
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 1991–1999

Research Article

Fixed-point theorem for Caputo–Fabrizio fractional
Nagumo equation with nonlinear diffusion and
convection

Rubayyi T. Alqahtani

Department of Mathematics and Statistics, College of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), P. O. Box
65892, Riyadh 11566, Saudi Arabia.

Communicated by A. Atangana

Abstract

We make use of fractional derivative, recently proposed by Caputo and Fabrizio, to modify the nonlin-
ear Nagumo diffusion and convection equation. The proposed fractional derivative has no singular kernel
considered as a filter. We examine the existence of the exact solution of the modified equation using the
method of fixed-point theorem. We prove the uniqueness of the exact solution and present some numerical
simulations. c©2016 All rights reserved.
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1. Introduction

The nonlinear diffusion and convection Nagumo equation has been used in population dynamics, en-
vironmental studies, neurophysiology, biochemical reactions and flame promulgation. More examples can
be found in [8, 9, 10, 16, 17]. Significant attention was devoted to the situations where partial differential
equations describe the decreasing nonlinear diffusion; [1, 13, 15, 17]. Another example is when a propagating
wave front solution of sharp type endures a constant wave speed; such wave fronts characterize coopera-
tive gesticulation of populations, especially collective spreading, incursion in bionetworks and concentration
in biochemical feedbacks [5, 7, 11, 12, 18, 19]. In many situations these physical phenomena can well be
described by using the concept of fractional derivative.
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Recently a new fractional derivative with no singular kernel was proposed in [6] and further employed
in [2, 3, 4, 14]. We apply the new fractional derivative to the nonlinear Nagumo equation. The main
contribution of this study is identifying the new fractional derivative to the nonlinear Nagumo equation and
proving in detail the exactness and the uniqueness of solution of the modified equation using a fixed-point
theorem. For the readers unfamiliar with this new derivative, we summarize some useful results from the
fractional derivative theory in Section 2.

2. On Caputo–Fabrizio derivative

Recently Caputo and Fabrizio have proposed a fractional derivative with no singular kernel. For more
information about this derivative see below.

Definition 2.1. Let f ∈ H1(a, b), b > a, α ∈ [0, 1]. The Caputo fractional derivative is defined by

Dα
t (f(t)) =

M(α)

1− α

∫ t

a
f

′
(x) exp[−α t− x

1− α
]dx, (2.1)

where M(α) is a normalization function such that M(0) = M(1) = 1, [2, 3, 4, 6, 14]. If f /∈ H1(a, b), then
the derivative can be defined by

Dα
t (f(t)) =

αM(α)

1− α

∫ t

a
(f(t)− f(x)) exp[−α t− x

1− α
]dx. (2.2)

Remark 2.2. The authors commented that, if σ = 1−α
α ∈ [0,∞], α = 1

1+σ ∈ [0, 1], then Equation (2.2)
becomes

Dσ
t (f(t)) =

N(σ)

σ

∫ t

a
f

′
(x) exp[− t− x

σ
]dx, N(0) = N(∞) = 1. (2.3)

Furthermore,

lim
σ→0

1

σ
exp

[
− t− x

σ

]
= δ(x− t). (2.4)

The corresponding anti-derivative turned out to be important. An integral connected to the Caputo deriva-
tive with fractional order, was suggested by Nieto and Losada [2, 3, 4, 6, 14], see the definition below.

Definition 2.3 ([14]). Let 0 < α < 1. The fractional integral of order α of a function f is defined by

Itα(f(t)) =
2(1− α)

(2− α)M(α)
f(t) +

2α

(2− α)M(α)

∫ t

0
f(s)ds, t ≥ 0. (2.5)

Remark 2.4 ([14]). The remainder occurring in the above definition of the fractional integral of Caputo type
of the function of order 0 < α < 1 is a mean between the function f and its integral of order one. This
consequently enforces,

2(1− α)

(2− α)M(α)
+

2α

(2− α)M(α)
= 1, (2.6)

where

M(α) =
2

2− α
, 0 ≤ α ≤ 1,

so that Nieto and Losada noticed that the definition of the Caputo derivative of order 0 < α < 1 can be
reformulated by

Dα
t (f(t)) =

1

1− α

∫ t

a
f

′
(x) exp[−α t− x

1− α
]dx. (2.7)
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Theorem 2.5. For the new Caputo derivative of fractional order, if the function f(t) is such that

f (s)(a) = 0, s = 1, 2, ..., n,

then, we have
Dα
t (Dn

t (f(t))) = Dn
t (Dα

t (f(t))).

Proof. For a proof see [6].

3. Fixed-point theorem for Nagumo equation with Caputo–Fabrizio

In this section, we aim to show the existence of an exact solution of the Nagumo equation with nonlinear
diffusion and convection with time fractional Caputo–Fabrizio derivative. The nonlinear equation under
study here is

CF
0 Dα

t u(x, t) + βu(x, t)n∂xu(x, t) = ∂x (αu(x, t)n∂xu(x, t)) + γu(x, t)(1− um)(um − δ), (3.1)

0 < α < 1, u(x, 0) = f(x), u(0, t) = g(t),

where α, β, γ and δ are constant. Integrating (3.1), in the sense of Definition 2.3, we obtain

u(x, t)− u(x, 0) = Iαt (−βu(x, t)n∂xu(x, t) + ∂x (αu(x, t)n∂xu(x, t)) + γu(x, t)(1− um)(um − δ)) . (3.2)

For simplicity, we let

K(x, t, u) = −βu(x, t)n∂xu(x, t) + ∂x (αu(x, t)n∂xu(x, t)) + γu(x, t)(1− um)(um − δ). (3.3)

Then Equation (3.2) becomes

u(x, t)− u(x, 0) =
2(1− α)

(2− α)M(α)
K(x, t, u) +

2α

(2− α)M(α)

∫ t

0
K(x, y, u)dy, t ≥ 0. (3.4)

To achieve our proof, we first show that the function K satisfies the Lipchitz condition.

Theorem 3.1. K satisfies the Lipschitz condition.

Proof. Let u and v be two bounded functions. We have

‖K(x, t, u)−K(x, t, v)‖ = ‖βv(x, t)n∂xv(x, t)− βu(x, t)n∂xu(x, t) + ∂x(αu(x, t)n∂xu(x, t)

− αv(x, t)n∂xv(x, t)) + γu(x, t)(1− um)(um − δ)
− γv(x, t)(1− vm)(vm − δ)‖.

(3.5)

A direct application of the triangular inequality produces

‖K(x, t, u)−K(x, t, v)‖ ≤ ‖βv(x, t)n∂xv(x, t)− βu(x, t)n∂xu(x, t)‖+ ‖∂x(αu(x, t)n∂xu(x, t)

− αv(x, t)n∂xv(x, t))‖+ ‖γu(x, t)(1− um)(um − δ)
− γv(x, t)(1− vm)(vm − δ)‖.

(3.6)

We shall investigate case by case

‖βv(x, t)n∂xv(x, t)− βu(x, t)n∂xu(x, t)‖ =
β

n+ 1
‖∂x(v(x, t)n+1 − u(x, t)n+1)‖

≤ β

n+ 1
ρ1‖v(x, t)n+1 − u(x, t)n+1‖

≤ β

n+ 1
ρ1‖v(x, t)− u(x, t)‖

∥∥∥∥∥∥
n∑
j=0

v(x, t)ju(x, t)n−j

∥∥∥∥∥∥ .
(3.7)
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Since the two functions are bounded, there exist two positive numbers M and N such that for all (x, t),
‖u(x, t)‖ < M , ‖v(x, t)‖ < N , so that

β

n+ 1
ρ1‖v(x, t)− u(x, t)‖

∥∥∥∥∥∥
n∑
j=0

Cjnv(x, t)ju(x, t)n−j

∥∥∥∥∥∥ < β

n+ 1
ρ1‖v − u‖

n∑
j=0

CjnN
jMn−j

=
β

n+ 1
ρ1‖v − u‖(N +M)n.

(3.8)

Therefore Equation (3.7) becomes

‖βv(x, t)n∂xv(x, t)− βu(x, t)n∂xu(x, t)‖ < β

n+ 1
ρ1‖v − u‖(N +M)n = λ1‖u− v‖. (3.9)

We shall evaluate the following

‖∂x(αu(x, t)n∂xu(x, t)− αv(x, t)n∂xv(x, t))‖ < ρ2α‖u(x, t)n∂xu(x, t)− v(x, t)n∂xv(x, t)‖. (3.10)

Now following the demonstration presented earlier, we obtain

‖∂x(αu(x, t)n∂xu(x, t)− αv(x, t)n∂xv(x, t))‖ < β

n+ 1
ρ2α‖v − u‖(N +M)n = λ2‖u− v‖. (3.11)

We evaluate the following

‖γu(x, t)(1− um)(um − δ)− γv(x, t)(1− vm)(vm − δ)‖ ≤γ[‖um+1 − vm+1‖+ δ‖v − u‖
+ ‖v2m+1 − u2m+1‖+ δ‖um+1 − vm+1‖],

(3.12)

where

‖um+1 − vm+1‖ ≤ ‖u− v‖

∥∥∥∥∥∥
m−1∑
j=0

Cjm−1v
m−j−1uj

∥∥∥∥∥∥ < ‖u− v‖(N +M)m. (3.13)

Thus,

‖u2m+1 − v2m+1‖ ≤ ‖u− v‖

∥∥∥∥∥∥
2m−1∑
j=0

Cjm−1v
2m−j−1uj

∥∥∥∥∥∥ < ‖u− v‖(N +M)2m. (3.14)

Replacing (3.13) and (3.14) into (3.12), we obtain

‖γu(x, t)(1− um)(um − δ)− γv(x, t)(1− vm)(vm − δ)‖ <γ[‖u− v‖(M +N)m + δ‖v − u‖
+ ‖u− v‖(M +N)2m + δ‖u− v‖(M +N)m]

=λ3‖u− v‖.
(3.15)

Thus replacing (3.15), (3.11) and (3.9) into (3.5), we obtain

‖K(x, t, u)−K(x, t, v)‖ < L‖u− v‖, L = λ1 + λ2 + λ3. (3.16)

This completes the proof.
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Now taking into account that the function K, which is considered here as a nonlinear kernel, Equa-
tion (3.4) can be converted to the following recursive formula

un(x, t) =
2(1− α)

(2− α)M(α)
(K(x, t, un−1)−K(x, t, un−2))

+
2α

(2− α)M(α)

∫ t

0
(K(x, y, un−1)−K(x, y, un−2))dy,

u0(x, t) = u(x, 0).

(3.17)

We consider the variance between the two consecutive terms

Vn(x, t) = un(x, t)− un−1(x, t) =
2(1− α)

(2− α)M(α)
(K(x, t, un−1)−K(x, t, un−2))

+
2α

(2− α)M(α)

∫ t

0
(K(x, y, un−1)−K(x, y, un−2))dy.

(3.18)

We notice that

un(x, t) =
n∑
j=0

Vj(x, t). (3.19)

Therefore

‖Vn(x, t)‖ = ‖un(x, t)− un−1(x, t)‖ = ‖ 2(1− α)

(2− α)M(α)
(K(x, t, un−1)−K(x, t, un−2))

+
2α

(2− α)M(α)

∫ t

0
(K(x, y, un−1)−K(x, y, un−2))dy‖

≤ 2(1− α)

(2− α)M(α)
‖(K(x, t, un−1)−K(x, t, un−2))‖

+
2α

(2− α)M(α)
‖
∫ t

0
(K(x, y, un−1)−K(x, y, un−2))dy‖

≤ 2(1− α)

(2− α)M(α)
‖(K(x, t, un−1)−K(x, t, un−2))‖

+
2α

(2− α)M(α)

∫ t

0
‖(K(x, y, un−1)−K(x, y, un−2))‖dy.

(3.20)

Using the Lipschitz condition of the function K, we obtain

2(1− α)

(2− α)M(α)
‖(K(x, t, un−1)−K(x, t, un−2))‖

+
2α

(2− α)M(α)

∫ t

0
‖(K(x, y, un−1)−K(x, y, un−2))‖dy

≤ 2(1− α)

(2− α)M(α)
L‖(un−1 − un−2)‖+

2α

(2− α)M(α)
L

∫ t

0
‖(un−1 − un−2)‖dy

≤ 2(1− α)

(2− α)M(α)
L‖Vn−1‖+

2α

(2− α)M(α)
L

∫ t

0
‖Vn−1‖dy.

(3.21)

Then

‖Vn(x, t)‖ ≤ 2(1− α)

(2− α)M(α)
L‖Vn−1‖+

2α

(2− α)M(α)
L

∫ t

0
‖Vn−1‖dy. (3.22)

With the above relation in hand, we shall state the following theorem
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Theorem 3.2. Providing that the physical problem under investigation in this paper takes place in a confined
medium, Equation (3.4) has an exact solution.

Proof. Under the conditions in the theorem, together with the Lipchitz condition of the kernel K, we have

‖Vn(x, t)‖ ≤ u(x, 0)

[(
2(1− α)

(2− α)M(α)
L

)n
+

(
2α

(2− α)M(α)
LT

)n]
. (3.23)

However to demonstrate that the above is solution of Equation (3.4), we assume that the exact solution is
given by

u(x, t) = un(x, t)− Pn(x, t) =
2(1− α)

(2− α)M(α)
K(x, t, u− Pn(x, t))

+
2α

(2− α)M(α)

∫ t

0
K(x, t, u− Pn(x, t))dy.

(3.24)

In this case, the function Pn(x, t) tends to zero for large n

u(x, t)− 2(1− α)

(2− α)M(α)
K(x, t, u)− u(x, 0) +

2α

(2− α)M(α)

∫ t

0
K(x, y, u)dy

= Pn(x, t) +
2(1− α)

(2− α)M(α)
K(x, t, u) +

2α

(2− α)M(α)

∫ t

0
(K(x, y, u− Pn(x, y))−K(x, y, u))dy.

(3.25)

Then,

‖u(x, t)− 2(1− α)

(2− α)M(α)
K(x, t, u)− u(x, 0) +

2α

(2− α)M(α)

∫ t

0
K(x, y, u)dy‖

≤ ‖Pn(x, t)‖+

(
2(1− α)

(2− α)M(α)
L+

2α

(2− α)M(α)
LT

)
‖Pn(x, t)‖.

(3.26)

Taking the limit when n tends to infinity, we obtain∥∥∥∥u(x, t)− 2(1− α)

(2− α)M(α)
K(x, t, u)− u(x, 0) +

2α

(2− α)M(α)

∫ t

0
K(x, y, u)dy

∥∥∥∥ = 0. (3.27)

This implies

u(x, t) =
2(1− α)

(2− α)M(α)
K(x, t, u) + u(x, 0) +

2α

(2− α)M(α)

∫ t

0
K(x, y, u)dy. (3.28)

This completes the proof.

4. Uniqueness of the exact solution

Now we prove the uniqueness of the exact solution of Equation (3.4). So assume that there exists another
solution of Equation (3.4), say v(x, t). We would have

u(x, t)− v(x, t) =
2(1− α)

(2− α)M(α)
(K(x, t, u)−K(x, t, v)) +

2α

(2− α)M(α)

∫ t

0
(K(x, y, u)−K(x, y, v))dy.

(4.1)

Thus

‖u(x, t)− v(x, t)‖ ≤ 2(1− α)

(2− α)M(α)
‖(K(x, t, u)−K(x, t, v))‖

+
2α

(2− α)M(α)

∫ t

0
‖(K(x, y, u)−K(x, y, v))‖dy.

(4.2)
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Making use of the Lipchitz condition of the kernel K, we obtain

‖u− v‖ ≤ 2(1− α)

(2− α)M(α)
L‖u− v‖+

2α

(2− α)M(α)
LT‖u− v‖. (4.3)

This leads to

‖u− v‖
(

1− 2(1− α)

(2− α)M(α)
L− 2α

(2− α)M(α)
L

)
≤ 0. (4.4)

Theorem 4.1. Equation (3.4) has a unique exact solution if the following condition holds(
1− 2(1− α)

(2− α)M(α)
L− 2α

(2− α)M(α)
L

)
6= 0. (4.5)

Proof. If the above condition holds, then

‖u− v‖
(

1− 2(1− α)

(2− α)M(α)
L− 2α

(2− α)M(α)
L

)
≤ 0 (4.6)

implies

‖u− v‖ = 0. (4.7)

This completes the proof.

5. Simulations

In this section, we present numerical solutions of Equation (3.4). So, let us consider the following
recursive formula

un(x, t) =
2(1− α)

(2− α)M(α)
K(x, t, un−1(x, t)) +

2α

(2− α)M(α)

∫ t

0
K(x, y, un−1(x, y))dy,

u0(x, t) = u(x, 0).

(5.1)

Then, the solution is given by

u(x, t) =
n∑
j=0

Vj(x, t). (5.2)

In Table 1 we present the theoretical parameters used for this simulation.

Table 1: Theoretical parameters used for the simulations

Parameters Value

a 2

β 3

γ 1

δ 3

m 5

n 6

The simulations are done for different values of α. The numerical solutions are presented in Figures 1,
2 and 3. From the figures, one can see that the fractional order is a controlling parameter.
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Figure 1: Numerical simulation for α = 0.85

Figure 2: Numerical simulation for α = 0.45

Figure 3: Numerical simulation for α = 0.25

6. Conclusion

A kernel with exponential function is more realistic that the one with a power function, due to the
fact that the singularity does not occur at the end of the interval within which the fractional derivative
of a given function is taken. In addition to this, the exponent function is perhaps a better filter than the
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power function, therefore a fractional derivative with an exponential kernel is preferable than the one with
power function. Using the proposed fractional derivative, the nonlinear Nagumo equation was extended
to the scope of fractional calculus. A fixed-point theorem method was used to show the existence of the
exact solution of the nonlinear time-fractional equation. The presented proof of the uniqueness of the exact
solution is detailed. Some simulations are presented to show the effect of the fractional order.
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