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1. Introduction

Stability problem is one of the most important issues when a dynamical system is studied. For a
Hamilton-Poisson system, like the considered system (1.1), the energy-methods are used in order to establish
stability results (see [2] or [4] for instance). New challenges appear when the energy-methods are inconclusive.
In this cases, a specific control can be found in order to stabilize a given equilibrium point.

The method was successfully applied in a lot of examples: for Maxwell-Bloch equations (see [6]), for the
rigid body (see [1]), for the Chua’s system (see [5]), for the Toda lattice (see [7]), and so on.

The goal of this paper is to find appropriate control functions that stabilize some equilibrium points of
a dynamical system arisen from a specific case of a drift-free left invariant control system on the Lie group
SO(3)× R3 × R3.

Email address: camelia.petrisor@upt.ro (Camelia Petrişor)
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Following [3], the system can be written in the form below:

ẋ1 = −x5x6

ẋ2 = x7x9

ẋ3 = x4x5 − x7x8

ẋ4 = −x2x6 + x3x5

ẋ5 = x1x6 − x3x4

ẋ6 = −x1x5 + x2x4

ẋ7 = −x2x9 + x3x8

ẋ8 = x1x9 − x3x7

ẋ9 = −x1x8 + x2x7.

(1.1)

It is easy to see that

eMNPQ
1 = (0, 0, 0,M, 0, N, 0, P,Q), M,N, P,Q ∈ R,
eMNP

2 = (0, 0,M, 0, 0, N, 0, 0, P ), M,N, P ∈ R,

eMPQ
3 = (0, 0, 0, 0,M, 0, 0, P,Q), M, P,Q ∈ R,
eMNP

4 = (0,M, 0, 0, N, 0, 0, P, 0), M,N, P ∈ R,
eMNP

5 = (M,N,P, 0, 0, 0, 0, 0, 0), M,N, P ∈ R,
eMNP

6 = (M, 0, 0, N, 0, 0, P, 0, 0), M,N, P ∈ R,
eMNP

7 = (0, 0, 0,M, 0, N, P, 0, 0), M,N, P ∈ R,

eMNP
8 = (M, 0, N, P, 0,

NP

M
, 0, 0, 0), M,N, P ∈ R,

eMNP
9 = (0,M,N, 0, 0, 0, 0, P,

NP

M
), M,N, P ∈ R,

eMNP
10 = (0, 0, 0,

NP

M
,M, 0, N, P, 0), M,N, P ∈ R,

eMNP
11 = (M,N, 0,

NP

M
,P, 0,−NP

M
,−P, 0), M,N, P ∈ R,

eMNP
12 = (M,N, 0,

NP

M
,P, 0,−NP

M
,P, 0), M,N, P ∈ R

are the equilibrium points of our dynamics (1.1).
The results regarding nonlinear stability of eMNPQ

1 , eMNP
3 and eMNP

5 have been proved in [3]. The goal
of our paper is to stabilize some other equilibrium points via linear controls.

The paper is organized as follows: in the first part, the linear control that stabilizes the equilibrium
states eMNP

2 of the system (1.1) is found and the spectral and nonlinear stability of this points are estab-
lished. Numerical integration of the controlled system is analyzed via Lie-Trotter algorithm and some of its
properties are sketched. The subject of the second part is the stabilization of the equilibrium states eMNP

4

of the system (1.1) followed by the numerical integration of the controlled system via Lie-Trotter algorithm.

2. Stabilization of eMNP
2 by one linear control

Let us employ the control u ∈ C∞(R9,R),

u(x1, x2,x3, x4, x5, x6, x7, x8, x9)

= (−Mx2,Mx1, 0,−Mx5,Mx4, 0,−Mx8,Mx7, 0),
(2.1)

for the system (1.1). The controlled system (1.1)− (2.1), explicitly given by
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ẋ1 = −x5x6 −Mx2

ẋ2 = x7x9 +Mx1

ẋ3 = x4x5 − x7x8

ẋ4 = −x2x6 + x3x5 −Mx5

ẋ5 = x1x6 − x3x4 +Mx4

ẋ6 = −x1x5 + x2x4

ẋ7 = −x2x9 + x3x8 −Mx8

ẋ8 = x1x9 − x3x7 +Mx7

ẋ9 = −x1x8 + x2x7,

(2.2)

has eMNP
2 as an equilibrium state.

Proposition 2.1. The controlled system (2.2) has the Hamilton-Poisson realization

(R9,Π, H),

where

Π =



0 −x3 x2 0 −x6 x5 0 −x9 x8

x3 0 −x1 x6 0 −x4 x9 0 −x7

−x2 x1 0 −x5 x4 0 −x8 x7 0
0 −x6 x5 0 0 0 0 0 0
x6 0 −x4 0 0 0 0 0 0
−x5 x4 0 0 0 0 0 0 0

0 −x9 x8 0 0 0 0 0 0
x9 0 −x7 0 0 0 0 0 0
−x8 x7 0 0 0 0 0 0 0


(2.3)

is the Poisson tensor of the system (1.1), and the Hamiltonian function is

H(x1, x2, x3, x4, x5, x6, x7, x8, x9) =
1

2
(x2

1 + x2
2 + x2

3 + x2
5 + x2

7)−Mx3.

Proof. Indeed, one obtains immediately that

Π · ∇H = [ẋ1 ẋ2 ẋ3 ẋ4 ẋ5 ẋ6 ẋ7 ẋ8 ẋ9]t,

and Π is a minus Lie-Poisson structure, see for details [3].

Remark 2.2 ([3]). The functions C1, C2, C3 : R9 → R given by

C1(x1, x2, x3, x4, x5, x6, x7, x8, x9) =
1

2
(x2

4 + x2
5 + x2

6),

C2(x1, x2, x3, x4, x5, x6, x7, x8, x9) =
1

2
(x2

7 + x2
8 + x2

9)

and
C3(x1, x2, x3, x4, x5, x6, x7, x8, x9) = x4x7 + x5x8 + x6x9

are Casimirs of our Poisson configuration.

The goal of this paragraph is to study the spectral and nonlinear stability of the equilibrium state eMNP
2

of the controlled system (2.2).
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Proposition 2.3. The controlled system (2.2) may be spectral stabilized about the equilibrium states eMNP
2

for all M,N,P ∈ R∗.

Proof. Let A be the matrix of linear part of our controlled system (2.2), that is

A =



0 −M 0 0 −x6 −x5 0 0 0
M 0 0 0 0 0 x9 0 x7

0 0 0 x5 x4 0 −x8 −x7 0
0 −x6 x5 0 x3 −M −x2 0 0 0
x6 0 −x4 −x3 +M 0 x1 0 0 0
−x5 x4 0 x2 −x1 0 0 0 0

0 −x9 x8 0 0 0 0 x3 −M −x2

x9 0 −x7 0 0 0 −x3 +M 0 x1

−x8 x7 0 0 0 0 x2 −x1 0


.

At the equilibrium of interest its characteristic polynomial has the following expression

pA(eMNP
2 )(λ) = 4λ5[λ4 + (M2 +N2 + P 2)λ2 +N2P 2].

Hence we have five zero eigenvalues and four purely imaginary eigenvalues. So we can conclude that the
equilibrium states eMNP

2 , M,N,P ∈ R∗ are spectral stable.

Moreover we can prove:

Proposition 2.4. The controlled system (2.2) may be nonlinear stabilized about the equilibrium states eMNP
2

for all M,N,P ∈ R∗.

Proof. For the proof we shall use Arnold’s technique. Let us consider the following function

Fλ,µ,ν = C2 + λH + µC1 + νC3

=
1

2
(x2

7 + x2
8 + x2

9) +
λ

2
(x2

1 + x2
2 + x2

3 + x2
5 + x2

7 − 2Mx3)

+
µ

2
(x2

4 + x2
5 + x2

6) + ν(x4x7 + x5x8 + x6x9).

The following conditions hold:

(i) ∇Fλ,µ,ν(eMNP
2 ) = 0 iff µ =

P 2

N2
, ν = −P

N
;

(ii) Considering now

W = ker[dH(eMNP
2 )] ∩ ker[dC1(eMNP

2 )] ∩ ker[dC3(eMNP
2 )

= Span





1
0
0
0
0
0
0
0
0


,



0
1
0
0
0
0
0
0
0


,



0
0
1
0
0
0
0
0
0


,



0
0
0
1
0
0
0
0
0


,



0
0
0
0
1
0
0
0
0


,



0
0
0
0
0
0
1
0
0


,



0
0
0
0
0
0
0
1
0




,
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then, for all v ∈W , i.e. v = (a, b, c, d, e, 0, f, g, 0), a, b, c, d, e, f, g ∈ R we have

v · ∇2F
λ, P

2

N2 ,−
P
N

(eMNP
2 ) · vt = λa2 + λb2 + λc2 +

P 2

N2
d2 +

(
λ+

P 2

N2

)
e2 + (λ+ 1)f2 + g2 − 2

P

N
fd− 2

P

N
eg

positive definite under the restriction λ > 0, and so

∇2F
λ, P

2

N2 ,−
P
N

(eMNP
2 )|W×W

is positive definite.
Therefore, via Arnold’s technique, the equilibrium states eMNP

2 , M,N,P ∈ R∗ are nonlinear stable, as
required.

We shall discuss now the numerical integrator of the dynamics (2.2) via the Lie-Trotter integrator, see
for details [8]. For the beginning, let us observe that the Hamiltonian vector field XH splits as follows

XH = XH1 +XH2 +XH3 +XH4 +XH5 +XH6 ,

where

H1 =
x2

1

2
, H2 =

x2
2

2
, H3 =

x2
3

2
, H4 =

x2
5

2
, H5 =

x2
7

2
, H6 = −Mx3.

Their corresponding integral curves are, respectively, given by

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)
x7(t)
x8(t)
x9(t)


= Ai(t)



x1(0)
x2(0)
x3(0)
x4(0)
x5(0)
x6(0)
x7(0)
x8(0)
x9(0)


i = 1, 6,

where

A1(t) =



1 0 0 0 0 0 0 0 0
0 cos at sin at 0 0 0 0 0 0
0 − sin at cos at 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 cos at sin at 0 0 0
0 0 0 0 − sin at cos at 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 cos at sin at
0 0 0 0 0 0 0 − sin at cos at


(2.4)

a = x1(0),

A2(t) =



cos bt 0 − sin bt 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

sin bt 0 cos bt 0 0 0 0 0 0
0 0 0 cos bt 0 − sin bt 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 sin bt 0 cos bt 0 0 0
0 0 0 0 0 0 cos bt 0 − sin bt
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 sin bt 0 cos bt


(2.5)
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b = x2(0),

A3(t) =



cos ct sin ct 0 0 0 0 0 0 0
− sin ct cos ct 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
0 0 0 cos ct sin ct 0 0 0 0
0 0 0 − sin ct cos ct 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 cos ct sin ct 0
0 0 0 0 0 0 − sin ct cos ct 0
0 0 0 0 0 0 0 0 1


(2.6)

c = x3(0),

A4(t) =



1 0 0 0 0 −dt 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 dt 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


, (2.7)

d = x5(0),

A5(t) =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 et
0 0 1 0 0 0 −et 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


, (2.8)

e = x7(0),

A6(t) =



cosMt − sinMt 0 0 0 0 0 0 0
sinMt cosMt 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
0 0 0 cosMt − sinMt 0 0 0 0
0 0 0 sinMt cosMt 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 cosMt − sinMt 0
0 0 0 0 0 0 sinMt cosMt 0
0 0 0 0 0 0 0 0 1


,

M ∈ R∗.
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Then the Lie-Trotter integrator is given by

xn+1
1

xn+1
2

xn+1
3

xn+1
4

xn+1
5

xn+1
6

xn+1
7

xn+1
8

xn+1
9


= A1(t)A2(t)A3(t)A4(t)A5(t)A6(t)



xn1
xn2
xn3
xn4
xn5
xn6
xn7
xn8
xn9


(2.9)

that is

xn+1
1 =(cos bt cos ct cosMt+ cos bt sin ct sinMt)xn1

+ (cos bt sin ct cosMt− cos bt cos ct sinMt)xn2

− sin btxn3 − dt sin bt cosMtxn4 + dt sin bt sinMtxn5 − dt cos bt cos ctxn6

+ et sin bt cosMtxn7 − et sin bt sinMtxn8 + et cos bt sin ctxn9 ,

xn+1
2 = [(sin at sin bt cos ct− cos at sin ct) cosMt

+(cos at cos ct+ sin at sin bt sin ct) sinMt]xn1

+[(cos at cos ct+ sin at sin bt sin ct) cosMt

−(sin at sin bt cos ct− cos at sin ct) sinMt]xn2

+ sin at cos btxn3 + dt sin at cos bt cosMtxn4 − dt sin at cos bt sinMtxn5

+dt(− sin at sin bt cos ct+ sin at cos ct)xn6

−et sin at cos bt cosMtxn7 + et sin at cos bt sinMtxn8

+(cos at cos ct+ sin at sin bt sin ct)xn9 ,

xn+1
3 =[(cos at sin bt cos ct+ sin at sin ct) cosMt

− (sin at cos ct− cos at sin bt sin ct) sinMt]xn1

+ [(− sin at cos ct+ cos at sin bt sin ct) cosMt

− (cos at sin bt cos ct+ sin at sin ct) sinMt]xn2

+ cos at cos btxn3 + dt cos at cos bt cosMtxn4 − dt cos at cos bt sinMtxn5

− d(cos at sin bt cos ct+ sin at sin ct)xn6

− et cos at cos bt cosMtxn7 + et cos at cos bt sinMtxn8

− (sin at cos ct+ cos at sin bt sin ct)xn9 ,

xn+1
4 =(cos bt cos ct cosMt+ cos bt sin ct sinMt)xn4

+ (cos bt sin ct cosMt− cos bt cos ct sinMt)xn5 − sin btxn6 ,

xn+1
5 =[(sin at sin bt cos ct− cos at sin ct) cosMt

+ (cos at cos ct+ sin at sin bt sin ct) sinMt]xn4
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+ [(cos at cos ct+ sin at sin bt sin ct) cosMt

− (sin at sin bt cos ct− cos at sin ct) sinMt]xn5 + sin at cos btxn6 ,

xn+1
6 =[(cos at sin bt cos ct+ sin at sin ct) cosMt

− (sin at cos ct− cos at sin bt sin ct) sinMt]xn4

+ [(− sin at cos ct+ cos at sin bt sin ct) cosMt

− (cos at sin bt cos ct+ sin at sin ct) sinMt]xn5 + cos at cos btxn6 ,

xn+1
7 =(cos bt cos ct cosMt+ cos bt sin ct sinMt)xn7

+ (cos bt sin ct cosMt− cos bt cos ct sinMt)xn8 − sin btxn9 ,

xn+1
8 =[(sin at sin bt cos ct− cos at sin ct) cosMt

+ (cos at cos ct+ sin at sin bt sin ct) sinMt]xn7

+ [(cos at cos ct+ sin at sin bt sin ct) cosMt

− (sin at sin bt cos ct− cos at sin ct) sinMt]xn8 + sin at cos btxn8 ,

xn+1
9 =[(cos at sin bt cos ct+ sin at sin ct) cosMt

− (sin at cos ct− cos at sin bt sin ct) sinMt]xn7

+ [(− sin at cos ct+ cos at sin bt sin ct) cosMt

− (cos at sin bt cos ct+ sin at sin ct) sinMt]xn8 + cos at cos btxn9 .

Now, a direct computation or using MATHEMATICA 8.0 leads us to

Proposition 2.5. Lie-Trotter integrator (2.9) has the following properties:
(i) It preserves the Poisson structure Π;
(ii) It preserves the Casimirs C1, C2 and C3 of our Poisson configuration (R9,Π);
(iii) It does not preserve the Hamiltonian H of our system (2.2);
(iv) Its restriction to the coadjoint orbit (Ok, ωk), where

Ok = {(x1, x2, x3, x4, x5, x6, x7, x8, x9) ∈ R9 | x2
4 + x2

5 + x2
6 = const,

x2
7 + x2

8 + x2
9 = const, x4x7 + x5x8 + x6x9 = const}

and ωk is the Kirilov-Konstant-Souriau symplectic structure on Ok gives rise to a symplectic integrator.

Proof. The items (i), (ii) and (iv) hold because Lie-Trotter is a Poisson integrator.
The item (iii) is essentially due to the fact that

{Hi, Hj} 6= 0, i 6= j .

3. Stabilization of eMNP
4 by one linear control

In order to stabilize the equilibrium states eMNP
4 of the system (1.1) we employ the linear control

u ∈ C∞(R9,R) given by

u(x1, x2, x3, x4, x5, x6, x7, x8, x9) = (Mx3 + 2Nx6, 0,−Mx1 − 2Nx4,Mx6, 0,−Mx4,Mx9, 0,−Mx7), (3.1)

so the controlled system (1.1)− (3.1) can be explicitly written:
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ẋ1 = −x5x6 +Mx3 + 2Nx6

ẋ2 = x7x9

ẋ3 = x4x5 − x7x8 −Mx1 − 2Nx4

ẋ4 = −x2x6 + x3x5 +Mx6

ẋ5 = x1x6 − x3x4

ẋ6 = −x1x5 + x2x4 −Mx4

ẋ7 = −x2x9 + x3x8 +Mx9

ẋ8 = x1x9 − x3x7

ẋ9 = −x1x8 + x2x7 −Mx7.

(3.2)

Using the same arguments like in Proposition 2.1 we obtain the following result:

Proposition 3.1. The controlled system (3.2) has the Hamilton-Poisson realization

(R9,Π, H̄),

where Π is given by (2.3) and the Hamiltonian function is

H̄(x1, x2, x3, x4, x5, x6, x7, x8, x9) =
1

2
(x2

1 + x2
2 + x2

3 + x2
5 + x2

7)−Mx2 − 2Nx5.

Proposition 3.2. The controlled system (3.2) may be spectral stabilized about the equilibrium states eMNP
4

for all M,N,P ∈ R∗.

Proof. Let Ā be the matrix of linear part of our controlled system (3.2), that is

Ā =



0 0 M 0 −x6 −x5 + 2N 0 0 0
0 0 0 0 0 0 x9 0 x7

−M 0 0 x5 − 2N x4 0 −x8 −x7 0
0 −x6 x5 0 x3 −x2 +M 0 0 0
x6 0 −x4 −x3 0 x1 0 0 0
−x5 x4 0 x2 −M −x1 0 0 0 0

0 −x9 x8 0 0 0 0 x3 −x2 +M
x9 0 −x7 0 0 0 −x3 0 x1

−x8 x7 0 0 0 0 x2 −M −x1 0


.

At the equilibrium of interest its characteristic polynomial has the following expression,

pĀ(eMNP
4 )(λ) = 4λ5[λ4 + (M2 + 2N2 + P 2)λ2 +N2(N2 + P 2)].

Hence we have five zero eigenvalues and four purely imaginary eigenvalues. So we can conclude that the
equilibrium states eMNP

4 , M,N,P ∈ R∗ are spectral stable.

Moreover we can prove,

Proposition 3.3. The controlled system (3.2) may be nonlinear stabilized about the equilibrium states eMNP
4

for all M,N,P ∈ R∗.

Proof. Let us consider the function:

Fλ,µ,ν = C2 + λH̄ + µC1 + νC3

=
1

2
(x2

7 + x2
8 + x2

9) +
λ

2
(x2

1 + x2
2 + x2

3 + x2
5 + x2

7 − 2Mx2 − 4Nx5)

+
µ

2
(x2

4 + x2
5 + x2

6) + ν(x4x7 + x5x8 + x6x9).
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Then we have successively:

(i) ∇Fλ,µ,ν(eMNP
4 ) = 0 iff µ = λ+

P 2

N2
, ν = −P

N
;

(ii) Considering now

W = ker[dH̄(eMNP
4 )] ∩ ker[dC1(eMNP

4 )] ∩ ker[dC3(eMNP
4 )] =

= Span





1
0
0
0
0
0
0
0
0


,



0
1
0
0
0
0
0
0
0


,



0
0
1
0
0
0
0
0
0


,



0
0
0
1
0
0
0
0
0


,



0
0
0
0
0
1
0
0
0


,



0
0
0
0
0
0
1
0
0


,



0
0
0
0
0
0
0
0
1




,

then, for all v ∈W , i.e. v = (a, b, c, d, 0, e, f, 0, g), a, b, c, d, e, f, g ∈ R, we have

v ·∇2F
λ, P

2

N2 +λ,− P
N

(eMNP
4 )·vt = λa2+λb2+λc2+

(
λ+

P 2

N2

)
d2+

(
λ+

P 2

N2

)
e2+(λ+1)f2+g2−2

P

N
fd−2

P

N
eg

positive definite under the restriction λ > 0, and so

∇2F
λ, P

2

N2 +λ,− P
N

(eMNP
4 )|W×W

is positive definite.
Therefore, via Arnold’s technique, the equilibrium states eMNP

4 , M,N,P ∈ R∗ are nonlinear stable, as
required.

We shall discuss now the numerical integrator of the dynamics (3.2) via the Lie-Trotter integrator, see
for details [8]. For the beginning, let us observe that the Hamiltonian vector field XH splits as follows:

XH̄ = XH̄1
+XH̄2

+XH̄3
+XH̄4

+XH̄5
+XH̄6

+XH̄7
,

where

H̄1 =
x2

1

2
, H̄2 =

x2
2

2
, H̄3 =

x2
3

2
, H̄4 =

x2
5

2
,

H̄5 =
x2

7

2
, H̄6 = −Mx2, H̄7 = −2Nx5.

Their corresponding integral curves are, respectively, given by

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)
x7(t)
x8(t)
x9(t)


= Ai(t)



x1(0)
x2(0)
x3(0)
x4(0)
x5(0)
x6(0)
x7(0)
x8(0)
x9(0)


i = 1, 7,
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where Ai(t), i = 1, 5 are given by the relations (2.4)− (2.8) and

A6(t) =



cosMt 0 sinMt 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

− sinMt 0 cosMt 0 0 0 0 0 0
0 0 0 cosMt 0 sinMt 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 − sinMt 0 cosMt 0 0 0
0 0 0 0 0 0 cosMt 0 sinMt
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 − sinMt 0 cosMt


,

M ∈ R∗,

A7(t) =



1 0 0 0 0 2Nt 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 −2Nt 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


,

N ∈ R∗.
Then, the Lie-Trotter integrator is given by

xn+1
1

xn+1
2

xn+1
3

xn+1
4

xn+1
5

xn+1
6

xn+1
7

xn+1
8

xn+1
9


= A1(t)A2(t)A3(t)A4(t)A5(t)A6(t)A7(t)



xn1
xn2
xn3
xn4
xn5
xn6
xn7
xn8
xn9


. (3.3)

Now, a direct computation or using MATHEMATICA 8.0 leads us to

Proposition 3.4. Lie-Trotter integrator (3.3) has the following properties:

(i) It preserves the Poisson structure Π;

(ii) It preserves the Casimirs C1, C2 and C3 of our Poisson configuration (R9,Π);

(iii) It does not preserve the Hamiltonian H̄ of our system (3.2);

(iv) Its restriction to the coadjoint orbit (Ok, ωk), where

Ok = {(x1, x2, x3, x4, x5, x6, x7, x8, x9) ∈ R9 | x2
4 + x2

5 + x2
6 = const,

x2
7 + x2

8 + x2
9 = const, x4x7 + x5x8 + x6x9 = const}

and ωk is the Kirilov-Konstant-Souriau symplectic structure on Ok, gives rise to a symplectic integra-
tor.
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4. Conclusion

The paper presents the stabilization of two equilibrium points of a dynamical system for which the
energy-methods fail. In order to do this, for each equilibrium point, a specific linear control is found.
Numerical integration using the Lie-Trotter algorithm is analyzed and some properties of the Lie-Trotter
integrator are presented.
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