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Abstract

In this paper, using the concept of a-admissible pairs of mappings, we prove several common fixed point
results in the setting of b-metric-like spaces. We also introduce the notion of generalized cyclic contraction
pairs and establish some common fixed results for such pairs in b-metric-like spaces. Some examples are
presented making effective the new concepts and results. Moreover, as consequences we prove some common
fixed point results for generalized contraction pairs in partially ordered b-metric-like spaces. (©2016 All
rights reserved.
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1. Introduction and Preliminaries

The concept of b-metric spaces and related fixed point theorems have been investigated by a number of
authors; see for example [5], 8, 111 12, 14}, [15] 23] 28]. In 2013, Alghamdi et al. [2] generalized the notion of a
b-metric by introduction of the concept of a b-metric-like and proved some related fixed point results. After
that, Chen et al. [I3] and Hussain et al. [16] proved some fixed point theorems in the setting of b-metric-like
spaces.

First, we recall some basic concepts and notations on b-metric-like concept.

*Corresponding author
Email addresses: hmaydi@uod.edu.sa (Hassen Aydi ), afelhi@kfu.edu.sa (Abdelbasset Felhi), ssahmim@kfu.edu.sa
(Slah Sahmim)

Received 2015-10-29



H. Aydi, A. Felhi, S. Sahmim, J. Nonlinear Sci. Appl. 9 (2016), 2492-2510 2493

Definition 1.1. Let X be a non-empty and s > 1. Let d: X x X — [0, 00) be a function such that:
(dl) d(z,y) = 0 implies z =y,

(d2) d(z,y) = d(y, z),
(d3) d(z,y) < sld(x,z) + d(z,y)] for all z,y,z € X.

Then, d is called a b-metric-like and the pair (X, d) is called a b-metric-like space. The number s is called
the coefficient of (X, d).
In the following, some examples of a b-metric-like which is nor a b-metric neither a metric-like.

Example 1.2. Let X = {0,1,2} and d: X x X — [0,00) be defined by

d(0,0) =0, d(1,1)=d(2,2) =2,

d(0,1) =4, d(1,2) =1 and d(2,0) =2,

with d(z,y) = d(y,x) for all z,y € X. Then, (X,d) is a b—metric-like space with coefficient s = 2, but is
nor a b-metric, neither a metric-like since d(0,1) =4 >3 =d(0,2) +d(2,1) =2+ 1.
Example 1.3. Let X =R and p > 1 be a real number. Define the function d : X x X — [0,00) by

d(z,y) = (Jz[ +[y)" Vo,yeX.
Then, (X, d) is a b-metric-like space with coefficient s = 2P~ but is neither a b-metric space since d(1,1) = 27
nor a metric-like space since d(—1,1) =27 >2=1+4+1=d(-1,0) + d(0,1).
Example 1.4. Let X = [0,00) and d : X x X — [0,00) be defined by

d(z,y) = (2* +y*)?, Var,ye€ X.
Then (X,d) is a b-metric-like space with coefficient s = 2, but is nor a b-metric space since d(1,1) = 4
neither a metric-like space since d(1,2) =81 > 65 =1+ 64 = d(1,0) + d(0, 2).

Definition 1.5. Let (X,d) be a b-metric-like space, {x,} be a sequence in X, and z € X. The sequence
{z} converges to z if and only if
lim d(zy,z) = d(z,x). (1.1)
n—oo
Remark 1.6. In a b-metric-like space, the limit for a convergent sequence is not unique in general.
Definition 1.7. Let (X,d) be a b-metric-like space and {z,} be a sequence in X. We say that {z,} is
Cauchy if and only if limy, ;00 d(Zn, Tm) exists and is finite.

Definition 1.8. Let (X, d) be a b-metric-like space. We say that (X,d) is complete if and only if each
Cauchy sequence in X is convergent.

Lemma 1.9. Let (X,d) be a b-metric-like space and {x,,} be a sequence that converges to u with d(u,u) = 0.
Then, for each z € X one has

1
—d(u, z) < liminf d(x,, 2z) < limsupd(z,, z) < sd(u, ).
S n—00 n—o0

Lemma 1.10. Let (X,d) be a b-metric-like space and T : X — X be a given mapping. Suppose that T is
continuous at u € X. Then, for all sequence {x,} in X such that x, — u, we have Tz, — Tu, that is,

lim d(Txp, Tu) = d(Tu, Tu).

n—oo

Let (X,d) be a b-metric-like space. We need in the sequel the following trivial inequality:
d(z,z) < 2sd(z,y), forall z,ye€ X. (1.2)

In 2012, Samet et al. [27] introduced the concept of a-admissible maps.
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Definition 1.11 ([27]). For a nonempty set X, let 7: X — X and a : X x X — [0,00) be mappings. We
say that the self-mapping 7" on X is a-admissible if for all z,y € X, we have,

a(z,y) > 1= ao(Tz,Ty) > 1. (1.3)

Many papers dealing with above notion have been considered to prove some (common) fixed point results,
for example see [11 [3] [6], 9 17, 18] 19} 20, 211, 24 26].
Very recently, Aydi [4] generalized Definition to a pair of mappings.

Definition 1.12. For a nonempty set X, let A, B: X — X and a: X x X — [0,00) be mappings. We say
that (A, B) is an a-admissible pair if for all z,y € X, we have

a(z,y) > 1= a(Az,By) >1 and a(By, Az) > 1.

The following examples illustrate Definition [1.12
Example 1.13. Let X =R and o : X x X — [0,00) be defined by

(2.9) 1if z,y €[0,1],
alz,y) =
Y 0 otherwise.

Consider the mappings A, B : X — X given by

Aa::g and Bz =z, Ve X.

Then, (A, B) is an a-admissible pair. In fact, let x,y € X such that a(z,y) > 1. By definition of «, this
implies that x,y € [0, 1]. Thus,

a(Az, By) = a(g,gf) =1 and o«(By, Az) = a(y?, g) =1
Then, (A, B) is an a-admissible pair.
Example 1.14. Let X =R and o : X x X — [0,00) be defined by
alz,y) =" Vz,yeX.
Consider the mappings A, B : X — X given by
Az =2® and Bx=1° VzeX.

Then, (A, B) is an a-admissible pair. In fact, let z,y € X such that a(z,y) > 1. By definition of «, this
implies that zy > 0. Thus,

a(Az, By) = a(By, Azx) = eV > 1,
because x3y° = x2y*xy > 0. Then, (A, B) is an a-admissible pair.
Take s > 1. Denote N the set of positive integers and ¥, the set of functions ¢ : [0,00) — [0,00)
satisfying:
(11) v is nondecreasing;
(12) Z s™p"™(t) < oo for each t € Rt where ™ is the nth iterate of .
n

Remark 1.15. It is easy to see that if 1) € Wy, then ¥(t) < t for any ¢ > 0.

In this paper, we provide some common fixed point results for generalized contractions (including cyclic
contractions and contractions with a partial order) via a-admissible pair of mappings on b-metric-like spaces.
As consequences of our obtained results, we prove some existing known fixed point results on metric-like
spaces and on b-metric spaces. Our results will be illustrated by some concrete examples.
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2. Fixed Point Theorems for (a,1)-contractions
First, we introduce the concept of a-contractive pair of mappings in the setting of b-metric-like spaces.
Definition 2.1. Let (X, d) be a b-metric-like space, 1) € U5 and o : X x X — [0,00). A pair A, B: X — X

is called an («,v)-contraction pair if

d(Az, By) < (M(z,y)), (2.1)
for all z,y € X satisfying a(z,y) > 1, where

d(z, By) + d(y, Ax)

M(z,y) = max{d(z,y),d(z, Az),d(y, By), 1

. (2.2)

Our first main result is

Theorem 2.2. Let (X,d) be a complete b-metric-like space and A,B : X — X be an («,1))-contraction
pair. Suppose that

(1) (A, B) is an a—admissible pair;
there exists xg € X such that min{a(xg, Azp), a(Axo, o)} > 1;

(i)
(tit) A and B are continuous on (X, d);
)

(v) a(z,z) > 1 for every z satisfying the conditions
d(z,2) =0, d(z,Az) < sd(Az, Az) < s*d(z, Az) and d(z, Bz) < sd(Bz, Bz) < s°d(z, Bz);  (2.3)
(v) ¥(t) < ﬁ for each t > 0.
Then, A and B admit a common fized point, i.e. there exists u € X such that
Au = u = Bu. (2.4)
Proof. Choose x1 = Azxg and x9 = Bzy. By induction, we can construct a sequence {z,} in X such that
Tony1 = Az, and 29,12 = BTong1, (2.5)

for all n > 0. We split the proof into several steps.
Step 1: a(zp, xny1) > 1 and a(zpy1,z,) > 1 for all n > 0.

By condition (ii) and the fact that the pair (A, B) is a-admissible,

a(r1,2) = a(Axg, Bxy) > 1 and
a(ze,r1) = a(Bry, Azg) > 1

a(xg, 1) > 1= {

Again

alry, 1) > 1= {

a(xs, x2) = a(Azxe, Bxy) > 1 and
a(zg, v3) = (B, Azg) > 1

By induction, we may obtain a(zy, zp+1) > 1 and a(x,41,2,) > 1 for all n > 0.
Step 2: We will show that

if for some n, d(zon,zon+1) =0, then Axg, = 9, = Bxay, (2.6)

and
if for some n,  d(xont1,Tont2) =0, then Awxo,i1 = Topt1 = Bropyi. (2.7)
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Suppose for some n that d(za,,zron+1) = 0. We shall prove that d(zon41,Z2nt2) = 0. We argue by
contradiction. For this, assume that

d(Ton41, Tant2) > 0.
Then, by Step 1 and (2.1)),

d(zon41, Tont2) = d(Axon, Brony1) < (M (22, T2nt1)),

where
M (xop, Topt1) = max{d(Ton, Tan+1), d(x2n, ATy ), d(T2n+1, Brani1),
d(z2n, Bront1) + d(xont1, Azay) )
4s
1

= max{0, d(x2n41, T2n+2), @(d(@m Zont2) + d(Tont1, Tony1)) }

= d(z2n+1, T2n12),
because

d(zon+1, Tan+1) < 2sd(xon41, Tant+2) and
d(zan, Tant2) < sd(xon, Tont1) + sd(T2n+1, Tont2) = SA(T2n+1, T2n+2)-

Consequently,

d(zon+1, Tont2) < Y(d(T2n41, Tany2))-
Since ¥(t) < t, so we get
d(zon+1, Tant2) < Y(d(@Xont1, Tant2)) < d(Ton+1, Tant2),

a contradiction. Thus, if d(x2y,, Ton+1) = 0, then d(x2,+1, T2, +2) = 0. We deduce that x9, = o1 = Tant2,
so that

Top = Tont1 = Az, and

Top = Tont2 = Bropy1 = B(Axg,) = Bray,,

that is x9, is a common fixed point of A and B.
Similarly, one shows that

d(T2n41, Tan+2) = 0 = d(¥2n+2, Tont3) =0,
and SO Topt1 = Topt2 = Tonts, which implies

Tont1 = Tont2 = Bwopy1  and

Tont1 = Tont3 = Axonto = A(Brapt1) = ATont1,

that is xop41 is a common fixed point of A and B.

By (2.6) and (2.7)), the proof is completed in the case when d(xg, k1) = 0 for some k > 0. From now
on, we assume that

d(zp, Tpt1) >0, Vn>0. (2.8)
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Step 3. We will show that
d(xn, Tnt1) < Y"(d(xg,x1)) for all n > 0. (2.9)
By Step 1, a(xan, 2n—1) > 1, then

d(z2n+41, Ton) = d(Azoy, Brop—1) < (M (z2n, on—1))

where
M (2o, xon—1) =max{d(z2n, Ton—1), d(T2n, Tan+1), d(Tan—1, Tan ),
d(xQna $2n) + d(ﬂ?gn_l, $2n+1) }
4s
1

=max{d(z2n, Ton—1), d(T2n, Tan+1), Zs(d(ﬂ«"zn—l, Ton+1) + d(Ton, Ton)) }

=max{d(x2n, Tan—1), d(T2n, Tan+1)},
because

d(xon, xon) < 2sd(xaon, Tont+1) and
d(xan—1,Ton+1) < sd(xon—1,Ton) + sd(Ton, T2n+1)-
If max{d(zon, T2an—1), d(T2n, Toan+1)} = d(x2n, Tan+1) for some n > 1, then
0 < d(zant1, %2n) < Y(d(T2n, Tan+1))-
Taking into account ¢ (¢) < ¢, one obtains a contradiction. It follows that
max{d(zaon, Ton—1), d(Ton, Ton+1)} = d(T2n, Tan—1)

for all n > 1. Then

d(xon, Tan+1) < Y(d(z2n, Tan—1)). (2.10)
A similar reasoning shows that
d(T2n+1, Zant2) < P(d(T2n, T2n11))- (2.11)
Consequently, by (2.10) and (2.11)),
d(xp, Tnt1) < Y(d(xp—1,25)) Yn > 1. (2.12)

Therefore
d(@p, pt1) < P"(d(wo,21)), Vn = 1.
Step 4. We shall show that {z,,} is a Cauchy sequence. Using (d3), we have

d(Tn, Tng2) <sd(@n, Tpi1) + SA(Tng1, Tni2)

SSd(fEna $n+1) + 52d($n+17 xn—i—?)-
Similarly,

d(IL‘n7 xn+3) §5d<xn, xn—l—l) + Sd(xn-‘rh xn+3)

<sd(Tn, Tny1) + 32d(¢¢n+1, Tpt2) + Sgd($n+2, Tpy3).
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By induction, we get for all m > n

m—1 m—1 oo
d(xn, Tm) < Z s (2, i) < Z s'd(zi, wip1) < Z s'(d(zg, 1)) — 0 as n — oo,
which leads to
ml%riloo d(xp, xm) =0, (2.13)

that is, {z,,} is a Cauchy sequence. Since (X, d) is a complete b-metric-like space, then there exists v € X
such that
lim d(zp,u) =d(u,u) = lm d(x,,z,)=0. (2.14)
n—00 n,Mm—00

Step 5. u satisfies the condition ([2.3)).
By the continuity of A, we have Ax,, — Au in (X,d), that is lim d(z,, Au) = d(Au, Au), so that

n—o0

li_}m d(zont1, Au) = lim d(Aza,, Au) = d(Au, Au).

n—o0

On the other side, lim d(zp,u) =0 = d(u,u) and so by Lemma

n—oo
1
gd(u,Au) < ILm d(xony1, Au) < sd(u, Au).
This yields that
1
—d(u, Au) < d(Au, Au) < sd(u, Au). (2.15)
s
Similarly, one shows that
1
gd(u,Bu) < d(Bu, Bu) < sd(u, Bu). (2.16)

Step 6. u is a common fixed point of A and B.

Suppose by contradiction that d(Au, Bu) > 0. Since u satisfies (2.3)), it follows from (iv) that a(u,u) > 1,

so by (2.1),
d(Au, Bu) < ¢(M (u,u)),

where

M () = ma{d(u, ) d(u, Au). d(u, Bu), LB F A A

d(u, Bu) + d(u, Au)
4s

)}
= max{0, d(u, Au), d(u, Bu),
= max{d(u, Au), d(u, Bu)}.

By using (2.15)) and (2.16)), we get
M (u,u) < max{2s?d(Au, Bu), 2s°d(Au, Bu)} = 2s?d(Au, Bu).

)}

Again, by condition (v), we have
d(Au, Bu) < (2s%d(Au, Bu)) < d(Au, Bu),
which is a contradiction. Thus, d(Au, Bu) = 0. In this case, the fact that d(u, Au) < sd(Au, Au) implies
0 < d(u, Au) < sd(Au, Au) < 25%d(Au, Bu) = 0,

and so Au = u. Therefore, Bu = Au = u. The proof is completed. O
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In the following, we state some consequences and corollaries of our obtained result.

Corollary 2.3. Let (X,d) be a complete b-metric-like space, 1 € Vs and A, B : X — X be given mappings.
Suppose there exists a function o : X x X — [0,00) such that

a(z,y)d(Az, By) < (M (z,y)), (2.17)

for all x,y € X, where M(x,y) is defined by (2.2).

Also, Suppose that

(1) (A, B) is an a—admissible pair;

(i7) there exists xop € X such that min{a(zo, Azo), a(Axg, o)} > 1;
(iii) A and B are continuous on (X, d);

(iv) a(z,z) > 1 for every z satisfying the conditions

d(z,2) =0, d(z, Az) < sd(Az, Az) < s*d(z, Az) andd(z, Bz) < sd(Bz, Bz) < s%d(z, Bz);  (2.18)

(v) () < 55, for each t > 0.

Then, A and B have a common fized point.

Proof. Let z,y € X such that a(z,y) > 1. Then, if (2.17) holds, we have
d(Az, By) < o, y)d(Az, By) < ¢(M(z,y)).
Then, the proof is concluded by Theorem O
Corollary 2.4. Let (X,d) be a complete b-metric-like space, 1 € Vg and A, B : X — X be continuous

mappings satisfying
d(Az, By) < ¢(M(z,y)), (2.19)

for all x,y € X, where M (x,y) is defined by (2.2]).
If (t) < ﬁ for each t > 0, then A and B have a common fixed point.
Proof. Tt suffices to take a(z,y) =1 in Corollary O

Corollary 2.5. Let (X,d) be a complete b-metric-like space and A, B : X — X be continuous mappings.
Suppose there exists k € [0, ﬁ) such that

d(Az, By) < kM (z,y), (2:20)
for all x,y € X, where M (z,y) is defined by (2.2). Then, A and B have a common fixed point.

Proof. 1t suffices to take ¥ (t) = kt for all t > 0 in Corollary O

Corollary 2.6. Let (X,d) be a complete b-metric-like space and A, B : X — X be continuous mappings.
Suppose there exists k € [0, 5-5) such that

prel
d(Az, By) < kd(z,y), (2.21)
for all x,y € X. Then, A and B have a common fized point.

In the setting of b-metric spaces, we have,
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Corollary 2.7. Let (X,d) be a complete b-metric space, 1 € Vs and A,B : X — X be given mappings.
Suppose there exists a function a: X x X — [0,00) such that

ofz,y)d(Ax, By) < (M (z,y)), (2.22)

for all x,y € X, where M (z,y) is defined by (2.2]).

Also, Suppose that
(1) (A, B) is an a—admissible pair;
(13) there exists xo € X such that min{a(xg, Azg), a(Axo,z9)} > 1;
(tit) A and B are continuous on (X,d).
Then, A and B have a common fized point.

Proof. Following the proof of Theorem[2.2] we know that the sequence {z,} is Cauchy in (X, d) and converges
to some u € X. We show that u is a common fixed point of A and B. Using the continuity of A and B and

Lemma we obtain Au = Bu = u. O
In metric-like spaces (the case s = 1), we may state the following result.
Corollary 2.8. Let (X,d) be a complete metric-like space, 1 € ¥y and A, B : X — X such that
d(z, By) + d(y, Az
d(Ax. By) < v (max{d(z.y).d(z. Av).d(y, By), "PN T AL)y)
for all x,y € X satisfying o(x,y) > 1.
Also, Suppose that
(1) (A, B) is an a—admissible pair;
(13) there exists xy € X such that min{a(xg, Azg), a(Axo, z9)} > 1;
(tit) A and B are continuous on (X, d);
(1v) a(z,2z) > 1 for every z satisfying the conditions
d(z,2z) =0, d(z,Az) = d(Az, Az) andd(z, Bz) = d(Bz, Bz); (2.23)

(v) ¥(t) < & for each t > 0.
Then, A and B have a common fixed point.

Theorem [2.2] remains true if we replace the continuity hypothesis by the following property:

(H) If {z,} is a sequence in X such that a(x,, xp+1) > 1 and a(zp41,2,) > 1 for all n and x,, - = € X as
n — oo, then there exists a subsequence {z,)} of {x,} such that a(x,uy,z) > 1 and a(z,z,4)) > 1
for all k.

The statement is given as follows.
Theorem 2.9. Let (X,d) be a complete b-metric-like space and A, B : X — X an («,v)-contraction pair.
Suppose that
(1) (A, B) is an a—admissible pair;
(73) there exists xo € X such that min{a(xg, Azg), a(Axo, z0)} > 1;
(ii7) (H) holds;
(i) ¥(t) <t for eacht > 0.

Then, A and B admit a common fized point.
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Proof. Following the proof of Theorem[2.2] we know that the sequence {z,} is Cauchy in (X, d) and converges
to some u € X. We show that « is a common fixed point of A and B.
Suppose on the contrary that Au # u or Bu # u. Assume that d(u, Au) > 0.

By assumption (4ii) (that is, a(u, ¥o,x)—1) > 1), we have

d(Aua x2n(k)) = d(Au7 Bx2n(k)fl)) < QZJ(M(U,, x2n(k)fl))7

where

M (u, zop(r)—1)) = max{d(u, Topk)—1), d(u, Au), d(Tonk)—15 Tan(k)—1)s
d(u, Brop(r)—1) + d(@2n (k) -1, Au) )
4s
= max{d(u, Ton(r)—-1), d(u; Au), d(Ton(r)—1; Tan(k))s
d(u, Tonry) + d(Tonk) -1, Au) )
4s
< max{d(u, Ton(r)-1), (v, Au), d(Tan(r) -1, Tan(k) )
d(u, Tap(r)) + 5d(Tan()—1, w) + sd(u, Au)}
4s '

We know that

Mimd(u, Tonry—1) = m d(zonm)—1,Zank) = 0 d(u, Zan ) = 0.
Then, there exists N € N such that for all k > N,
M(’U,, x2n(k)—1)) < d(u7 AU)

Then, by (1), we obtain for all £ > N,

d(Au,:ch(k)) < P(d(u, Au)). (2.24)
On the other hand, we have
d(Au, u) < sd(Au, Toprky) + sd(Tanr), ), Yk > 0. (2.25)
Combining and , we get for all K > N,
d(Au,u) < sp(d(u, Au)) + sd(Tap k), u)- (2.26)

Having in mind 9(t) < £, so letting k — oo in (2.26), we get
0 < d(u, Au) < stp(d(u, Au)) < d(u, Au),

which is a contradiction. Similarly, if d(u, Bu) > 0 we get a contradiction. Hence, Au = v = Bu and so u
is a common fixed point of A and B. O

Analogously, we can derive the following results.

Corollary 2.10. Let (X,d) be a complete b-metric-like space, 1 € Vs and A, B : X — X be given mappings.
Suppose there exists a function o : X x X — [0,00) such that

a(z,y)d(Az, By) < (M (z,y)), (2.27)
for all z,y € X, where M(z,y) is defined by (2.2).

Also, Suppose that
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(1) (A, B) is an a-admissible pair;

(13) Jzg € X such that min{a(xo, Axo), a(Azxg, z9)} > 1;
) (H) holds;

v) ¥(t) < L for each t > 0.

(7
(i

Then, A and B have a common fized point.

Corollary 2.11. Let (X,d) be a complete b-metric-like space, 1 € Vs and A, B : X — X be given mappings.
Suppose that

d(Az, By) < ¢(M(z,y)), (2.28)
for all x,y € X, where M (z,y) is defined by .

If (t) < i for each t > 0, then A and B have a common fixed point.

Corollary 2.12. Let (X, d) be a complete b-metric-like space and A, B : X — X be given mappings. Suppose
there exists k € [0, 1) such that
d(Az, By) < kM (z,y), (2.29)

for all x,y € X, where M (x,y) is defined by (2.2)). Then, A and B have a common fized point.
In the case s = 1, we have the two following corollaries.
Corollary 2.13. Let (X,d) be a complete metric-like space, ¥ € V1 and A, B : X — X such that

d(Az, By) < ¢(max{d(z,y),d(z, Az),d(y, By), d(z, By) Id(y, Az) n,

for all x,y € X satisfying a(x,y) > 1.
Also, Suppose that

(1) (A, B) is an a—admissible pair;
(ii) there exists xg € X such that min{a(zg, Azg), a(Azxg, z9)} > 1;
(iii) (H) holds.

Then, A and B have a common fized point.

Corollary 2.14. Let (X, d) be a complete metric-like space, 1 € U1 and A, B : X — X such that

d(Az, By) < ¢¥(max{d(z,y),d(x, Ax),d(y, By), d(z, By) Zd(y, Azx) M,

for all x,y € X. Then, A and B have a common fized point.
We provide the following example.

Example 2.15. Take X = [0, 00) endowed with the complete b-metric-like d(x,y) = (2% + y*)2. Consider
the mappings A, B : X — X given by

A — %ifxe[o,l] B — %ﬁifxe[O,l]
20 —2if x>1 xif x> 1.

Define the mapping o : X x X — [0,00) by

alz,y) = {1 if :c,y.G [0,1]

0 otherwise.
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Let 9(t) = %t. Note that (A, B) is an a-admissible pair. In fact, let z,y € X such that a(z,y) > 1. By
definition of «, this implies that x,y € [0, 1]. Thus,
x

\6/§7

Then, (A, B) is an a-admissible pair.

YTy

a(Az, By) = af 73

)=1 and «(By,Az) = «af

)
Sl
w

Now, we show that (A, B) is an (o, 1)-contraction. Let z,y € X such that a(x,y) > 1. So, z,y € [0, 1].
We have

d(Az, By) = ((Ax)® + (By)*)* = <<%>3 + (%)%2
— ()5(@® + 472 = (d(z, ) < (M (z,y).

V3
Now, we show that (H) is verified. Let {z,} is a sequence in X such that a(x,,z,+1) > 1 and
a(Zpt1,Tpy) > 1 for all n and z, — win (X,d). Then, {z,} C [0,1] and x,, — u in (X, |.|), where |.| is the
standard metric on X. Thus, z,,u € [0,1] and so a(zp,u) = a(u,z,) = 1 for all n. Moreover, there exists
xo € X such that a(zg, Azg) > 1 and a(Axg, zo) > 1. In fact, for g = 1, we have a(1, A1) = a(1, %) =1
and a(Al,1) = a(%, 1)=1.
Thus, all hypotheses of Theorem are verified. Here, {0,2} is the set of common fixed points of A and
B.

The mappings considered in above example have two common fixed points which are 0 and 2. Note that
a(0,2) = 0, which is not greater than 1. So for the uniqueness, we need the following additional condition.

(U) For all x,y € CF(A, B), we have a(z,y) > 1, where CF(A, B) denotes the set of common fixed points
of A and B.

Theorem 2.16. Adding condition (U) to the hypotheses of Theorem (resp. Theorem with Y(t) < zt*s
for allt > 0), we obtain that u is the unique common fixed point of A and B.

Proof. In Theorem mention that ¥(t) < ﬁ implies ¥(t) < ﬁ We argue by contradiction, that is,
there exist u,v € X such that u« = Au = Bu and v = Av = Bv with u # v. By assumption (U), we have
a(u,v) > 1. So by (2.1)) and since 9(t) < 5, we have

d(u,v) = d(Au, Bv) < (M (u,v))) < ¢ (max{d(u,v),d(u,u),d(v,v), d(;;v) b
= Y(max{d(u,v),d(u,u),d(v,v)})
< Y(max{d(u,v),2sd(u,v)}) = ¥(2sd(u,v)) < d(u,v),
which is a contradiction. Hence, u = v. O

Corollary 2.17. Let (X,d) be a complete b-metric-like space, v € Vs and A, B : X — X be given mappings.

Suppose that
d(Az, By) < ¢(M(z,y)), (2.30)

for all x,y € X, where M (z,y) is defined by (2.2). If ¥(t) < ﬁ for allt > 0, then A and B have a unique
common fixed point.

Proof. Tt suffices to take a(x,y) = 1 in Corollary The uniqueness of u follows from Theorem O
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Corollary 2.18. Let (X, d) be a complete b-metric-like space and A, B : X — X be given mappings. Suppose
there exists k € [0, o=) such that
d(Az, By) < kM (z,y), (2.31)

for all xz,y € X, where M (z,y) is defined by (2.2). Then, A and B have a unique common fized point.
Proof. Tt suffices to take 1 (t) = kt in Corollary The uniqueness of u follows from Theorem O
The following example illustrates Theorem where A and B have a unique common fixed point.

Example 2.19. Take X = [0, 3] endowed with the complete b-metric-like d(z,y) = 2® + y* + (z — y)? with
s = 2. Consider the mappings A, B : X — X given by

In(1+ %) if 2 €[0,1] In(1+ %) if z €[0,1]
Az = 4. 5 o DBr= x - 3
r—1+Ing if z € (1,3] r+In(l1+3) - 1if z € (1,3].

Define the mapping o : X x X — [0,00) by

(z.1) 1if z,y €10,1]
alz,y) =
Y 0 otherwise.

Let ¢(t) = §t. It is obvious that

(1) (A, B) is an a-admissible pair;
(77) there exists xg € X such that a(xg, Azg) > 1 and a(Axg, z9) > 1;
(7it) A and B are continuous on (X, d);

() ¥(t) < ﬁ
Now, we shall show that (A, B) is an («,)-contraction. Let x,y € X such that a(z,y) > 1. So,
x,y € [0,1].
We have
d(Az, By) = (Az)* + (By)® + (Az — By)?

= (In(1+ £))2 + (1 + £))2 + (1 + ) = In(1 + £))?
<GPHE+ %(w —y)’ = %[:ﬁ P+ (- y)Y] = éd(az,y) < p(M(,y)).

Thus, all hypotheses of Theorem are verified. Here, 0 is the unique common fixed points of A and
B.
3. Fixed Point Theorems for generalized cyclic contractions

In 2003, Kirk et al. [22] introduced the concepts of cyclic mappings and cyclic contractions. For papers
dealing with cyclic contractions, see [7, 10} 25]. We recall some definitions from [22].

Definition 3.1 ([22]). Let F and G be nonempty subsets of a space X. A mapping T : FUG — FUG is
called cyclic if T(F) C G and T(G) C F.

Definition 3.2 ([22]). Let F' and G be nonempty subsets of a metric space (X,d). A mapping T : FUG —
F UG is called a cyclic contraction if there exists k € [0,1) such that

d(Tz,Ty) < kd(z,y), (3.1)

forall x € F and y € G.
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Now, we introduce the concept of new generalized cyclic contractive pairs in the setting of b-metric-like
spaces.

Definition 3.3. Let F' and G be nonempty closed subsets of a b-metric-like space (X,d), a : X x X —
[0,00), ¥ € U5 and A, B: X — X be mappings. The pair (A, B) is called a cyclic («, 9, F, G)-contraction
pair if
(1) F'UG has a cyclic representation w.r.t. the pair (4, B), that is, A(F') C G and B(G) C F
(i2)
d(Az, By) < (M (z,y)), (32)

for all x € F and y € G satisfying a(x,y) > 1 or a(y,z) > 1, where

d(z, By) + d(y, Az)

M(x,y) = max{d(xay)vd(x7A$)7d(vay)7 As

}.
Now, we state and prove the following results.

Theorem 3.4. Let (X,d) be a complete b-metric-like space and F and G be nonempty closed subsets of X.
Suppose that A, B : X — X is a cyclic (a, ¢, F, G)-contraction pair and the following conditions hold:

(1) a(Azx,BAzx) > 1 for allx € F and a(Bz, ABx) > 1 for all z € G;
(ii) A or B is continuous on (X,d);
(731) if {xn} is a sequence in X such that o(zy,Tnr1) > 1 for alln > 0 and x, — z as n — oo, then
o(2,2) > 1;
() Y(t) < 25’3#% for each t > 0.

Then, A and B have a common fixed point in FFNG.

Proof. Let 9 € F and x; = Axzg. Since A(F) C G, then z1 € G. Also, let x9 = Bx; = BAxg. Since
B(G) C F, then x5 € F. Continuing in this fashion, we can construct a sequence {x,} in X such that

Tont2 = Bxgn_H € F, Tont+1 = Azxo, € G, Vn > 0.

By condition (), we have a(x1, z2) = a(Azg, BAzg) > 1 and a2, x3) = a(Bzy, ABz1) > 1. Continuing
this process, we get
a(Tp, Tnt1) =1, Yn>0.

Following the proof of Theorem we know that the sequence {z,} is Cauchy in (X, d) and converges
to some u € X with d(u,u) = 0. We shall show that u is a common fixed point of A and B in FFNG.
Since {x2,} is a sequence in the closed set F' and {x2,} converges to u, then u € F. Also, {zon+1} is a
sequence in the closed set G and {z2,+1} converges to u, then u € G. We deduce that v € FNG.

First, assume that A is continuous on (X, d). Since {z2,} converges to u, so {xo,+1 = Aza,} converges
to Au.

On the other hand, lim d(z,,u) =0 = d(u,u) and by Lemma we have

n—oo
1
gd(u, Au) < d(Au, Au) < sd(u, Au).

If d(Au, Bu) = 0, then Au = Bu. Moreover, the fact that d(u, Au) < sd(Au, Au) implies
0 < d(u, Au) < sd(Au, Au) < 2s*d(Au, Bu) = 0,

and so Au = u. Then, Bu = Au = u and so u is a common fixed point of A and B.
Suppose by contradiction that d(Au, Bu) > 0. Since w € F'N G and by (ii), it follows that a(u,u) > 1,
so that
d(Au, Bu) < (M (u,u)),
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where
M (u,v) = max{d(u,u), d(u, Au), d(u, Bu), d(u, Bu);— d(u, Au))}
s
= max{0, d(u, Au), d(u, Bu), d(u, Bu)z— d(u, Au) N
s

= maX{d(lM Au)7d(u7 BU)} S maX{d(u, AU), Sd(u, Au) + 5d(A’LL7 B’LL)}

= sd(u, Au) + sd(Au, Bu) < 25°d(Au, Bu) + sd(Au, Bu) = (25" + s)d(Au, Bu).
Then

d(Au, Bu) < ((2s® + s)d(Au, Bu)) < d(Au, Bu),

which is a contradiction.
The proof is similar when B is assumed to be continuous on (X, d).
O

Theorem 3.5. Let (X,d) be a complete b-metric-like space and F and G be nonempty closed subsets of X.
Suppose that A, B : X — X is a cyclic (a, ¢, F, G)-contraction pair and the following conditions hold:

(1) a(Az,BAz) > 1 for allx € F and o(Bx,ABx) > 1 for all x € G;
(ii) A and B are continuous on (X, d);

(791) if {xn} is a sequence in X such that o(zp,xnt1) > 1 for alln > 0 and x, — z as n — oo, then
a(z,z) 2 1;
() ¥(t) < 5 for each t > 0.

Then, A and B have a common fized point in F'NG.

Proof. The proof is similar to the proofs of Theorem [3.4] and Theorem [2.2]
O

Theorem and Theorem can be proved without assuming the continuity of A or the continuity of
B. For this instance, we suppose that X has the following property:

(R) If {x,} is a sequence in X such that a(xy,,z,+1) > 1 for all n and x,, - x € X as n — oo, then there
exists a subsequence {x, )} of {z,} such that a(z,),z) > 1 for all k.

This statement is given as follows.

Theorem 3.6. Let (X,d) be a complete b-metric-like space and F and G be nonempty closed subsets of X.
Suppose that A, B : X — X is a cyclic (a, 1, F, G)-contraction pair and the following conditions hold:

(1) a(Azx,BAzx) > 1 for all x € F and a(Bz, ABx) > 1 for all z € G;
(73) (R) holds;

(791) if {xn} is a sequence in X such that o(zyn,xnt1) > 1 for alln > 0 and x, — z as n — oo, then
a(z,z) 2 1;

(i) ¥(t) <t for eacht > 0.
Then, A and B have a common fized point in F'NG.
Proof. The proof is similar to that of Theorem [3.4] and Theorem O

Taking A = B in Theorem [3.5] and Theorem we state the followings results.
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Corollary 3.7. Let (X,d) be a complete b-metric-like space and F' and G be nonempty closed subsets of X.
Suppose that p € Vg, a: X X X — X and A: X — X such that

d(Az, Ay) < ¢Y(max{d(x,y),d(z, Ax),d(y, Ay), d(Ax,y)Z;d(a:, Ay) 1

forallx € F and y € G satisfying a(x,y) > 1 or a(y,z) > 1.
Also, suppose the following conditions hold:

(1) a(Azx, AAx) > 1 for allx € FNG;
(i
(i

(vit

) A is a cyclic mapping;
) A is continuous on (X, d);
)

if {xn} is a sequence in X such that oy, Tpi1) > 1 for alln > 0 and z, — z as n — oo, then
o(z,2) > 1;

(iv) ¥(t) < 55 for each t > 0.

Then, A has a fized point in F NG.

1
1

Corollary 3.8. Let (X,d) be a complete b-metric-like space and F' and G be nonempty closed subsets of X.
Suppose that p € Ug, a: X X X = X and A: X — X a mapping such that

d(Az,y) + d(z, Ay)
48 })’

d(Az, Ay) < P(max{d(z,y), d(z, Az),d(y, Ay),

forall x € F and y € G satisfying a(x,y) > 1 or a(y,z) > 1.
Also, suppose the following conditions hold:

(1) a(Ax, AAx) > 1 for allx € FNG;

(13) A is a cyclic mapping;

i1) (R) holds;

i) if {xn} is a sequence in X such that a(xn,zp41) > 1 for alln > 0 and x,, — z as n — oo, then
alz,z) > 1;

(iv) P(t) < é for each t > 0.

(

(vit

1
1

Then, A has a fized point in F NG.
Now, we give an example to illustrate Theorem

Example 3.9. Let X ={0,1,2} and d : X x X — [0,00) defined by

d(0,0) =9, d(1,1) =0, d(2,2) =0, d(0,1) = d(1,0) = 16,
d(0,2) = d(2,0) =9 and d(1,2) = d(2,1) = 49.

Then, (X, d) is a complete b—metric-like space with coefficient s = 2. Let ' = {0,1} and G = {1, 2}. Note
that F' and G are nonempty closed subsets of X. Consider the mappings A,B: X - X anda: X x X = X
as follows:

A0=2,A1=1,A2=0, B0O=0,Bl=1and B2=1

and

{a(l,l) = a(2,1)=1;

a(z,y) =0 otherwise.

Now, we show that all the conditions of Theorem are satisfied.
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We show that condition (i) of Theorem [3.6|is verified. Let 2 € F, then

a(2,1)=1if 2 =0;

Ax, BAx) =
oA 7 {a(l,l):l if x=1.

Also, let z € G, then

a(l,1)=1if o =1;

a(Bz, ABz) =
a(l,1)=1if z=2.

Then, a(Ax, BAz) > 1 for all z € F and a(Bx, ABz) > 1 for all z € G.

It is clear that A(F) C G and B(G) C F.

Now, we sow that (A, B) is a cyclic (a, ¥, F, G)-contraction pair.

Let z € F and y € G such that a(z,y) > 1 or a(y,x) > 1. It follows from definition of o that (z =y = 1)
or (t=1,y=2). Wehave for (zx=y=1) or (zx =1,y =2)

for all ¢ € Uy such that ¥(t) < % for all ¢ > 0. Then, (A, B) is a cyclic (a, 9, F, G)-contraction pair.
It is easy to show that X satisfies the property (R). Moreover, condition (ii7) of Theorem holds.
Hence, all conditions of Theorem [3.6] are verified. Here, 1 is the unique common fixed point of A and B.

4. Fixed Point Theorems for generalized contractions in partially ordered b-metric-like spaces

Now, we give some fixed points results on partially ordered b-metric-like spaces as consequences of our
results presented in the last section.

Definition 4.1. Let X be a nonempty set. We say that (X, d, <) is a partially ordered b-metric-like space
if (X, d) is a b-metric-like space and (X, <) is a partially ordered set.

Definition 4.2. Let F' and G be nonempty closed subsets of a partially ordered b-metric-like space (X, d, <
), ¥ € Ugand A, B : X — X be mappings. The pair (A, B) is called a cyclic (¢, F, G)-contraction pair if
(1) F UG has a cyclic representation w.r.t. the pair (A, B);

(i)
d(Az, By) < ¥(M(z,y)), (4.1)

for all x € F and y € G satisfying x < y or y < x, where

d(z, By) + d(y, Ax)

M(z,y) = max{d(z,y), d(z, Az),d(y, By), 1 }-

Definition 4.3. Let (X, d, <) a partially ordered b-metric-like space and F, G be nonempty closed subsets
of X with X = FUG. Let A,B : X — X be mappings. We say that the pair (A4, B) is (F,G)-weakly
increasing if Ax < BAx for all x € F and Bx < ABx for all x € G.

Now, we state and prove the following results.

Theorem 4.4. (X, d, <) be a complete partially ordered b-metric-like space and F,G be nonempty closed
subsets of X. Suppose that A, B : X — X is a cyclic (¢, F, G)-contraction pair and the following conditions
hold:

(1) (A, B) is (F,G)-weakly increasing;
(ii) A or B is continuous on (X, d);

(1i1) P(t) < 2s§+s for each t > 0.
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Then, A and B have a common fixzed point in FFNG.

Proof. Let the function o : X x X — X such that

(2.1) 1if =z <y;
alz,y) =
Y 0 otherwise.

Then, all hypotheses of Theorem are satisfied and hence A and B have a common fixed point in
FNaG. O

Also, by using the same technique, we have the following results.

Theorem 4.5. (X, d, <) be a complete partially ordered b-metric-like space and F,G be nonempty closed
subsets of X. Suppose that A, B : X — X s a cyclic (¢, F, G)-contraction pair and the following conditions
hold:

(i) (A, B) is (F,G)-weakly increasing;
(1) A and B are continuous on (X, d);
(#11) ¥(t) < 5tz for each t > 0.

Then, A and B have a common fized point in F'NG.

Theorem 4.6. (X,d, <) be a complete partially ordered b-metric-like space and F,G be nonempty closed
subsets of X. Suppose that A, B : X — X is a cyclic (¢, F,G)-contraction pair and the following conditions
hold:

(i) (A, B) is (F,G)-weakly increasing;
(i3) for a sequence {x,} C X with x,, < xpt1, for alln € N and x,, — z in (X, d), then there exists a
subsequence {Ty )} of {xn} such that x,uy = z, for all k € N;
(i) ¥(t) <t for eacht > 0.

Then, A and B have a common fized point in F'NG.
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