xn))

− anbnρ∗r(||∇f(xn)−∇f(un)||)
≤anDf (p, xn) + bnDf (p, xn) + cnDf (p, xn)

− anbnρ∗r(||∇f(xn)−∇f(un)||)
≤Df (p, xn)− anbnρ∗r(||∇f(xn)−∇f(un)||) ≤ Df (p, xn).

(3.3)

Similarly, we get that

Df (p, yn) ≤ Df (p, xn)− ancnρ∗r(||∇f(xn)−∇f(T (xn))||) ≤ Df (p, xn). (3.4)

In addition, from (3.1), (3.3) and Lemmas 2.6, 2.8 we have

Df (p, xn+1) =Df (p, P fC∇f
∗(αn∇f(u) + (1− αn)∇f(yn))

≤Df (p,∇f∗(αn∇f(u) + (1− αn)∇f(yn))

≤αnDf (p, u) + (1− αn)Df (p, yn)

≤αnDf (p, u) + (1− αn)
[
Df (p, xn)

− anbnρ∗r(||∇f(xn)−∇f(un)||)
]

≤αnDf (p, u) + (1− αn)Df (p, xn).

Thus, by induction,

Df (p, xn+1) ≤max{Df (p, u), Df (p, x0)},∀n ≥ 0,
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which implies that {xn} is bounded. Now, let zn = ∇f∗(αn∇f(u) + (1 − αn)∇f(yn)). Then we have that

xn+1 = P fCzn, for all n ∈ N. Since f is strongly coercive, uniformly convex, uniformly Fréchet differentiable
and bounded, by Lemmas 2.3 and 2.1 we get that ∇f and ∇f∗ are bounded and hence {zn} and {yn} are
bounded. Furthermore, using (2.2), (2.3) and property of Df we obtain that

Df (p, xn+1) ≤Df (p, zn) = Df (p,∇f∗(αn∇f(u) + (1− αn)∇f(yn))

=Vf (p, αn∇f(u) + (1− αn)∇f(yn))

=Vf (p, αn∇f(u) + (1− αn)∇f(yn)− αn(∇f(u)−∇f(p)))

− 〈−αn(∇f(u)−∇f(p), zn − p〉
=Vf (p, αn∇f(p) + (1− αn)∇f(yn)) + αn〈∇f(u)−∇f(p), zn − p〉
=Df (p,∇f∗(αn∇f(p) + (1− αn)∇f(yn)))

+ αn〈∇f(u)−∇f(p), zn − p〉
≤Df (p, p) + (1− αn)Df (p, yn) + αn〈∇f(u)−∇f(p), zn − p〉
≤(1− αn)Df (p, yn) + αn〈∇f(u)−∇f(p), zn − p〉.

(3.5)

Thus, from (3.3), (3.4) and (3.5) we get

Df (p, xn+1) ≤(1− αn)Df (p, xn) + αn〈∇f(u)−∇f(p), zn − p〉
− anbnρ∗r(||∇f(xn)−∇f(un)||) (3.6)

≤(1− αn)Df (p, xn) + αn〈∇f(u)−∇f(p), zn − p〉, (3.7)

or

Df (p, xn+1) ≤(1− αn)Df (p, xn) + αn〈∇f(u)−∇f(p), zn − p〉
− anδnρ∗r(||∇f(xn)−∇f(T (xn))||) (3.8)

≤(1− αn)Df (p, xn) + αn〈∇f(u)−∇f(p), zn − p〉.

The rest of the proof is divided into two cases:
Case 1. Suppose that there exists n0 ∈ N such that {Df (p, xn)} is non-increasing for all n ≥ n0. Thus, we
get that {Df (p, xn)} is convergent. Now, from (3.6) and (3.8) we have that

anbnρ
∗
r(||∇f(xn)−∇f(un)||)→ 0, (3.9)

and
ancnρ

∗
r(||∇f(xn)−∇f(T (xn))||)→ 0, (3.10)

which give by the property of ρ∗r that

∇f(xn)−∇f(un)→ 0,∇f(xn)−∇f(T (xn))→ 0 as n→∞. (3.11)

Moreover, from (3.1) and (3.11) we have that

||∇f(yn)−∇f(xn)|| ≤an||∇f(xn)−∇f(xn)||+ bn||∇f(un)−∇f(xn)||
+ cn||∇f(T (xn))−∇f(xn)|| → 0 as n→∞.

(3.12)

In addition, since f is strongly coercive and uniformly convex on bounded subsets of E we have that f∗ is
uniformly Fréchet differentiable on bounded subsets of E∗ and by Lemma 2.1 we get that ∇f∗ is uniformly
continuous. Thus, this with (3.11) and (3.12) give that

xn − un → 0, xn − T (xn)→ 0, xn − yn → 0 as n→∞. (3.13)
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Furthermore, Lemma 2.6, property of Df and the fact that αn → 0 as n→∞, imply that

Df (yn, zn) =Df (yn,∇f∗(αn∇f(u) + (1− αn)∇f(yn))

≤αnDf (xn, u) + (1− αn)Df (yn, yn)

≤αnDf (xn, u) + (1− αn)Df (yn, yn)→ 0 as n→∞,

(3.14)

and hence by Lemma 2.5 we get that

yn − zn → 0 as n→∞. (3.15)

Now, since {zn} is bounded and E is reflexive, we choose a subsequence {zni} of {zn} such that zni ⇀ z
and lim sup

n→∞
〈∇f(u) −∇f(p), zn − p〉 = lim

i→∞
〈∇f(u) −∇f(p), zni − p〉. Then, from (3.15) and (3.13) we get

that
xni ⇀ z, as i→∞. (3.16)

Thus, from (3.13) and the fact that T is Bregman relatively nonexpansive we obtain that z ∈ F (T ).
Now, we show that z ∈ V I(C,A). By definition we have that

〈Aun, y − un〉+ 〈∇f(un)−∇f(xn)

rn
, y − un〉 ≥ 0, ∀ y ∈ C, (3.17)

and hence

〈Auni , y − uni〉+ 〈∇f(uni)−∇f(xni)

rni

, y − uni〉 ≥ 0, ∀ y ∈ C. (3.18)

Set vt = ty+ (1− t)z for all t ∈ (0, 1] and y ∈ C. Consequently, we get that vt ∈ C. Now, from (3.18) it
follows that

〈Avt, vt − uni〉 ≥ 〈Avt, vt − uni〉 − 〈Auni , vt − uni〉 − 〈
∇f(uni)−∇f(xni)

rni

, vt − uni〉

= 〈Avt −Auni , vt − uni〉 − 〈
∇f(uni)−∇f(xni)

rni

, vt − uni〉.

But, from (3.13) have that
∇f(uni)−∇f(xni)

rni

→ 0, as i → ∞ and the monotonicity of A implies that

〈Avt −Auni , vt − uni〉 ≥ 0. Thus, it follows that

0 ≤ lim
i→∞
〈Avt, vt − uni〉 = 〈Avt, vt − z〉,

and hence
〈Avt, y − z〉 ≥ 0, ∀ y ∈ C.

If t→ 0, the continuity of A implies that

〈Az, y − z〉 ≥ 0, ∀ y ∈ C.

This implies that z ∈ V I(C,A) and hence z ∈ F = F (T ) ∩ V I(C,A).
Therefore, by Lemma 2.8, we immediately obtain that lim sup

n→∞
〈∇f(u)−∇f(p), zn − p〉 = lim

i→∞
〈∇f(u)−

∇f(p), zni − p〉 = 〈∇f(u)−∇f(p), z − p〉 ≤ 0. It follows from Lemma 2.9 and (3.7) that Df (p, xn)→ 0, as
n→∞. Consequently, by Lemma 2.5 we obtain that, xn → p.
Case 2. Suppose that there exists a subsequence {ni} of {n} such that

Df (p, xni) < Df (p, xni+1)
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for all i ∈ N. Then, by Lemma 2.10, there exists a nondecreasing sequence {mk} ⊂ N such that mk → ∞,
Df (p, xmk

) ≤ Df (p, xmk+1) and Df (p, xk) ≤ Df (p, xmk+1), for all k ∈ N. Then from (3.6), (3.8) and the
fact that αn → 0 we obtain that

ρ∗r(||∇f(xmk
)−∇f(Txmk

)||)→ 0 and ρ∗r(||∇f(xmk
)−∇f(umk

)||)→ 0,

as k →∞. Thus, following the method of proof in Case 1, we obtain that xmk
−Txmk

→ 0, xmk
−umk

→ 0,
xmk
− ymk

→ 0, ymk
− zmk

→ 0 as k →∞, and hence we obtain that

lim sup
k→∞

〈∇f(u)−∇f(p), zmk
− p〉 ≤ 0. (3.19)

Now, from (3.7) we have that

Df (p, xmk+1) ≤ (1− αmk
)Df (p, xmk

) + αmk
〈∇f(u)−∇f(p), zmk

− p〉,
(3.20)

and since Df (p, xmk
) ≤ Df (p, xmk+1), inequality (3.20) implies

αmk
Df (p, xmk

) ≤ Df (p, xmk
)−Df (p, xmk+1) + αmk

〈∇f(u)−∇f(p), zmk
− p〉

≤ αmk
〈∇f(u)−∇f(p), zmk

− p〉.

In particular, since αmk
> 0, we get

Df (p, xmk
) ≤〈∇f(u)−∇f(p), zmk

− p〉.

Hence, from (3.19) we get Df (p, xmk
)→ 0 as k →∞. This together with (3.20) gives Df (p, xmk+1)→ 0

as k → ∞. But Df (p, xk) ≤ Df (p, xmk+1) for all k ∈ N, thus we obtain that xk → p. Therefore, from the

above two cases, we can conclude that {xn} converges strongly to p = P fF (u) and the proof is complete.

If, in Theorem 3.1, we assume that T = I, the identity mapping on C, we obtain the following corollary.

Corollary 3.2. Let C be a nonempty, closed and convex subset of int(domf). Let A : C → E∗ be a
continuous monotone mapping. Assume that V (C,A) is nonempty. For u, x0 ∈ C let {xn} be a sequence
generated by {

yn = ∇f∗
(
an∇f(xn) + (1− an)∇f(Frn(xn))

)
, ∀n ≥ 0,

xn+1 = ∇f∗(αn∇f(u) + (1− αn)∇f(yn)), ∀n ≥ 0,
(3.21)

where {an} ⊂ [c, d] ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfies limn→∞ αn = 0,
∑∞

n=1 αn = ∞. Then, {xn}
converges strongly to p = P fV (C,A)(u).

If, in Theorem 3.1, we assume that C = E, the projection mapping P fC is not required and V I(C,A) =
A−1(0) hence we get the following corollary.

Corollary 3.3. Let T : E → E be a Bregman relatively nonexpansive mapping and A : E → E∗ be a
continuous monotone mapping. Assume that F := F (T ) ∩ A−1(0) is nonempty. For u, x0 ∈ C let {xn} be
a sequence generated by {

yn = ∇f∗
(
an∇f(xn) + bn∇f(Frn(xn)) + cn∇f(T (xn))

)
, ∀n ≥ 0,

xn+1 = ∇f∗(αn∇f(u) + (1− αn)∇f(yn)), ∀n ≥ 0,
(3.22)

where {an}, {bn}, {cn} ⊂ [c, d] ⊂ (0, 1) such that an+ bn+ cn = 1 and {αn} ⊂ (0, 1) satisfies limn→∞ αn = 0,∑∞
n=1 αn =∞. Then, {xn} converges strongly to p = P fF (u).
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We also note that the method of proof of Theorem 3.1 provides the following theorem for approximating
the minimum-norm common point of the fixed point set of a Bregman relatively nonexpansive mapping and
the solution set of a variational inequality problem for a continuous monotone mapping.

Theorem 3.4. Let C be a nonempty, closed and convex subset of int(domf). Let T : C → E be a
Bregman relatively nonexpansive mapping and A : C → E∗ be a continuous monotone mapping. Assume
that F := F (T ) ∩ V (C,A) is nonempty. For x0 ∈ C let {xn} be a sequence generated by{

yn = ∇f∗
(
an∇f(xn) + bn∇f(Frn(xn)) + cn∇f(T (xn))

)
,

xn+1 = P fC∇f∗((1− αn)∇f(yn)), ∀n ≥ 0,
(3.23)

where {an}, {bn}, {cn} ⊂ [c, d] ⊂ (0, 1) such that an+ bn+ cn = 1 and {αn} ⊂ (0, 1) satisfies limn→∞ αn = 0,∑∞
n=1 αn = ∞. Then, {xn} converges strongly to the minimum-norm point p of F with respect to the

Bregman distance.

Remark 3.5. Theorem 3.1 improves and extends the corresponding results of Inoue et al. [8] to the class of
Bregman relatively nonexpansive mappings and to the class of continuous monotone mappings in reflexive
real Banach spaces.
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