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Abstract

In this paper, an iterative algorithm for finding a common point of the set of zeros of an accretive
operator and the set of fixed points of a nonexpansive mapping is considered in a uniformly convex Banach
space having a weakly continuous duality mapping. Under suitable control conditions, strong convergence
of the sequence generated by proposed algorithm to a common point of two sets is established. The main
theorems develop and complement the recent results announced by researchers in this area. (©2016 All
rights reserved.
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1. Introduction

Let E be a real Banach space with the norm || - || and the dual space E*. The value of 2* € E* at y € E
is denoted by (y, z*) and the normalized duality mapping J from E into 2F" is defined by

J(@) ={a" € B": (z,2%) = [lz|[[|«"[|, [l=]] = [l="][}, V2 e E.

Recall that a (possibly multivalued) operator A C E x E with the domain D(A) and the range R(A)
in E is accretive if | for each z; € D(A) and y; € Az; (i = 1, 2), there exists a j € J(z1 — x2) such that
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(y1 — y2,7) > 0. (Here J is the normalized duality mapping.) In a Hilbert space, an accretive operator is
also called monotone operator. The set of zero of A is denoted by A~10, that is,

A0 = {z€D(A):0e Az}.

If A=10 # (), then the inclusion 0 € Az is solvable.

Iterative methods has extensively been studied over the last forty years for constructions of zeros of
accretive operators (see, for instance, |4l 5 0, 12, 13 15, [I7] and the references therein). In particular, in
order to find a zero of an accretive operator, Rockafellar [I7] introduced a powerful and successful algorithm
which is recognized as Rockafellar proximal point algorithm: for any initial point z¢ € E, a sequence {x, }
is generated by

Tn+1 = Jrn(xn + en)a Vn >0,

where J. = (I +7A)~! for all 7 > 0, is the resolvent of A and {e,} is an error sequence in a Hilbert space
E. Bruck [6] proposed the following iterative algorithm in a Hilbert space E: for any fixed point u € F,

Tnt1 = Jp, (u). Vn > 0.

Xu [23] in 2006 and Song and Yang [20] in 2009 obtained the strong convergence of the following
regularization method for Rockafellar’s proximal point algorithm in a Hilbert space E: for any initial point
g € FE

Tnt1 = JIp, (apu+ (1 — ap)zn +ep), Vn >0, (1.1)

where {a,} C (0,1), {ex} € E and {r,} C (0,00). In 2009, Song [I§] introduced an iterative algorithm
for finding a zero of an accretive operator A in a reflexive Banach space E with a uniformly Géateaux
differentiable norm satisfying that every weakly compact convex subset of E has the fixed point property
for nonexpansive mappings: for any initial point xg € F,

Tnt1 = Bnxn + (1 = Bp)Jr, (anu+ (1 — ap)zy), Vn >0, (1.2)

where {ay, }, {8,} € (0,1) and {r,} C (0,00). Zhang and Song [24] considered the iterative method for
finding a zero of an accretive operator A in a uniformly convex Banach space E with a uniformly Gateaux
differentiable norm (or with a weakly sequentially continuous normalized duality mapping 7). In order to
obtain strong convergence of the sequence generated by algorithm to a zero of an accretive operator
A together with weaker conditions on {f,} and {r,} than ones in [I8], they used the well-known inequality
in uniformly convex Banach spaces (see Xu [2I]). In 2013, Jung [I0] extended the results of [18, 24] to
viscosity iterative algorithms along with different conditions on {ay,}, {#,} and {r,}. Very recently, Jung
[11] introduced the following iterative algorithm for finding a common point of the set of zeros of accretive
operator A and the set of fixed points of a nonexpansive mapping S in a uniformly convex Banach space E
with a uniformly Gateaux differentiable norm:

Tny1 = I, (anfrn + (1 — ap)Szy,), Vn >0, (1.3)

where z¢ € C, which is a closed convex subset of E; f : C' — C' is a contractive mapping; and {a;,} C (0,1);
{rn} C (0, 00).

In this paper, as a continuation of study in this direction, we consider the iterative algorithm for
finding a common point in A~'0N Fiz(S) in a uniformly convex Banach space E having a weakly continuous
duality mapping J, with gauge function ¢, where A710 is the set of zeros of an accretive operator A
and Fiz(S) is the fixed point set of a nonexpansive mapping S. Under suitable control conditions, we
prove that the sequence generated by proposed iterative algorithm converges strongly to a common point
in A='0 N Fiz(S), which is a solution of a certain variational inequality. As an application, we study
the iterative algorithm with a weak contractive mapping. The main results improve, develop and
supplement the corresponding results of Song [18], Zhang and Song [24], Jung [10, [IT] and Song et al [19],
and some recent results in the literature.
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2. Preliminaries and lemmas

Let E be a real Banach space with the norm || - ||, and let E* be its dual. When {x,,} is a sequence in E,
then z,, — x (resp., x, — x, z, N x) will denote strong (resp., weak, weak™) convergence of the sequence
{z,} to x.

Recall that a mapping f : E — E is said to be contractive on E if there exists a constant k£ € (0, 1) such
that || f(z) — f(y)|| < k|lz —y||, Yz, y € E. An accretive operator A is said to satisfy the range condition if
D(A) C R(I +rA) for all > 0, where I is an identity operator of E and D(A) denotes the closure of the
domain D(A) of A. An accretive operator A is called m-accretive if R(I +rA) = E for each r > 0. If A
is an accretive operator which satisfies the range condition, then we can define, for each r > 0 a mapping
Jr: R(I +7A) — D(A) defined by J, = (I +1rA)~!, which is called the resolvent of A. We know that J,. is
nonexpansive (i.e., | J,z—J,y|| < |z —vy|, Yo,y € R(I+rA))and A710 = Fix(J,) = {x € D(J,) : J,z =z}
for all » > 0. Moreover, for r > 0,¢ >0 and z € E,

t t
Jox = Jy (x + (1 — )Jm), (2.1)
T T

which is referred to as the Resolvent Identity (see [I}, [7], where more details on accretive operators can be
found).
The norm of FE is said to be Gateaux differentiable if

t —
ety e
t—0 t
exists for each x, y in its unit sphere U = {z € E : ||z|| = 1}. Such an FE is called a smooth Banach space.
A Banach space F is said to be uniformly convex if for all € € [0, 2], there exists J. > 0 such that

< 1— 6. whenever ||z —y|| > e.

e = iyl = 1 impies 171

Let ¢ > 1 and M > 0 be two fixed real numbers. Then a Banach space is uniformly convex if and only if
there exists a continuous strictly increasing convex function g; [0, 00) — [0, 00) with g(0) = 0 such that

1Az + (1= Xyl < Al ]* + (1 = Myl = A1 = Vg(llz — yl), (2.2)

for all z, y € By (0) = {z € E : ||z|| < M}. For more detail, see Xu [21].
By a gauge function we mean a continuous strictly increasing function ¢ defined on R* := [0, 00) such
that ¢(0) = 0 and lim,_, ¢(r) = co. The mapping J,, : E — 2F" defined by

Tp(x) ={f € E*: (z, f) = [l f I [/ = (llz)}, Ve ek

is called the duality mapping with gauge function ¢. In particular, the duality mapping with gauge function
©(t) =t denoted by J, is referred to as the normalized duality mapping. The following property of duality
mapping is well-known ([7]):

p(Al - [l]])

]

To(Az) = sign)\< >J($), Vee E\NO, XA€R,
where R is the set of all real numbers; in particular, 7(—z) = —J(z), V& € E. It is known that F is smooth
if and only if the normalized duality mapping J is single-valued.

We say that a Banach space E has a weakly continuous duality mapping if there exists a gauge function
¢ such that the duality mapping 7, is single-valued and continuous from the weak topology to the weak*
topology, that is, for any {z,,} € E with 2, = 2, J,(2,) = J,(2). For example, every [P space (1 < p < o0)
has a weakly continuous duality mapping with gauge function o(t) = t*=1 ([1, [7]). Set

O(t) = /Ot o(r)dr, Vt>0.
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Then for 0 < k < 1, p(kz) < ¢(z),

kt t t
O(kt) = /0 o(r)dr = k:/o p(kx)dz < k:/o o(z)dr = kd(t),

and moreover

Tp(x) = 00(||z]), Vx € E,

where 0 denotes the subdifferential in the sense convex analysis, i.e., 0®(||z|]) = {z* € E* : ®(||y|) >
o(||zl]) + {2,y — x), Vy € E}.

We need the following lemmas for the proof of our main results. We refer to [I] [7] for Lemma and
Lemma 2.2

Lemma 2.1. Let E be a real Banach space, and let ¢ be a continuous strictly increasing function on RT
such that ©(0) = 0 and lim, . ¢(r) = 00. Define

t
D(t) :/ o(t)dr, VteRT.
0
Then the following inequality holds:
Oz +yll) < @(llz]) + (v, oz +y)), VrzyekF,
where jyo(x +y) € To(x +y). In particular, if E is smooth, then one has

lz +yl? < |le|® + 2{y, T (& +y)), Yz, y € E.

Lemma 2.2 (Demiclosedness principle). Let E be a reflexive Banach space having a weakly continuous
duality mapping J, with gauge function ¢, let C be a nonempty closed convex subset of E, and let S : C — E
be a nonexpansive mapping. Then the mapping I — S is demiclosed on C, where I is the identity mapping;
that is, xp, = x in E and (I — S)z, — y imply that v € C and (I — S)x =y.

Lemma 2.3 ([14, 22]). Let {s,} be a sequence of nonnegative real numbers satisfying
Sn+1 < (1 - )\n)Sn + )\n(;n + Yn, Vn > 07

where {A\,}, {0n} and {y,} satisfy the following conditions:
(1) {An} C[0,1] and 372 An = 00;
(i) Hmsup,, oo 0n < 0 0or D07 4 Ap|dn| < 00;

(iii) 7, >0 (n>0), D02 50 < 00.

Then lim,, oo s, = 0.

Recall that a mapping g : C' — C' is said to be weakly contractive ([2]) if

lg(z) =gl < llz —yll = ¥(|lz —yll), foralx, yeC,

where ¢ : [0,+00) — [0,400) is a continuous and strictly increasing function such that 1 is positive on
(0,00) and 1(0) = 0. As a special case, if ¥(t) = (1 — k)t for t € [0, +00), where k € (0,1), then the weakly
contractive mapping ¢ is a contraction with constant k. Rhodes [16] obtained the following result for the
weakly contractive mapping (see also [2]).

Lemma 2.4 ([16]). Let (X,d) be a complete metric space and g be a weakly contractive mapping on X.
Then g has a unique fixed point p in X.
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The following Lemma was given in [3].

Lemma 2.5 ([3]). Let {sn} and {vy,} be two sequences of nonnegative real numbers, and let {\,} be a
sequence of positive numbers satisfying the conditions:
(1) D200 An = o005
(ii) lim,oe 3= = 0.
Let the recursive inequality
Sn+1 < sp — Anw(sn) +Yn, M > 07

be given, where 1)(t) is a continuous and strict increasing function on [0, 00) with 1 (0) = 0. Then lim, o0 Sy, =

0.

3. Iterative algorithms

Let E be a real Banach space, let C be a nonempty closed convex subset of F, let A C ' x E be an
accretive operator in F such that A710 # () and D(A) C C C MysoR(I +1A), and let J, be the resolvent of
A for each 7 > 0. Let S : C — C be a nonexpansive mapping with F(S) N A0 # 0, and let f: C — C be
a contractive mapping with a constant k£ € (0,1).

In this section, first we introduce the following algorithm that generates a net {x},c(o,1) in an implicit
way:

Ty = Jr(tfl‘t + (1 — t)Sact). (31)
We prove strong convergence of {z;} as t — 0 to a point ¢ in A~'0 N Fiz(S) which is a solution of the
following variational inequality:
(I - f)q,Tp(q—p)) <0, ¥pe A~'0N Fixz(S). (3.2)
We also propose the following algorithm which generates a sequence in an explicit way:
Tnt1 = JIp, (anfr, + (1 — an)Sxy), VYn >0, (3.3)

where {a,}, {Bn} C (0,1), {r,} C (0,00) and zp € C' is an arbitrary initial guess, and establish the strong
convergence of this sequence to a point ¢ in A710 N Fiz(S), which is also a solution of the variational

inequality (3.2)).

3.1. Strong convergence of the implicit algorithm
Now, for ¢t € (0,1), consider a mapping Q; : C' — C' defined by

Qix = J(tfr+ (1 —1t)Sz), VreCl.
It is easy to see that @ is a contractive mapping with a constant 1 — (1 — k)¢. Indeed, we have

1Qer — Quyll < tllfx — fyl + (1 = )Sz — (I — 1) Sy||
<tklle —yll+ (1 =)z -yl
=1 ==Ktz -yl

Hence @; has a unique fixed point, denoted by x;, which uniquely solves the fixed point equation (3.1)).
The following proposition about the basic properties of {z;} and {y;} was given in [11], where y; =
tfry+ (1 —t)Sx for t € (0,1). We include its proof for the sake of completeness.

Proposition 3.1 ([11]). Let E be a real uniformly conver Banach space, let C be a nonempty closed
conver subset of E, let A C E x E be an accretive operator in E such that A='0 # () and D(A) C C C
NrsoR(I +1A), and let J, be the resolvent of A for each r > 0. Let S : C — C be a nonexpansive mapping
with Fiz(S)N A0 # (), and let f : C — C be a contractive mapping with a constant k € (0,1). Let the net
{z:} be defined via (8.1), and let {y;} be a net defined by ys = tfxy + (1 —t)Swy for t € (0,1). Then
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1) {xt} and {y:} are bounded fort € (0,1);

2) xy defines a continuous path from (0,1) in C' and so does y;;

4) limyo ||lyr — Jrye|| = 05

5) limso ||zt — el = O;

(1)
(2)
(3) limyo [|lye — Sae|| = 0;
(4)
(5)
(6)

6 limt—>0 Hyt - SytH =0.
Proof. (1) Let p € Fiz(S)N A~'0. Observing p = Sp = J,.p, we have

|z = pll = |Jr(tfze + (1 = 1)Sze) — Jpp| = || Sye — Sp|
< lye —pll
= |[t(fzr — fp) + t(fp —p) + (1 = t)(Sz: — Sp)||
< tkllzy — pll + ] fp —pll + (1 = )]z — pl|-
So, it follows that

|fp—pl Ilfp—pl
1—k 1—k

Hence {x;} and {y:} are bounded and so are {fxz:}, {Sx:}, {Jra+}, {Sy:} and {Jry:}.
(2) Let t, to € (0,1) and calculate

|z: —pl| < and |y, —pll <

|2t =m0 || = ([ Jr(Ef 2 + (1 — 8)Swy) — Jp(tofaey + (1 —to) Sz, ||
< (& —to) fae + to(foe — fary)
— (t —to)Sxe + (1 —t0)Swe — (1 — to) Jrxs, ||
< [t =toll[ fae|l + tokllze — 24 ||
+ [t = to[[|Szell + (1 — to) |zt — 24 ]-

It follows that

([l + [ Sl
— < t — 1ol
e =y | < ST e~ ol
This show that x; is locally Lipschitzian and hence continuous. Also we have
[l + 1S
- < T T P e —t
e = ol < LTS ol

and hence y; is a continuous path.
(3) By the boundedness of { fz;} and {J,2;} in (1), we have

lye — Sael| = [[tfze + (1 — 1) Sz — S|
< tHfl’t — S$t|| —0 as t— 0.

(4) Let p € Fix(S) () A~10. Then it follows from Resolvent Identity (2.1)) that

1 1
Jryp = J§(§yt + ijryt)‘

Then we have

11 1 1
Joye — pll = 1Tz Gye + =Joye) — ol < 1= — p) + = (Joye — D).
1yt = pll = 175 (G + 5 Trye) =PIl < 115 (9 =) + 5 (T =)
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By the inequality (2.2) (¢ =2,\ = %), we obtain that

1 1
| Jry: — pl? < ||J§(§yt + iert) —pl?

1 1 1
< 5”?/15 —P||2 + §”ert —PH2 — Zg(Hyt — Jryell)
(3.4)
< L= 12 + 21w = 012 = Loy = Tl
>~ 2 t 2 t 4 t ryt

1
= llye = plI* = S 9(llve = Jrvel)-

Thus, from (3.1)), the convexity of the real function (t) = t? (¢t € (—o0,00)) and the inequality (3.4) we
have ) )
e = pl” = [IJry: — pll

1
< llye = pl* = Jo(llye = Jryel)
1
= [[t(fe = p) + (1 = 1)(Sme = p)II* = J9(lve = Towel)

1
< tllfze —pl* + (1 = O)le = plI* = J9(lye = Sl

and hence 1
19Uy = Jryell)) < B[l fre — pl> = |z — pl*).

By boundedness of { fz;} and {z}, letting ¢ — 0 yields
tim o[l — Jrel) = 0.
—0
Thus, from the property of the function ¢ in (2.2)) it follows that
I - — 0.
ity 31— o] = 0
(5) By (4), we have
e = el < llwe = Jewell + (1 S0ye — well = I Toge — well = 0 (£ — 0).
(6) By (3) and (5), we have

lye — Syl < llye — Sael| + || Sy — S|
< lye = Sael| + |lwe —wel| = 0 (= 0).

O

We establish strong convergence of the net {x;} as t — 0, which guarantees the existence of solutions of
the variational inequality (3.2)).

Theorem 3.2. Let E be a real uniformly convexr Banach space having a weakly continuous duality mapping
J, with gauge function ¢, let C' be a nonempty closed convex subset of E, let A C E x E be an accretive
operator in E such that A='0 # (0 and D(A) C C C NpsoR(I +rA), and let J, be the resolvent of A for
each > 0. Let S : C — C be a nonexpansive mapping with Fix(S) N A70 # (), and let f : C — C be a
contractive mapping with a constant k € (0,1). Let {z:} be a net defined via (3.1), and let {y:} be a net
defined by yi = tfxy + (1 —t)Sxzy fort € (0,1). Then the nets {x;} and {y;} converge strongly to a point q
of A7'0 N Fixz(S) ast — 0, which solves the variational inequality (3-2).
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Proof. Note that the definition of the weak continuity of duality mapping J, implies that F is smooth.
By (1) in Proposition we see that {z;} and {y:} are bounded. Assume ¢, — 0. Put z,, := x;, and
Yn = Y, Since E is reflexive, we may assume that y,, — ¢ for some ¢ € C. Since J,, is weakly continuous,
|y — Jrynll — 0 and ||lyn — Syn| — 0 by (4) and (6) in Proposition respectively, we have by Lemma
q = Sq = J.q, and hence ¢ € A710 N Fiz(9).

Now we prove that {z;} and {y} converge strongly to a point in A~'0 N Fiz(S) provided it remains
bounded when t — 0.

Let {t,} be a sequence in (0,1) such that ¢,, — 0 and z;, — ¢ as n — oo. By (5) in Proposition, y;, — ¢
as n — oo too. Then argument above shows that ¢ € A~'0 N Fiz(S). We next show that x;, — ¢. As a
matter of fact, we have by Lemma

([|ze, —all) < (llyt, —all)
= ([t (fzr, — f@) + (1 —ta)(Szr, — @) +tu(fqg — Q)H)
< O(|[tnkllze, — qll + (1 = to)llze, — qll) + talfa — ¢, To(yt, — @)
= O((1 — (1 = k)tp)l|lze, — all) + tnlfa — ¢ Tp(yt, — Q)>
< (1= = k)tn)@(|lze, — qll) + talfa — q, Tp(yt, — q))-

This implies that
1
®(zs, — al) < T (fa— 4 Tl — ).

Observing that y;, — ¢ implies J,(y:, —q) — 0, we conclude from the last inequality

O(flze, —ql) = 0.

Hence z¢, — q and y;, — ¢ by (5) in Proposition
We prove that the entire net {x:} and {y:} converge strongly to ¢. To this end, we assume that two
sequences {t,} and {s,} in (0,1) are such that

Tt, —7 4, Y, —7 ¢ and Ts, — q, Ysn — q.

We have to show that ¢ = g. Indeed, for p € A=10 N Fixz(S), it is easy to see that

(e = Swy, Tp(e — p)) = (ye — w1, Tp(@r = p)) + (xe —p +p — S, Tp(w¢ — p))
> (yt — wt, Tp(wt — p)) + @(lz — pll) — (Szt — p, Tp(wt — p))
> (yr =z, (e — p)) + @2 — pll) — |2 — pll| T (22 — p) |
>yt — ¢, Tp(@e — p)) + (||lze — pl|) — (|| — pl|)
= (yt — x¢, Tp(xe — p))
On the other hand, since
t
— Sxy = —m(yt - fl“t)a
we have for t € (0,1) and p € F(S)N A~10,
1—t
(ye — fre, To(xe — p)) < . (@t — yt, To(xt — D))

1
< (1= llee = w1 Tp @ — D) (35)
< Jlae = willl Ty e~ p)]l-

In particular, we obtain

Wtn = [t To(t, = P)) <ty = Y [ T (1, = )|
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and
(Ysn = fTsn: To(@s, — D)) < |25, — Ys, | T (25, — D).
Letting n — oo in above inequalities, we deduce by (5) in Proposition

(¢—fq,To(q—p)) <0, and (G- fq,T,(@—p)) <0.

In particular, we have

Adding up these inequalities yields

lg =l Te(a = DI = (¢ — T To(q - 0))
<{fqa— [0, T,(ad—7q) < klg—al|To(qa —q)]-

This implies that (1 —k)|lq — q||||7,(¢ — @)|| < 0. Hence ¢ =g and {z;} and {y;} converge strongly to gq.
Finally we show that ¢ is the unique solution of the variational inequality (3.2). Indeed, since z, y; — ¢
by (5) in Proposition and fxy — fqast — 0, letting t — 0 in (3.5]), we have

(I = f)g,To(q—p)) <0, ¥pe A~'0N Fiz(S).

This implies that ¢ is a solution of the variational inequality (3.2). If § € A=10 N Fiz(S) is other solution
of the variational inequality (3.2]), then

(I =f)g, To(q—4q)) <0. (3.6)

Interchanging g and ¢, we obtain

(I = 1)a: Tp(q =) <0. (3.7)

Adding up and (| . yields
(L =K)llg—4qlllTe(@ =gl <0.

That is, ¢ = ¢. Hence ¢ is the unique solution of the variational inequality (3.2]). This completes the
proof. O

3.2. Strong convergence of the explicit algorithm

Now, using Theorem we show the strong convergence of the sequence generated by the explicit
algorithm (3.3)) to a point ¢ € A=*0 N Fiz(S), which is also a solution of the variational inequality (3.2).

Theorem 3.3. Let E be a real uniformly convexr Banach space having a weakly continuous duality mapping
J, with gauge function ¢, let C' be a nonempty closed convex subset of E, let A C E x E be an accretive
operator in E such that A=*0 # () and D(A) C C C NpsoR(I +7A), and let J,, be the resolvent of A for
each rn, > 0. Let r > 0 be any given positive number, and let S : C — C' be a nonexpansive mapping with

Fix(S)N A0 #0. Let {an}, {Bn} € (0,1) and {r,} C (0,00) satisfy the conditions:

( limy, o0 vy = 0;

1)
(C2) >0 o = 005
(C3) |ant1 — an| < 0(ani1) + 0n, Y opeyon < 00 (the perturbed control condition);
(C4) limp oo ry =1 and ry > >0 forn >0 and Y07 |rpp1 — | < 00.

Let f: C — C be a contractive mapping with a constant k € (0,1) and z9 = x € C be chosen arbitrarily.
Let {x,} be a sequence generated by

Tpy1 = Ip, (anfrn + (1 — apn)Szy), Vn >0, (3.8)

and let {y,} be a sequence defined by yn = anfan + (1 — ap)Jp, xn. Then {z,} and {y,} converge strongly
to q € A7Y0N Fix(S), where q is the unique solution of the variational inequality ([3.2)).
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Proof. First, we note that by Theorem there exists the unique solution ¢ of the variational inequality
(I =g, To(q—p)) <0, Vpe A~'on Fiz(S),

where ¢ = lim;02; = limyy; with x; and y; being defined by z; = J.(tfzy + (1 — t)Szy) and y =
tfxy + (1 —t)Sxy for 0 < t < 1, respectively.

We divide the proof into the several steps.
Step 1. We show that ||z, —pl|| < max{||zo—pl|, 25 f(p) —pl|} for all n > 0 and all p € A~'0N Fiz(S), and

so {xn}, {yn}, {Jrntn}, {Sz0}, {Jr,yn}, {Syn} and {f(z,)} are bounded. Indeed, let p € A=10 N Fix(9).
From A~'0 = Fixz(J,) for each r > 0, we know p = Sp = J,.,p. Then we have

[Zn1 = pll < llyn — pl]
= [lon(fzn —p) + (1 — on)(Szn, — Sp)|
< anllfan —pl + (1~ o) —
< (I — £l + 172~ pl)) + (1 = @) — o]
< ukllza — pll + 6l fp — ol + (1~ ) —
= (1 (1~ D)z~ pl + (1~ k) 2P

1
< max{ e, — ol 2 176) i

Using an induction, we obtain
1
|z — pll < maxy |lzo = pll, 7= [Ifp — pll o and
1
Iy = pll < max{ g = pll, =7~ pll {, ¥n > 0.

Hence {z,} is bounded, and so are {y,}, {Sxn}, {Jr,2n}, {SUn}, {Jr, yn} and {fz,}. Moreover, it follows
from condition (C1) that

[yn = Sanl| = anl|f(zn) = Szall =0 (0 — o). (3.9)

Step 2. We show that lim,, o ||®n+1 — @n|| = 0. First, from the resolvent identity (2.1)) we observe that

HJrnyn - Jrn—lyn—l”

Tn— Tr—
= ‘ Jrn,1 <T;lyn + <1 - = 1>Jrnyn> - Jrn,ﬂ/n—l

n rn
Tn—1 Tn—1
< ‘ O <1— “ >Jrnyn) — Yn1
Tn Tn

Tn—1

(3.10)

(lyn = yn—1ll + IS ¥n — Yn—-1ll)

< lgn — g + ]1 -
n

Tn — Tn-1

S Hyn_yn—IH + M17

where M; = SuPnZO{HJTnyn — Yn—1|l + |Yn — Yn—1l|}. Since

Yn = anf(xn) + (1 - an)anv
Yn—1 = an—lf(xn—l) + (1 - an—l)an—la Vn > 1,
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by (3.10)), we have for n > 1,

Ty — Tn—
Hxn—i-l - an = HJTnyn - Jrn71yn—1H < Hyn - yn—1H + %ﬂl M,
= [(1 = an)(Sn — Swp1) + an(frn — frn-1)
Ty — Tn—
+ (an - anfl)(f-rnfl - Smnfl)H + el M,
(3.11)
< (1= an)llen — 2p-1| + kan ||z — 201
Tr_
+ oy — o1 | Mo + ‘1 — ==L,
Tn
T'n —Th-1
< (1= (1 =k)ag)lvn — w1l + |an — an_1|Ma + | ——— | Mj,
where My = sup{||f(z,) — Szy|| : n > 0}. Thus, by (C3) we have

Tn — Tn—-1

[Tn1 — @pll < (1= (1 = k)an)lzn — zp-1| + Mz(0(an) + on-1) + M

In (3.11), by taking sp+1 = ||Tnt1 — xull, An = (1 — k), A\pdn = Mao(ay,) and

Tn — Thn—-1

Yn = My + Maoy,—1,

we have
Sn+1 < (1 - )\n)sn + )\nén + Yn-

Hence, by conditions (C1), (C2), (C3), (C4) and Lemma [2.3] we obtain

nlgglo |zn41 — 2nll = 0.

Step 3. We show that lim,,—c ||yn — Jr,,yn|| = 0. Indeed, it follows from Resolvent Identity (2.1]) that

1 1
JrpnYn = J%”(gyn =+ §Jrnyn)'

Then we have

1
=(Jrpyn —D)|I-

11 1
1 Trm = Pl = 1750 (Gm + 5 Tratm) =Pl < 500 =) + 5

By the inequality (2.2) (A = %), we obtain that

1 1
| Trayn = pI* < 1T (G + 5 Truym) = ol
1 1 1
< Sllvn - pl* + CLE pl* - 19(lym = e, ynl)
(3.12)
< L =212+ Ll — 212 = Lol — Tl
=3 Yn 9 n 4 n rnYn
2 1

= Hyn_p” - Eg(Hyn_Jrnyn”)-

Thus, the convexity of the real function () = t? (t € (—00,00)) and the inequality (3.12)), we have for
p€ A70N Fix(9),



J. S. Jung, J. Nonlinear Sci. Appl. 9 (2016), 2394-2409 2405

zns1 = 2l* = 1990 = pl?
< Jlgn —pl? = 300l — o)
< Nl fn + (1 = @) S0 = I = 3(ln ~ Tl
< cnllfn = pl* + (1= w1820 = ol = 390l Jryil)

1
< ap|[fon —pl* + (1 — an)|lzn — plI* — 19UYn = Jruynll),
and hence
19Uyn = Jruynll) — an(l f2n — plI? =l — pl?) < llan = plI* = 201 — plI*

Now we consider two cases:
Case 1. When 59(||yn — Jr,ynll) < an(||fzn — pl|* = [|2n — p[|?), by the boundedness of {fz,} and {z,}
and condition (C1),

Jl_grolog(Hyn - JrnynH) =0.

Case 2. When 19([lyn — Jr,ynl)) > an([lfzn = p|* = lzn — pl?), we obtain

N
1
Z[Zg(llyn — Jronll) = an([[ fzn = pI* = llzn — pI*)] < llzo — plI* = lzy — plI* < lz0 — plI*
n=0
Therefore
— 1 2 2
Z[ZQ(H% — I ynll) — an(([f2n — plI” = [[2n — p|7)] < o0,
n=0
and so )
T [2g(lyn — Jr,vnll) — on(lfn — ol ~ ln — pI)] = 0.

By condition (C1), we have
7}1_{209(||yn = Jr,ynll) = 0.

Thus, from the property of the function ¢ in (2.2)) it follows that

lim |y, — Jr,ynll = 0.
n—oo

Step 4. We show that lim,,_,o ||z, — yn|| = 0. Indeed, from Step 2 and Step 3 it follows that
[Zn = Yull <[220 — Tnsall + [ Znt1 — ynll
<ll@n = zn1ll + 1 9r,yn — ynll = 0, (n — 00).
Step 5. We show that lim,_« ||yn — Syn|| = 0. In fact, by (3.9)) and Step 4, we have

Hyn - Syn” < Hyn - S$n” + HSSUn — Synl|
< lyn = Swull + |70 — Yl = 0 (n — o0).

Step 6. We show that lim,,_, ||z, — Sz,|| = 0. Indeed, from Step 4 and Step 5 it follows that

[2n = Sanll < llzn = ynll + lyn — Synll + [1Syn — Szl
< 2[lzn — ynll + [lyn — Synll = 00 (n — o0).
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Step 7. We show that lim,,_,c ||Zn, — Jr,, Zn|| = 0. Indeed, by Step 3 and Step 4, we obtain

|z = JryZnll < %0 = yull + lyn — Jrpynll + 1 JrnYn — Jrp 20|
< 2[lyn — @l + lyn = Jryynll = 0 (n — 00).

Step 8. We show that lim,, oo ||yn, — Jryn|| = 0 for r = lim,_,oo 7. Indeed, from the resolvent identity
(2.1) and boundedness of {J;,y,} we obtain

,
1 yn = Jrynl| = L«( (1 - T)J,«nyn> — Jrtn
T
< ' < (1 - ) Jrnyn> —Yn (3.13)
<1 = Jrynll =0 (n— 00).

Hence, by Step 3 and (3.13)), we have

lyn — Jrynll < lyn — Jen¥nll + 1 JenYn — Jrynll = 0 (0 — 00).

Step 9. We show that lim,, ||z, — Jr2zp|| = 0. Indeed, by Step 4 and Step 8, we have

lzn — Jrznll < 20— yull + lyn — Jrynll + 1| Jryn — Jrenl|
< 2|z — yull + lyn — Jryml| = 00 (n — 00).

Step 10. We show that limsup,, ,.(({ — f)q, J,(¢ — yn)) < 0. To prove this, let a subsequence {yn,} of
{yn} be such that

limsup((I — f)q, Tp(q — yn)) = leEO«I = 1), Tp(q — yn;))

n—o0

and y,, — 2 for some z € E. Then, by Step 5, Step 8 and Lemma we have z € A710 N Fiz(S). From
the weak continuity of J,, it follows that

w — ilggoip(q —Yn;) = w — Tp(q — 2).

Hence, from (3.2)) we have

limsup((! = f)q, Tp(q = yn)) = lim (I = f)a. Tp(q = yn,))

n—o00 J

= (I - g, Ts(q — 2)) <0.

Step 11. We show that lim,_,« ||z, — ¢|| = 0. By using (3.8)), we have

[#n41 = all < llyn — all = lon(fon — @) + (1 — an)(Szn — g).
Applying Lemma [2.1] we obtain

(lyn —all)

O(lzn —ql) < @
O([lon(fzn = fqo) + (1 = an)(Szn — @) + anlfq — ¢, To(yn — @)
P
(1

(3.14)
(komllzn — qll + (1 — an)l|zn — qll) + on(fa — ¢ Tp(yn — )

<
<
<
S ( k) n) (Hxn_qu)"i_an<fq_q,jap(yn_Q)>-
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Put

A= (1 —k)ay, and 6, = ﬁ«f = a0, To(q = yn))-

From conditions (C1), (C2) and Step 8 it follows that A\, — 0, > 7y A, = oo and limsup,,_,, d, < 0. Since

(3.14) reduces to
(||t — ql]) < (1 = X)®(|zn — ql|) + Anbn,

from Lemma with 7, = 0 we conclude that lim,,_,oc ®(||zn — ¢||) = 0, and thus lim,,_, x, = ¢. By Step
4, we also have lim,_, ¥, = ¢. This completes the proof. O

Corollary 3.4. Let E, C, A, J,.,, S, f andr > 0 be as in Theorem[3.3] Let {a,}€ (0,1) and {r,} C (0, 0)
satisfy conditions (C1) — (C4) in Theorem [3.3] Let 9 = x € C be chosen arbitrarily, and let {z,} be a
sequence generated by
Tpp1 = Jr, (Qnfan + (1 — an)Szn +e,), Vn >0,
\

len]]

where {en} C E satisfies >°° llen| < 0o or limpoe * = = 0, and let {yn} be a sequence defined by
Un = anfn+ (1 — an)Szy, +e,. Then {x,} and {y,} converge strongly to q € F(S)N A0, where q is the
unique solution of the variational inequality (3.2]).

Proof. Let zp41 = Jp, (nfzn + (1 — ay,)Szy,) for n > 0. Then, by Theorem {zn} converges strongly to
a point ¢ € A710N Fiz(S), where g is the unique solution of the variational inequality (3.2), and we derive

[Zn41 = 2]l < llanfan + (1 — an)Szn — (anzn + (1 — an)Szn + en) ||
< apllfon = fonll + (1 — an)[[ Sz — Szall + llenl|
< (1= (1 = k)an)l|lzn = znll + llenll

By Lemma we obtain
lim ||z, — z,|| =0,
n—o0

and hence the desired result follows. O
Finally, as in [9], we consider the iterative method with the weakly contractive mapping

Theorem 3.5. Let E, C, A, J,,, S, and r > 0 be as in Theorem .3 Let {ay,} € (0,1) and {ry} C (0, 00)
satisfy the conditions (C1) — (C4) in Theorem [B.3] Let g : C — C be a weakly contractive mapping with the
function . Let xy = x € C be chosen arbitrarily, and let {x,} be a sequence generated by

Tnt1 = I, (angxn + (1 — ay)Sxy), Vn > 0.

and {yn} be a sequence defined by y, = angx, + (1 — ay,)Sxy,. Then {x,} and {y,} converge strongly to
q € F(S)n A~1o.

Proof. Since E is smooth, there is a sunny nonexpansive retraction @ from C onto A~10 N Fiz(S). Then
Qg is a weakly contractive mapping of C' into itself. Indeed, for all z, y € C,

1Qgz — Qgyll < llgz — gyll < |z —yl| — ¥ (llx — yl|)-

Lemma [2.4] assures that there exists a unique element z* € C such that z* = Qgx*. Such a z* € C is an
element of A710 N Fiz(S).
Now we define an iterative scheme as follows:

Wpt1 = Jp, (pgr™ + (1 — ap)Swy,) Vn > 0. (3.15)
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Let {w,} be the sequence generated by (3.15). Then Theorem with a constant f = gx* assures that
{wy} converges strongly to Qgz* = x* as n — oo. For any n > 0, we have

|Zn+1 — Wnttll = ([, (@ngTn + (1 = an)STn) — Jr, (angz™ + (1 — an)Swy)||
an(llgzn — gz*|) + (1 — an)[[zn — wa|
< anlllgzn — gwn|l + [lgwn — g2 ||] + (1 = aw)||2n — wa|
aplllzn — wnl = Y(lzn — wnll) + [lw, — 27

—P(llwn — ")) + (1 — an)[[zn — wal|

|20 — wnll — an([|xn — wall) + anlw, — 7.

IN

IN

IN

Thus, we obtain for s, = [|z;, — wy/|| the following recursive inequality:

Sp41 < Sp — anw(sn) + an||wn — 1’,‘*”

Since limy, o0 ||wy, — 2*|] = 0, from condition (C2) and Lemma it follows that lim, oo |25, — wy|| = 0.
Hence

Jim |z, — 2% < lim ([l2n = wn[| + [Jwn, = 27)) = 0.
By Step 4 in the proof of Theorem we also have lim,, .~ 4, = ¢. This completes the proof. O
Remark 3.6.

(1) Theorem Theorem and Theorem develop and complement the recent corresponding results
studied by many authors in this direction (see, for instance, [10] 1], 18, 20, 24] and the references
therein).

(2) The control condition (C3) in Theorem can be replaced by the condition > 7 [an41 —a| < 00;

or the condition lim,, s~ aii - =1, which are not comparable (8.
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