Stabilization of a nonlinear control system on the Lie group $S O(3) \times \mathbb{R}^{3} \times \mathbb{R}^{3}$

Camelia Petrișor
Department of Mathematics, Politehnica University of Timişoara, Piaţa Victoriei, Nr. 2, 300006-Timişoara, România.

Communicated by C. Zaharia

Abstract

The stabilization of some equilibrium points of a dynamical system via linear controls is studied. Numerical integration using Lie-Trotter integrator and its properties are also presented. ©2016 All rights reserved.

Keywords: Optimal control problem, Hamilton-Poisson system, nonlinear stability, numerical integration. 2010 MSC: 34H05, 53D17.

1. Introduction

Stability problem is one of the most important issues when a dynamical system is studied. For a Hamilton-Poisson system, like the considered system (1.1), the energy-methods are used in order to establish stability results (see [2] or [4] for instance). New challenges appear when the energy-methods are inconclusive. In this cases, a specific control can be found in order to stabilize a given equilibrium point.

The method was successfully applied in a lot of examples: for Maxwell-Bloch equations (see [6]), for the rigid body (see [1]), for the Chua's system (see [5]), for the Toda lattice (see [7), and so on.

The goal of this paper is to find appropriate control functions that stabilize some equilibrium points of a dynamical system arisen from a specific case of a drift-free left invariant control system on the Lie group $S O(3) \times \mathbb{R}^{3} \times \mathbb{R}^{3}$.

[^0]Following [3], the system can be written in the form below:

$$
\left\{\begin{align*}
\dot{x}_{1} & =-x_{5} x_{6} \tag{1.1}\\
\dot{x}_{2} & =x_{7} x_{9} \\
\dot{x}_{3} & =x_{4} x_{5}-x_{7} x_{8} \\
\dot{x}_{4} & =-x_{2} x_{6}+x_{3} x_{5} \\
\dot{x}_{5} & =x_{1} x_{6}-x_{3} x_{4} \\
\dot{x}_{6} & =-x_{1} x_{5}+x_{2} x_{4} \\
\dot{x}_{7} & =-x_{2} x_{9}+x_{3} x_{8} \\
\dot{x}_{8} & =x_{1} x_{9}-x_{3} x_{7} \\
\dot{x}_{9} & =-x_{1} x_{8}+x_{2} x_{7}
\end{align*}\right.
$$

It is easy to see that

$$
\begin{aligned}
e_{1}^{M N P Q} & =(0,0,0, M, 0, N, 0, P, Q), M, N, P, Q \in \mathbb{R} \\
e_{2}^{M N P} & =(0,0, M, 0,0, N, 0,0, P), M, N, P \in \mathbb{R} \\
e_{3}^{M P Q} & =(0,0,0,0, M, 0,0, P, Q), M, P, Q \in \mathbb{R} \\
e_{4}^{M N P} & =(0, M, 0,0, N, 0,0, P, 0), M, N, P \in \mathbb{R} \\
e_{5}^{M N P} & =(M, N, P, 0,0,0,0,0,0), M, N, P \in \mathbb{R} \\
e_{6}^{M N P} & =(M, 0,0, N, 0,0, P, 0,0), M, N, P \in \mathbb{R} \\
e_{7}^{M N P} & =(0,0,0, M, 0, N, P, 0,0), M, N, P \in \mathbb{R} \\
e_{8}^{M N P} & =\left(M, 0, N, P, 0, \frac{N P}{M}, 0,0,0\right), M, N, P \in \mathbb{R} \\
e_{9}^{M N P} & =\left(0, M, N, 0,0,0,0, P, \frac{N P}{M}\right), M, N, P \in \mathbb{R} \\
e_{10}^{M N P} & =\left(0,0,0, \frac{N P}{M}, M, 0, N, P, 0\right), M, N, P \in \mathbb{R} \\
e_{11}^{M N P} & =\left(M, N, 0, \frac{N P}{M}, P, 0,-\frac{N P}{M},-P, 0\right), M, N, P \in \mathbb{R} \\
e_{12}^{M N P} & =\left(M, N, 0, \frac{N P}{M}, P, 0,-\frac{N P}{M}, P, 0\right), M, N, P \in \mathbb{R}
\end{aligned}
$$

are the equilibrium points of our dynamics (1.1).
The results regarding nonlinear stability of $e_{1}^{M N P Q}, e_{3}^{M N P}$ and $e_{5}^{M N P}$ have been proved in [3]. The goal of our paper is to stabilize some other equilibrium points via linear controls.

The paper is organized as follows: in the first part, the linear control that stabilizes the equilibrium states $e_{2}^{M N P}$ of the system (1.1) is found and the spectral and nonlinear stability of this points are established. Numerical integration of the controlled system is analyzed via Lie-Trotter algorithm and some of its properties are sketched. The subject of the second part is the stabilization of the equilibrium states $e_{4}^{M N P}$ of the system (1.1) followed by the numerical integration of the controlled system via Lie-Trotter algorithm.

2. Stabilization of $e_{2}^{M N P}$ by one linear control

Let us employ the control $u \in C^{\infty}\left(\mathbb{R}^{9}, \mathbb{R}\right)$,

$$
\begin{align*}
& u\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right) \tag{2.1}\\
& \quad=\left(-M x_{2}, M x_{1}, 0,-M x_{5}, M x_{4}, 0,-M x_{8}, M x_{7}, 0\right)
\end{align*}
$$

for the system (1.1). The controlled system (1.1) - (2.1), explicitly given by

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{5} x_{6}-M x_{2} \tag{2.2}\\
\dot{x}_{2}=x_{7} x_{9}+M x_{1} \\
\dot{x}_{3}=x_{4} x_{5}-x_{7} x_{8} \\
\dot{x}_{4}=-x_{2} x_{6}+x_{3} x_{5}-M x_{5} \\
\dot{x}_{5}=x_{1} x_{6}-x_{3} x_{4}+M x_{4} \\
\dot{x}_{6}=-x_{1} x_{5}+x_{2} x_{4} \\
\dot{x}_{7}=-x_{2} x_{9}+x_{3} x_{8}-M x_{8} \\
\dot{x}_{8}=x_{1} x_{9}-x_{3} x_{7}+M x_{7} \\
\dot{x}_{9}=-x_{1} x_{8}+x_{2} x_{7}
\end{array}\right.
$$

has $e_{2}^{M N P}$ as an equilibrium state.
Proposition 2.1. The controlled system (2.2) has the Hamilton-Poisson realization

$$
\left(\mathbb{R}^{9}, \Pi, H\right)
$$

where

$$
\Pi=\left[\begin{array}{ccccccccc}
0 & -x_{3} & x_{2} & 0 & -x_{6} & x_{5} & 0 & -x_{9} & x_{8} \tag{2.3}\\
x_{3} & 0 & -x_{1} & x_{6} & 0 & -x_{4} & x_{9} & 0 & -x_{7} \\
-x_{2} & x_{1} & 0 & -x_{5} & x_{4} & 0 & -x_{8} & x_{7} & 0 \\
0 & -x_{6} & x_{5} & 0 & 0 & 0 & 0 & 0 & 0 \\
x_{6} & 0 & -x_{4} & 0 & 0 & 0 & 0 & 0 & 0 \\
-x_{5} & x_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -x_{9} & x_{8} & 0 & 0 & 0 & 0 & 0 & 0 \\
x_{9} & 0 & -x_{7} & 0 & 0 & 0 & 0 & 0 & 0 \\
-x_{8} & x_{7} & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

is the Poisson tensor of the system (1.1), and the Hamiltonian function is

$$
H\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{5}^{2}+x_{7}^{2}\right)-M x_{3}
$$

Proof. Indeed, one obtains immediately that

$$
\Pi \cdot \nabla H=\left[\begin{array}{llllll}
\dot{x}_{1} & \dot{x}_{2} & \dot{x}_{3} & \dot{x}_{4} & \dot{x}_{5} & \dot{x}_{6}
\end{array} \dot{x}_{7} \dot{x}_{8} \dot{x}_{9}\right]^{t}
$$

and Π is a minus Lie-Poisson structure, see for details [3].

Remark 2.2 ([3]). The functions $C_{1}, C_{2}, C_{3}: \mathbb{R}^{9} \rightarrow \mathbb{R}$ given by

$$
\begin{aligned}
& C_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)=\frac{1}{2}\left(x_{4}^{2}+x_{5}^{2}+x_{6}^{2}\right) \\
& C_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)=\frac{1}{2}\left(x_{7}^{2}+x_{8}^{2}+x_{9}^{2}\right)
\end{aligned}
$$

and

$$
C_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)=x_{4} x_{7}+x_{5} x_{8}+x_{6} x_{9}
$$

are Casimirs of our Poisson configuration.
The goal of this paragraph is to study the spectral and nonlinear stability of the equilibrium state $e_{2}^{M N P}$ of the controlled system (2.2).

Proposition 2.3. The controlled system (2.2) may be spectral stabilized about the equilibrium states $e_{2}^{M N P}$ for all $M, N, P \in \mathbb{R}^{*}$.

Proof. Let A be the matrix of linear part of our controlled system 2.2 , that is

$$
A=\left[\begin{array}{ccccccccc}
0 & -M & 0 & 0 & -x_{6} & -x_{5} & 0 & 0 & 0 \\
M & 0 & 0 & 0 & 0 & 0 & x_{9} & 0 & x_{7} \\
0 & 0 & 0 & x_{5} & x_{4} & 0 & -x_{8} & -x_{7} & 0 \\
0 & -x_{6} & x_{5} & 0 & x_{3}-M & -x_{2} & 0 & 0 & 0 \\
x_{6} & 0 & -x_{4} & -x_{3}+M & 0 & x_{1} & 0 & 0 & 0 \\
-x_{5} & x_{4} & 0 & x_{2} & -x_{1} & 0 & 0 & 0 & 0 \\
0 & -x_{9} & x_{8} & 0 & 0 & 0 & 0 & x_{3}-M & -x_{2} \\
x_{9} & 0 & -x_{7} & 0 & 0 & 0 & -x_{3}+M & 0 & x_{1} \\
-x_{8} & x_{7} & 0 & 0 & 0 & 0 & x_{2} & -x_{1} & 0
\end{array}\right] .
$$

At the equilibrium of interest its characteristic polynomial has the following expression

$$
p_{A\left(e_{2}^{M N P}\right)}(\lambda)=4 \lambda^{5}\left[\lambda^{4}+\left(M^{2}+N^{2}+P^{2}\right) \lambda^{2}+N^{2} P^{2}\right]
$$

Hence we have five zero eigenvalues and four purely imaginary eigenvalues. So we can conclude that the equilibrium states $e_{2}^{M N P}, M, N, P \in \mathbb{R}^{*}$ are spectral stable.

Moreover we can prove:
Proposition 2.4. The controlled system (2.2) may be nonlinear stabilized about the equilibrium states $e_{2}^{M N P}$ for all $M, N, P \in \mathbb{R}^{*}$.

Proof. For the proof we shall use Arnold's technique. Let us consider the following function

$$
\begin{aligned}
F_{\lambda, \mu, \nu}= & C_{2}+\lambda H+\mu C_{1}+\nu C_{3} \\
= & \frac{1}{2}\left(x_{7}^{2}+x_{8}^{2}+x_{9}^{2}\right)+\frac{\lambda}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{5}^{2}+x_{7}^{2}-2 M x_{3}\right) \\
& +\frac{\mu}{2}\left(x_{4}^{2}+x_{5}^{2}+x_{6}^{2}\right)+\nu\left(x_{4} x_{7}+x_{5} x_{8}+x_{6} x_{9}\right)
\end{aligned}
$$

The following conditions hold:
(i) $\nabla F_{\lambda, \mu, \nu}\left(e_{2}^{M N P}\right)=0$ iff $\mu=\frac{P^{2}}{N^{2}}, \nu=-\frac{P}{N}$;
(ii) Considering now

$$
\begin{aligned}
& W=\operatorname{ker}\left[d H\left(e_{2}^{M N P}\right)\right] \cap \operatorname{ker}\left[d C_{1}\left(e_{2}^{M N P}\right)\right] \cap \operatorname{ker}\left[d C_{3}\left(e_{2}^{M N P}\right)\right. \\
= & \operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]\right\},
\end{aligned}
$$

then, for all $v \in W$, i.e. $v=(a, b, c, d, e, 0, f, g, 0), a, b, c, d, e, f, g \in \mathbb{R}$ we have
$v \cdot \nabla^{2} F_{\lambda, \frac{P^{2}}{N^{2}},-\frac{P}{N}}\left(e_{2}^{M N P}\right) \cdot v^{t}=\lambda a^{2}+\lambda b^{2}+\lambda c^{2}+\frac{P^{2}}{N^{2}} d^{2}+\left(\lambda+\frac{P^{2}}{N^{2}}\right) e^{2}+(\lambda+1) f^{2}+g^{2}-2 \frac{P}{N} f d-2 \frac{P}{N} e g$
positive definite under the restriction $\lambda>0$, and so

$$
\left.\nabla^{2} F_{\lambda, \frac{P^{2}}{N^{2}},-\frac{P}{N}}\left(e_{2}^{M N P}\right)\right|_{W \times W}
$$

is positive definite.
Therefore, via Arnold's technique, the equilibrium states $e_{2}^{M N P}, M, N, P \in \mathbb{R}^{*}$ are nonlinear stable, as required.

We shall discuss now the numerical integrator of the dynamics 2.2 via the Lie-Trotter integrator, see for details [8]. For the beginning, let us observe that the Hamiltonian vector field X_{H} splits as follows

$$
X_{H}=X_{H_{1}}+X_{H_{2}}+X_{H_{3}}+X_{H_{4}}+X_{H_{5}}+X_{H_{6}}
$$

where

$$
H_{1}=\frac{x_{1}^{2}}{2}, \quad H_{2}=\frac{x_{2}^{2}}{2}, \quad H_{3}=\frac{x_{3}^{2}}{2}, \quad H_{4}=\frac{x_{5}^{2}}{2}, \quad H_{5}=\frac{x_{7}^{2}}{2}, \quad H_{6}=-M x_{3}
$$

Their corresponding integral curves are, respectively, given by

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t) \\
x_{6}(t) \\
x_{7}(t) \\
x_{8}(t) \\
x_{9}(t)
\end{array}\right]=A_{i}(t)\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0) \\
x_{4}(0) \\
x_{5}(0) \\
x_{6}(0) \\
x_{7}(0) \\
x_{8}(0) \\
x_{9}(0)
\end{array}\right] i=\overline{1,6}
$$

where

$$
A_{1}(t)=\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{2.4}\\
0 & \cos a t & \sin a t & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\sin a t & \cos a t & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cos a t & \sin a t & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\sin a t & \cos a t & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cos a t & \sin a t \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\sin a t & \cos a t
\end{array}\right]
$$

$a=x_{1}(0)$,

$$
A_{2}(t)=\left[\begin{array}{ccccccccc}
\cos b t & 0 & -\sin b t & 0 & 0 & 0 & 0 & 0 & 0 \tag{2.5}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\sin b t & 0 & \cos b t & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos b t & 0 & -\sin b t & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \sin b t & 0 & \cos b t & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cos b t & 0 & -\sin b t \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \sin b t & 0 & \cos b t
\end{array}\right]
$$

$b=x_{2}(0)$,

$$
A_{3}(t)=\left[\begin{array}{ccccccccc}
\cos c t & \sin c t & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{2.6}\\
-\sin c t & \cos c t & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos c t & \sin c t & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\sin c t & \cos c t & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cos c t & \sin c t & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\sin c t & \cos c t & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$c=x_{3}(0)$,

$$
A_{4}(t)=\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & -d t & 0 & 0 & 0 \tag{2.7}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & d t & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$d=x_{5}(0)$,

$$
A_{5}(t)=\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{2.8}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & e t \\
0 & 0 & 1 & 0 & 0 & 0 & -e t & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$e=x_{7}(0)$,

$$
A_{6}(t)=\left[\begin{array}{ccccccccc}
\cos M t & -\sin M t & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\sin M t & \cos M t & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos M t & -\sin M t & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \sin M t & \cos M t & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cos M t & -\sin M t & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \sin M t & \cos M t & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$M \in \mathbb{R}^{*}$.

Then the Lie-Trotter integrator is given by

$$
\left[\begin{array}{c}
x_{1}^{n+1} \tag{2.9}\\
x_{2}^{n+1} \\
x_{3}^{n+1} \\
x_{4}^{n+1} \\
x_{5}^{n+1} \\
x_{6}^{n+1} \\
x_{7}^{n+1} \\
x_{8}^{n+1} \\
x_{9}^{n+1}
\end{array}\right]=A_{1}(t) A_{2}(t) A_{3}(t) A_{4}(t) A_{5}(t) A_{6}(t)\left[\begin{array}{c}
x_{1}^{n} \\
x_{2}^{n} \\
x_{3}^{n} \\
x_{4}^{n} \\
x_{5}^{n} \\
x_{6}^{n} \\
x_{7}^{n} \\
x_{8}^{n} \\
x_{9}^{n}
\end{array}\right]
$$

that is

$$
\begin{aligned}
x_{1}^{n+1}= & (\cos b t \cos c t \cos M t+\cos b t \sin c t \sin M t) x_{1}^{n} \\
& +(\cos b t \sin c t \cos M t-\cos b t \cos c t \sin M t) x_{2}^{n} \\
& -\sin b t x_{3}^{n}-d t \sin b t \cos M t x_{4}^{n}+d t \sin b t \sin M t x_{5}^{n}-d t \cos b t \cos c t x_{6}^{n} \\
& +e t \sin b t \cos M t x_{7}^{n}-e t \sin b t \sin M t x_{8}^{n}+e t \cos b t \sin c t x_{9}^{n}, \\
x_{2}^{n+1}= & {[(\sin a t \sin b t \cos c t-\cos a t \sin c t) \cos M t} \\
& +(\cos a t \cos c t+\sin a t \sin b t \sin c t) \sin M t] x_{1}^{n} \\
& +[(\cos a t \cos c t+\sin a t \sin b t \sin c t) \cos M t \\
& -(\sin a t \sin b t \cos c t-\cos a t \sin c t) \sin M t] x_{2}^{n} \\
& +\sin a t \cos b t x_{3}^{n}+d t \sin a t \cos b t \cos M t x_{4}^{n}-d t \sin a t \cos b t \sin M t x_{5}^{n} \\
& +d t(-\sin a t \sin b t \cos c t+\sin a t \cos c t) x_{6}^{n} \\
& -e t \sin a t \cos b t \cos M t x_{7}^{n}+e t \sin a t \cos b t \sin M t x_{8}^{n} \\
& +(\cos a t \cos c t+\sin a t \sin b t \sin c t) x_{9}^{n} \\
& =[(\cos a t \sin b t \cos c t+\sin a t \sin c t) \cos M t \\
& -(\sin a t \cos c t-\cos a t \sin b t \sin c t) \sin M t] x_{1}^{n} \\
& +[(-\sin a t \cos c t+\cos a t \sin b t \sin c t) \cos M t \\
& -(\cos a t \sin b t \cos c t+\sin a t \sin c t) \sin M t] x_{2}^{n} \\
& +\cos a t \cos b t x_{3}^{n}+d t \cos a t \cos b t \cos M t x_{4}^{n}-d t \cos a t \cos b t \sin M t x_{5}^{n} \\
& -d(\cos a t \sin b t \cos c t+\sin a t \sin c t) x_{6}^{n} \\
& -e t \cos a t \cos b t \cos M t x_{7}^{n}+e t \cos a t \cos b t \sin M t x_{8}^{n} \\
& -(\sin a t \cos c t+\cos a t \sin b t \sin c t) x_{9}^{n}
\end{aligned}
$$

$$
\begin{aligned}
x_{4}^{n+1}= & (\cos b t \cos c t \cos M t+\cos b t \sin c t \sin M t) x_{4}^{n} \\
& +(\cos b t \sin c t \cos M t-\cos b t \cos c t \sin M t) x_{5}^{n}-\sin b t x_{6}^{n}
\end{aligned}
$$

$$
\begin{aligned}
x_{5}^{n+1}= & {[(\sin a t \sin b t \cos c t-\cos a t \sin c t) \cos M t} \\
& +(\cos a t \cos c t+\sin a t \sin b t \sin c t) \sin M t] x_{4}^{n}
\end{aligned}
$$

$+[(\cos a t \cos c t+\sin a t \sin b t \sin c t) \cos M t$
$-(\sin a t \sin b t \cos c t-\cos a t \sin c t) \sin M t] x_{5}^{n}+\sin a t \cos b t x_{6}^{n}$,

$$
\begin{aligned}
x_{6}^{n+1}= & {[(\cos a t \sin b t \cos c t+\sin a t \sin c t) \cos M t} \\
& -(\sin a t \cos c t-\cos a t \sin b t \sin c t) \sin M t] x_{4}^{n} \\
& +[(-\sin a t \cos c t+\cos a t \sin b t \sin c t) \cos M t \\
& -(\cos a t \sin b t \cos c t+\sin a t \sin c t) \sin M t] x_{5}^{n}+\cos a t \cos b t x_{6}^{n}, \\
x_{7}^{n+1}= & (\cos b t \cos c t \cos M t+\cos b t \sin c t \sin M t) x_{7}^{n} \\
& +(\cos b t \sin c t \cos M t-\cos b t \cos c t \sin M t) x_{8}^{n}-\sin b t x_{9}^{n} \\
x_{8}^{n+1}= & {[(\sin a t \sin b t \cos c t-\cos a t \sin c t) \cos M t} \\
& +(\cos a t \cos c t+\sin a t \sin b t \sin c t) \sin M t] x_{7}^{n} \\
& +[(\cos a t \cos c t+\sin a t \sin b t \sin c t) \cos M t \\
& -(\sin a t \sin b t \cos c t-\cos a t \sin c t) \sin M t] x_{8}^{n}+\sin a t \cos b t x_{8}^{n},
\end{aligned}
$$

$$
\begin{aligned}
x_{9}^{n+1}= & {[(\cos a t \sin b t \cos c t+\sin a t \sin c t) \cos M t} \\
& -(\sin a t \cos c t-\cos a t \sin b t \sin c t) \sin M t] x_{7}^{n} \\
& +[(-\sin a t \cos c t+\cos a t \sin b t \sin c t) \cos M t \\
& -(\cos a t \sin b t \cos c t+\sin a t \sin c t) \sin M t] x_{8}^{n}+\cos a t \cos b t x_{9}^{n} .
\end{aligned}
$$

Now, a direct computation or using MATHEMATICA 8.0 leads us to
Proposition 2.5. Lie-Trotter integrator (2.9) has the following properties:
(i) It preserves the Poisson structure Π;
(ii) It preserves the Casimirs C_{1}, C_{2} and C_{3} of our Poisson configuration $\left(\mathbb{R}^{9}, \Pi\right)$;
(iii) It does not preserve the Hamiltonian H of our system (2.2);
(iv) Its restriction to the coadjoint orbit $\left(\mathcal{O}_{k}, \omega_{k}\right)$, where

$$
\begin{gathered}
\mathcal{O}_{k}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right) \in \mathbb{R}^{9} \mid x_{4}^{2}+x_{5}^{2}+x_{6}^{2}=\right.\text { const } \\
\left.x_{7}^{2}+x_{8}^{2}+x_{9}^{2}=\text { const, } x_{4} x_{7}+x_{5} x_{8}+x_{6} x_{9}=\text { const }\right\}
\end{gathered}
$$

and ω_{k} is the Kirilov-Konstant-Souriau symplectic structure on \mathcal{O}_{k} gives rise to a symplectic integrator.
Proof. The items (i), (ii) and (iv) hold because Lie-Trotter is a Poisson integrator.
The item (iii) is essentially due to the fact that

$$
\left\{H_{i}, H_{j}\right\} \neq 0, \quad i \neq j
$$

3. Stabilization of $e_{4}^{M N P}$ by one linear control

In order to stabilize the equilibrium states $e_{4}^{M N P}$ of the system 1.1 we employ the linear control $u \in C^{\infty}\left(\mathbb{R}^{9}, \mathbb{R}\right)$ given by

$$
\begin{equation*}
u\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)=\left(M x_{3}+2 N x_{6}, 0,-M x_{1}-2 N x_{4}, M x_{6}, 0,-M x_{4}, M x_{9}, 0,-M x_{7}\right) \tag{3.1}
\end{equation*}
$$

so the controlled system $\sqrt{1.1}$ - (3.1) can be explicitly written:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{5} x_{6}+M x_{3}+2 N x_{6} \tag{3.2}\\
\dot{x}_{2}=x_{7} x_{9} \\
\dot{x}_{3}=x_{4} x_{5}-x_{7} x_{8}-M x_{1}-2 N x_{4} \\
\dot{x}_{4}=-x_{2} x_{6}+x_{3} x_{5}+M x_{6} \\
\dot{x}_{5}=x_{1} x_{6}-x_{3} x_{4} \\
\dot{x}_{6}=-x_{1} x_{5}+x_{2} x_{4}-M x_{4} \\
\dot{x}_{7}=-x_{2} x_{9}+x_{3} x_{8}+M x_{9} \\
\dot{x}_{8}=x_{1} x_{9}-x_{3} x_{7} \\
\dot{x}_{9}=-x_{1} x_{8}+x_{2} x_{7}-M x_{7}
\end{array}\right.
$$

Using the same arguments like in Proposition 2.1 we obtain the following result:
Proposition 3.1. The controlled system (3.2) has the Hamilton-Poisson realization

$$
\left(\mathbb{R}^{9}, \Pi, \bar{H}\right)
$$

where Π is given by 2.3 and the Hamiltonian function is

$$
\bar{H}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{5}^{2}+x_{7}^{2}\right)-M x_{2}-2 N x_{5}
$$

Proposition 3.2. The controlled system (3.2) may be spectral stabilized about the equilibrium states $e_{4}^{M N P}$ for all $M, N, P \in \mathbb{R}^{*}$.

Proof. Let \bar{A} be the matrix of linear part of our controlled system (3.2), that is

$$
\bar{A}=\left[\begin{array}{ccccccccc}
0 & 0 & M & 0 & -x_{6} & -x_{5}+2 N & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & x_{9} & 0 & x_{7} \\
-M & 0 & 0 & x_{5}-2 N & x_{4} & 0 & -x_{8} & -x_{7} & 0 \\
0 & -x_{6} & x_{5} & 0 & x_{3} & -x_{2}+M & 0 & 0 & 0 \\
x_{6} & 0 & -x_{4} & -x_{3} & 0 & x_{1} & 0 & 0 & 0 \\
-x_{5} & x_{4} & 0 & x_{2}-M & -x_{1} & 0 & 0 & 0 & 0 \\
0 & -x_{9} & x_{8} & 0 & 0 & 0 & 0 & x_{3} & -x_{2}+M \\
x_{9} & 0 & -x_{7} & 0 & 0 & 0 & -x_{3} & 0 & x_{1} \\
-x_{8} & x_{7} & 0 & 0 & 0 & 0 & x_{2}-M & -x_{1} & 0
\end{array}\right]
$$

At the equilibrium of interest its characteristic polynomial has the following expression,

$$
p_{\bar{A}\left(e_{4}^{M N P}\right)}(\lambda)=4 \lambda^{5}\left[\lambda^{4}+\left(M^{2}+2 N^{2}+P^{2}\right) \lambda^{2}+N^{2}\left(N^{2}+P^{2}\right)\right]
$$

Hence we have five zero eigenvalues and four purely imaginary eigenvalues. So we can conclude that the equilibrium states $e_{4}^{M N P}, M, N, P \in \mathbb{R}^{*}$ are spectral stable.

Moreover we can prove,

Proposition 3.3. The controlled system (3.2) may be nonlinear stabilized about the equilibrium states $e_{4}^{M N P}$ for all $M, N, P \in \mathbb{R}^{*}$.

Proof. Let us consider the function:

$$
\begin{aligned}
F_{\lambda, \mu, \nu}= & C_{2}+\lambda \bar{H}+\mu C_{1}+\nu C_{3} \\
= & \frac{1}{2}\left(x_{7}^{2}+x_{8}^{2}+x_{9}^{2}\right)+\frac{\lambda}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{5}^{2}+x_{7}^{2}-2 M x_{2}-4 N x_{5}\right) \\
& +\frac{\mu}{2}\left(x_{4}^{2}+x_{5}^{2}+x_{6}^{2}\right)+\nu\left(x_{4} x_{7}+x_{5} x_{8}+x_{6} x_{9}\right)
\end{aligned}
$$

Then we have successively:
(i) $\nabla F_{\lambda, \mu, \nu}\left(e_{4}^{M N P}\right)=0$ iff $\mu=\lambda+\frac{P^{2}}{N^{2}}, \nu=-\frac{P}{N}$;
(ii) Considering now

$$
\begin{gathered}
W=\operatorname{ker}\left[d \bar{H}\left(e_{4}^{M N P}\right)\right] \cap \operatorname{ker}\left[d C_{1}\left(e_{4}^{M N P}\right)\right] \cap \operatorname{ker}\left[d C_{3}\left(e_{4}^{M N P}\right)\right]= \\
=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\},
\end{gathered}
$$

then, for all $v \in W$, i.e. $v=(a, b, c, d, 0, e, f, 0, g), a, b, c, d, e, f, g \in \mathbb{R}$, we have
$v \cdot \nabla^{2} F_{\lambda, \frac{P^{2}}{N^{2}}+\lambda,-\frac{P}{N}}\left(e_{4}^{M N P}\right) \cdot v^{t}=\lambda a^{2}+\lambda b^{2}+\lambda c^{2}+\left(\lambda+\frac{P^{2}}{N^{2}}\right) d^{2}+\left(\lambda+\frac{P^{2}}{N^{2}}\right) e^{2}+(\lambda+1) f^{2}+g^{2}-2 \frac{P}{N} f d-2 \frac{P}{N} e g$ positive definite under the restriction $\lambda>0$, and so

$$
\left.\nabla^{2} F_{\lambda, \frac{P^{2}}{N^{2}}+\lambda,-\frac{P}{N}}\left(e_{4}^{M N P}\right)\right|_{W \times W}
$$

is positive definite.
Therefore, via Arnold's technique, the equilibrium states $e_{4}^{M N P}, M, N, P \in \mathbb{R}^{*}$ are nonlinear stable, as required.

We shall discuss now the numerical integrator of the dynamics (3.2) via the Lie-Trotter integrator, see for details [8]. For the beginning, let us observe that the Hamiltonian vector field X_{H} splits as follows:

$$
X_{\bar{H}}=X_{\bar{H}_{1}}+X_{\bar{H}_{2}}+X_{\bar{H}_{3}}+X_{\bar{H}_{4}}+X_{\bar{H}_{5}}+X_{\bar{H}_{6}}+X_{\bar{H}_{7}}
$$

where

$$
\begin{gathered}
\bar{H}_{1}=\frac{x_{1}^{2}}{2}, \quad \bar{H}_{2}=\frac{x_{2}^{2}}{2}, \quad \bar{H}_{3}=\frac{x_{3}^{2}}{2}, \quad \bar{H}_{4}=\frac{x_{5}^{2}}{2} \\
\bar{H}_{5}=\frac{x_{7}^{2}}{2}, \quad \bar{H}_{6}=-M x_{2}, \quad \bar{H}_{7}=-2 N x_{5}
\end{gathered}
$$

Their corresponding integral curves are, respectively, given by

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t) \\
x_{6}(t) \\
x_{7}(t) \\
x_{8}(t) \\
x_{9}(t)
\end{array}\right]=A_{i}(t)\left[\begin{array}{c}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0) \\
x_{4}(0) \\
x_{5}(0) \\
x_{6}(0) \\
x_{7}(0) \\
x_{8}(0) \\
x_{9}(0)
\end{array}\right] i=\overline{1,7}
$$

where $A_{i}(t), i=\overline{1,5}$ are given by the relations (2.4) - (2.8) and

$$
A_{6}(t)=\left[\begin{array}{ccccccccc}
\cos M t & 0 & \sin M t & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\sin M t & 0 & \cos M t & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos M t & 0 & \sin M t & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\sin M t & 0 & \cos M t & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cos M t & 0 & \sin M t \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\sin M t & 0 & \cos M t
\end{array}\right],
$$

$M \in \mathbb{R}^{*}$,

$$
A_{7}(t)=\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 2 N t & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -2 N t & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$N \in \mathbb{R}^{*}$.
Then, the Lie-Trotter integrator is given by

$$
\left[\begin{array}{l}
x_{1}^{n+1} \tag{3.3}\\
x_{2}^{n+1} \\
x_{3}^{n+1} \\
x_{4}^{n+1} \\
x_{5}^{n+1} \\
x_{6}^{n+1} \\
x_{7}^{n+1} \\
x_{8}^{n+1} \\
x_{9}^{n+1}
\end{array}\right]=A_{1}(t) A_{2}(t) A_{3}(t) A_{4}(t) A_{5}(t) A_{6}(t) A_{7}(t)\left[\begin{array}{c}
x_{1}^{n} \\
x_{2}^{n} \\
x_{3}^{n} \\
x_{4}^{n} \\
x_{5}^{n} \\
x_{6}^{n} \\
x_{7}^{n} \\
x_{8}^{n} \\
x_{9}^{n}
\end{array}\right] .
$$

Now, a direct computation or using MATHEMATICA 8.0 leads us to
Proposition 3.4. Lie-Trotter integrator (3.3) has the following properties:
(i) It preserves the Poisson structure Π;
(ii) It preserves the Casimirs C_{1}, C_{2} and C_{3} of our Poisson configuration $\left(\mathbb{R}^{9}, \Pi\right)$;
(iii) It does not preserve the Hamiltonian \bar{H} of our system (3.2);
(iv) Its restriction to the coadjoint orbit $\left(\mathcal{O}_{k}, \omega_{k}\right)$, where

$$
\begin{gathered}
\mathcal{O}_{k}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right) \in \mathbb{R}^{9} \mid x_{4}^{2}+x_{5}^{2}+x_{6}^{2}=\text { const },\right. \\
\left.x_{7}^{2}+x_{8}^{2}+x_{9}^{2}=\text { const }, x_{4} x_{7}+x_{5} x_{8}+x_{6} x_{9}=\text { const }\right\}
\end{gathered}
$$

and ω_{k} is the Kirilov-Konstant-Souriau symplectic structure on \mathcal{O}_{k}, gives rise to a symplectic integrator.

4. Conclusion

The paper presents the stabilization of two equilibrium points of a dynamical system for which the energy-methods fail. In order to do this, for each equilibrium point, a specific linear control is found. Numerical integration using the Lie-Trotter algorithm is analyzed and some properties of the Lie-Trotter integrator are presented.

Acknowledgements

I would like to thank the referees very much for their valuable comments and suggestions.

References

[1] A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, G. Sanchez de Alvarez, Stabilization of Rigid Body Dynamics by Internal and External Torques, Automatica J., 28 (1992), 745-756. 1
[2] C. Petrişor, Some New Remarks about the Dynamics of an Automobile with Two Trailers, J. Appl. Math., 2014 (2014), 6 pages. 1
[3] C. Pop, A Drift-Free Left Invariant Control System on the Lie Group $S O(3) \times \mathbb{R}^{3} \times \mathbb{R}^{3}$, Math. Probl. Eng., 2015 (2015), 9 pages. 1. $1.2,2.2$
[4] C. Pop, A. Aron, C. Petrişor, Geometrical aspects of the ball-plate problem, Balkan J. Geom. Appl., 16 (2011), 114-121. 1
[5] C. Pop Arieşanu, Stability Problems for Chua System with One Linear Control, J. Appl. Math., 2013 (2013), 5 pages. 1
[6] M. Puta, On the Maxwell-Bloch equations with one control, C. R. Acad. Sci. Paris, Sér. I Math., 318 (1994), 679-683.1
[7] M. Puta, On an Extension of the 3-Dimensional Toda Lattice, Differential geometry and applications (Brno, 1995), 455-462, Masaryk Univ., Brno, (1996). 1
[8] H. F. Trotter, On the Product of Semi-Operators, Proc. Amer. Math. Soc., 10 (1959), 545-551.2, 3

[^0]: Email address: camelia.petrisor@upt.ro (Camelia Petrişor)

