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Abstract

In this paper, we consider the split quasi variational inequality problems over a class of nonconvex sets,
as uniformly prox-regular sets. The sufficient conditions for the existence of solutions of such a problem
are provided. Furthermore, an iterative algorithm for finding a solution is constructed and its convergence
analysis are considered. The results in this paper improve and extend the variational inequality problems
which have been appeared in literature. c©2016 All rights reserved.
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1. Introduction

A well known problem, which was studied and interesting for many researchers, is the variational in-
equality problem. The variational inequality problem is a problem of finding x∗ ∈ K such that

〈T (x∗), x− x∗〉 ≥ 0, for all x ∈ K, (1.1)

where T is a nonlinear operator on H, K is a nonempty closed and convex subset of a Hilbert space H. This
problem was introduced by Stampacchai[31] in 1960s, and it is a power tool which has been used in branches

∗Corresponding author
Email addresses: j_suwannawit@hotmail.com (Jittiporn Tangkhawiwetkul), narinp@nu.ac.th (Narin Petrot)

Received 2015-12-31



J. Tangkhawiwetkul, N. Petrot, J. Nonlinear Sci. Appl. 9 (2016), 2364–2375 2365

of both pure and applied sciences. Subsequently, the most nature, direct, simple and efficient framework
for general treatment of wide range of problems are provided for the variational inequalities. Roughly
speaking, many researchers interest to develop several numerical methods for solving variational inequalities
and relaxed optimization problems(see [2, 10, 11, 12, 13, 33, 34, 35, 36] and the references therein).

In the early 1970s, Bensoussan et al.[3] developed the concept of variational inequality, by introducing
the following concept of quasi-variational inequality problem: find x∗ ∈ C(x∗) such that

〈T (x∗), x− x∗〉 ≥ 0, for all x ∈ C(x∗), (1.2)

where C is a set-valued mapping on H. We see that if C(x) = K for all x ∈ H, then the problem (1.2)
is reduced to the problem (1.1). Notice that, since in many important problems the considered set also
depend upon the solutions explicitly or implicitly, evidently, the problem (1.2) is interesting to study, see
[9, 22, 23, 24].

On the other hand, in 2012, Cencer et al. [8] introduced the following concept of split variational
inequality problem: let H1, H2 be real Hilbert spaces and K,Q be nonempty closed and convex subsets of
H1 and H2, respectively, T : H1 → H1, S : H2 → H2 be nonlinear mappings and A : H1 → H2 be a bounded
linear operator then they are interested in finding x∗ ∈ K such that

〈T (x∗), x− x∗〉 ≥ 0, for all x ∈ K,

and such that Ax∗ ∈ Q solves

〈S(Ax∗), y −Ax∗〉 ≥ 0, for all y ∈ Q. (1.3)

This problem extends and permits the split minimization between two spaces so the image of minimizer of a
given function, under a bounded linear operator, is a minimizer at another function. Furthermore, the split
zero problem and split feasibility problem which was studied and used in a model of intensity-modulated
radiation therapy treatment planning are contained as special cases of this problem, see [6, 7, 17]. This
formulation is also at core of the modeling of many inverse problems arising for phase retrieval and other
real-world problems; for instance, in sensor networks in computerized tomography and data compression;
see [5, 17, 21].

By the way, in the early period of these development, it should be pointed out that almost all the
results regarding the existence and iterative schemes for solving those variational inequality problems are
being considered in the convexity setting. This is because, perhaps, they need the convexity assumption for
guaranteeing the well definedness of the proposed iterative algorithm, which almost depends on the projection
properties. However, in fact, the convexity assumption may not be required, because the algorithm may be
well defined even if the considered set is nonconvexs (e.g., when the considered set is a closed subset of a
finite dimensional space or a compact subset of Hilbert space, etc.) see [1, 4, 20, 25, 26, 27]. While, it may
be from the practical point of view, one may see that the nonconvex problems are more useful and general
than convex case, subsequently, now many researchers are convinced and paid attention to many nonconvex
cases. Here, we are focusing on the following case, which was presented in 2013 by K. R. Kazmi[19]: let
Ti : Hi → Hi, A : H1 → H2 be nonlinear mappings for i = 1, 2 and Kr, Qs are uniformly prox-regular subsets
of H1 and H2, respectively, with r, s ∈ (0,∞) for finding (x∗, y∗) ∈ Kr ×Qs, where y∗ = Ax∗ such that

0 ∈ ρT1(x∗) +NP
Kr(x

∗),

0 ∈ λT2(y∗) +NP
Qs(y

∗), (1.4)

where ρ, λ are parameters with positive values and NP
K(x) is the proximal normal cone of K at x.

In this paper, base on above literatures, we are interested to study split quasi variational inequality of
nonconvex type problem. The existence theorems and an algorithm for finding such solution will be con-
sidered and introduced, respectively. Our results represent an improvement and refinement of the literature
results for the variational inequality problem.
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2. Preliminaries

In this section, we will recall some basic concepts and useful results which will be used in this paper.

LetH be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖·‖, respectively. Let
2H be denoted for the class of all nonempty subsets of H, and K be a closed subset of H. For each K ⊆ H, we
denote by d(·,K) for the usual distance function on H to K, that is, d(u,K) = infv∈K ‖u−v‖, for all u ∈ H.

For each K ⊆ H and u ∈ H. A point v ∈ K is called the closest point or the projection of u onto K if
d(u,K) = ‖u− v‖. The set of all such closest points is denoted by ProjK(u), that is , ProjK(u) = {v ∈ K :
d(u,K) = ‖u− v‖}. The proximal normal cone to K at u is given by

NP
K(u) = {v ∈ H : ∃ρ > 0 such that u ∈ ProjK(u+ ρv)}.

The following characterization of NP
K(u) can be found in [15].

Lemma 2.1. Let K be a closed subset of a Hilbert space H. Then

v ∈ NP
K(u)⇔ ∃σ > 0 such that 〈v, z − u〉 ≤ σ‖z − u‖2, for all z ∈ K. (2.1)

The inequality (2.1) is called the proximal normal inequality.

We recall also that the Clarke normal cone is given by

N(K,x) = co[NP
K(x)],

where co[S] means the closure of the convex hull of S (see [14]). It is clear that one always has NP
K(x) ⊂

N(K,x), but the converse is not true in general. Note that N(K,x) is always a closed and convex cone
and that NP

K(x) is always a convex cone but may be nonclosed (see [14, 15]). Also, in 1995, Clarke et al.
[16] introduced a new class of nonconvex sets, which is called proximally smooth sets, and it has played
an important part in many nonconvex applications such as optimization, dynamic systems and differential
inclusions. Subsequently, in recent years, Bounkhel et al. [4], Cho et al. [12], Noor [25, 26], Petrot[28] and J.
Suwannait and N. Petrot [26, 29, 32] have considered both variational inequalities and equilibrium problems
in the context of proximally smooth sets. They suggested and analyzed some projection type iterative
algorithms by using the prox-regular technique and auxiliary principle technique. Note that the original
definition of proximally smooth set was given in terms of the differentiability of the distance function (see
[16, 30]), while here, we will take the following characterization, which was proved in [15], as the definition
of proximally smooth sets.

Definition 2.2. For a given r ∈ (0,+∞], a subset K of H is said to be uniformly prox-regular with respect
to r, say, uniformly r-prox-regular set, if for all x ∈ K and for all 0 6= z ∈ NP

K(x), one has〈
z

‖z‖
, x− x

〉
≤ 1

2r
‖x− x‖2, for all x ∈ K.

For the case of r = ∞, the uniform r-prox-regularity K is equivalent to the convexity of K (see [16]).
Moreover, it is known that the class of uniformly prox-regular sets is sufficiently large to include the class
p-convex sets, C1,1 submanifolds (possibly with boundary) of H, the images under a C1,1 diffeomorphism
of convex sets and many other nonconvex sets, see [15, 30].

For the sake of simplicity, from now on, we will make use of the following notation: for each r ∈ (0,+∞],
we write

Kr := {x ∈ H : d(x,K) < r},

and [Cl(H)]r for the class of all uniformly r-prox regular subsets of H.
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Lemma 2.3. Let r ∈ (0,+∞] and K be a nonempty closed subset of H. If K is a uniformly r-prox-regular
set, then the following holds

(i) For all x ∈ Kr, P rojK(x) 6= ∅;

(ii) For all s ∈ (0, r), P rojK is a r
r−s -Lipschitz on Ks;

(iii) The proximal normal cone is closed as a set-valued mapping.

Remark 2.4. If K is a uniformly r-prox-regular set, as a direct consequence of Lemma 2.3(iii), we know that
N(K,x) = NP

K(x).

In this work, we will consider the following class of mappings.

Definition 2.5. A mapping T : H → H is said to be a σ-strongly monotone if there exists σ > 0 such that
for all x, x∗ ∈ K,

〈T (x)− T (x∗), x− x∗〉 ≥ ‖x− x∗‖2.

Definition 2.6. A mapping T : H → H is said to be a β-Lipschitzian if there exists a real number β > 0
such that

‖T (x)− T (y))‖ ≤ β‖x− y‖, for all x, y ∈ H.

Definition 2.7. A multivalued mapping C : H → 2H is said to be a κ-Lipschitz continuous if there exists
a real number κ > 0 such that

‖d(y, C(x))− d(y′, C(x′))‖ ≤ ‖y − y′‖+ κ‖x− x′‖, for all x, x′, y, y′ ∈ H.

The following lemma is a very important tool, in order to prove our main results.

Lemma 2.8 ([4]). Let r ∈ (0,+∞] and let C : H → 2H be a κ- Lipschitz continuous multivalued mapping
with uniformly r-prox regular valued then the following closedness property holds: for any xn → x∗, yn → y∗

and un → u∗ with yn ∈ C(xn) and un ∈ NP
C(xn)(yn), one has u∗ ∈ NP

C(x∗)(y
∗).

3. Main results

Let H1 and H2 be real Hilbert spaces, Ti : Hi → Hi be nonlinear mappings, Ci : Hi → 2Hi be nonlinear
multivalued mappings for i = 1, 2 and A : H1 → H2 be a bounded linear operator. In this paper, we are
interested in the following problem: find x∗ ∈ C1(x∗) such that, Ax∗ ∈ C2(Ax∗) and

−T1(x∗) ∈ NP
C1(x∗)(x

∗),

−T2(Ax∗) ∈ NP
C2(Ax∗)(Ax

∗).
(3.1)

Notice that, the problem (3.1) can be reformulated as the following: find (x∗, z∗) ∈ C1(x∗)×C2(z∗) with
z∗ = Ax∗ such that

x∗ = ProjC1(x∗)(x
∗ − ρT1(x∗)),

z∗ = ProjC2(z∗)(z
∗ − λT2(z∗)),

(3.2)

for some ρ, λ > 0 are constants.

Moreover, by using the definition of uniformly prox-regular set, we also see that the problem (3.1) is of
finding x∗ ∈ C1(x∗), and z∗ = Ax∗ ∈ C2(z∗) such that

〈T1(x∗), x̂− x∗〉+
‖T1(x∗)‖

2r
‖x̂− x∗‖2 ≥ 0, ∀x̂ ∈ C1(x∗),

〈T2(z∗), ẑ − z∗〉+
‖T2(z∗)‖

2s
‖ẑ − z∗‖2 ≥ 0, ∀ẑ ∈ C2(z∗).

(3.3)
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In a special case, when K and Q are closed subsets of H1 and H2, respectively, and Ci : Hi → 2Hi , for
i = 1, 2 are defined by

C1(x) = K, for all x ∈ H1,

C2(y) = Q, for all y ∈ H2,
(3.4)

then the problem (3.1) is reduced to the problem of finding (x∗, z∗) ∈ K ×Q with z∗ = Ax∗ such that

−T (x∗) ∈ NP
K(x∗),

−S(z∗) ∈ NP
Q (z∗),

(3.5)

which was studied by K. R. Kazmi[18].

Now, we introduce an algorithm which will play an important role in our prove.

Algorithm (A): Let Ti : Hi → Hi, C1 : H1 → [Cl(H1)]r and C2 : H2 → [Cl(H2)]s be nonlinear
mappings where r, s ∈ (0,+∞) and i = 1, 2. Let A : H1 → H2 be a bounded linear operator with its
adjoint operator, denoted by A∗. Given x0 ∈ H1, compute the algorithm sequences {xn}, {yn} and {zn} as
the following projection method:

yn ∈ ProjC1(xn)[xn − ρT1(xn)],

zn ∈ ProjC2(Ayn)[Ayn − λT2(Ayn)],

xn+1 ∈ ProjC1(yn)[yn + γA∗(zn −Ayn)],

(3.6)

where ρ, λ and γ are step size positive real numbers.

The following assumption will be proposed, as the sufficient conditions.

Assumption (C) : Let Ti : Hi → Hi, C1 : H1 → [Cl(H1)]r and C2 : H2 → [Cl(H2)]s be nonlinear
mappings for r, s ∈ (0,+∞) and i = 1, 2 which are satisfied by the following conditions:

(i) Ti is a βi-Lipschitzian mapping and a σi-strongly monotone mapping for i = 1, 2;

(ii) Ci is a κi- Lipschitzian continuous mapping for some κi ∈ [0, 1) and i = 1, 2;

(iii) for each i = 1, 2, there is ωi ∈ [0, 1) such that

‖ProjCi(x)(z)− ProjCi(y)(z)‖ ≤ ωi‖x− y‖, for all x, y, z ∈ Hi.

Firstly, based on the assumption (C), we notice the following key remark.

Remark 3.1. For a real Hilbert space H and r ∈ (0,∞). If T : H → H and C : H → [Cl(H)]r are nonlinear
mappings. Then, for each x0 ∈ H with d(x0, C(x0)) ≤ r∗ − ρ‖Tx0‖, where r∗ ∈ (0, r) and ρ is a positive
real number, ProjC(x0)[x0 − ρTx0] 6= ∅. Indeed, since C is a κ-Lipschitz continuous mapping, we have

d(x0 − ρTx0, C(x0)) ≤ d(x0, C(x0)) + ρ‖Tx0‖
≤ r∗ − ρ‖Tx0‖+ ρ‖Tx0‖
< r.

By Lemma 2.3(i), we obtain that ProjC(x0)[x0 − ρTx0] 6= ∅.

The following lemma asserts that, under our setting, Algorithm (A) is well-define.

Lemma 3.2. Let H1, H2 be real Hilbert spaces. Assume that Assumption (C)(ii) and (iii) hold and there
are µ > 1 and x0 ∈ H1 such that
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(i) d(x0, C1(x0)) ≤ r∗ − ρ‖T1x0‖,

(ii) 0 < ρ < r∗

δT1
, 0 < λ < s∗−Φ

δT2
and 0 < γ < r∗

δA∗ ,

where δT1 = sup{‖T1xn‖ : xn ∈ H1}, δT2 = sup{‖T2(Ayn)‖ : Ayn ∈ H2}, δA∗ = sup{‖A∗(zn)‖ : zn ∈
H2},Φ = sup{d(Ayn, C2(Ayn)) | yn ∈ H1}, r∗ = r(1−κ)

1+µκ , s∗ = s(1−κ)
1+µκ , A : H1 → H2 is a bounded linear

operator and {xn}, {yn} are constructed as in Algorithm (A) with the initial vector x0. Then, the sequences
{xn}, {yn} and {zn} which are constructed by Algorithm (A) are well-defined.

Proof. By condition (i) and Remark 3.1, we know that ProjC1(x0)[x0 − ρT1x0] 6= ∅. Subsequently, we put
y0 ∈ ProjC1(x0)[x0 − ρT1x0]. Next, by the condition (ii), we see that

d(Ay0 − λT2(Ay0), C2(Ay0)) ≤ d(Ay0, C2(Ay0)) + λ‖T2(Ay0)‖
≤ d(Ay0, C2(Ay0)) + λ‖T2(Ay0)‖

< d(Ay0, C2(Ay0)) +

(
s∗ − Φ

δT2

)
‖T2(Ay0)‖

< d(Ay0, C2(Ay0)) + s∗ − Φ

< s∗.

Thus, ProjC2(Ay0)[Ay0 − λT2(Ay0)] 6= ∅. Let z0 ∈ ProjC2(Ay0)[Ay0 − λT2(Ay0)]. Notice that, by using
the κ1-Lipschitz continuous mapping of C1, we see that

d(y0 + γA∗(z0 −Ay0), C1(y0)) ≤ d(y0, C1(y0)) + γ‖A∗(z0 −Ay0)‖
= d(y0, C1(y0))− d(y0, C1(x0)) + γ‖A∗(z0 −Ay0)‖
≤ κ1‖y0 − x0‖+ r∗.

(3.7)

On the other hand, we have

‖y0 − x0‖ ≤ ‖y0 − (x0 − ρT1(x0)‖+ ‖x0 − ρT1(x0)− x0‖
= d(x0 − ρT1(x0), C1(x0)) + ρ‖T1(x0)‖
≤ r∗ + r∗

= 2r∗.

(3.8)

Thus, (3.7) and (3.8), give

d(y0 + γA∗(z0 −Ay0), C1(y0)) ≤ 2κ1r
∗ + r∗

= r∗(2κ1 + 1)

= r∗
(

1 + κ1 − 2κ2
1

1− κ1

)
< r.

This implies that, ProjC1(y0)[y0 +γA∗(z0−Ay0)] 6= ∅. Let x1 ∈ ProjC1(y0)[y0 +γA∗(z0−Ay0)], and consider

d(x1 − ρT1x1, C1(x1)) ≤ d(x1, C1(x1)) + ρ‖T1x1‖
= d(x1, C1(x1))− d(x1, C1(y0)) + ρ‖T1x1‖
≤ κ1‖x1 − y0‖+ r∗.

(3.9)

And, since

‖x1 − y0‖ ≤ ‖x1 − (y0 + γA∗(z0 −Ay0))‖+ ‖y0 + γA∗(z0 −Ay0)− y0‖
= d(y0 + γA∗(z0 −Ay0), C1(y0)) + γ‖A∗(z0 −Ay0)‖

< r∗
(

1 + κ1 − 2κ2
1

1− κ1

)
+ r∗,

(3.10)
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we obtain

d(x1 − ρT1x1, C1(x1)) ≤ r∗κ1

(
1 + κ1 − 2κ2

1

1− κ1

)
+ r∗κ1 + r∗

= r∗
(

1 + κ1 − 2κ3
1

1− κ1

)
< r.

(3.11)

This implies that, ProjC1(x1)[x1 − ρT1x1] 6= ∅. Let y1 ∈ ProjC1(x1)[x1 − ρT1(x1)], and we see that

d(Ay1 − λT2(Ay1), C2(Ay1)) ≤ d(Ay1, C2(Ay1)) + λ‖T2(Ay1)‖

< d(Ay1, C2(Ay1)) +

(
s∗ − Φ

δT2

)
‖T2(Ay1)‖

≤ d(Ay1, C2(Ay1)) + s∗ − Φ

≤ s∗

< s.

(3.12)

Thus, ProjC2(Ay1)[Ay1 − λT2(Ay1)] 6= ∅. Let z1 ∈ ProjC2(Ay1)[Ay1 − λT2(Ay1)], and computes

d(y1 + γA∗(z1 −Ay1), C1(y1)) ≤ d(y1, C1(y1)) + γ‖A∗(z1 −Ay1)‖
≤ d(y1, C1(y1))− d(y1, C1(x1)) + r∗

≤ κ1‖y1 − x1‖+ r∗.

(3.13)

Since

‖y1 − x1‖ ≤ ‖y1 − (x1 − ρT1x1)‖+ ‖x1 − ρT1x1 − x1‖
= d(x1 − ρT1x1, C1(x1)) + ρ‖T1x1‖

< r∗
(

1 + κ1 − 2κ3
1

1− κ1

)
+ r∗,

(3.14)

we have

d(y1 + γA∗(z1 −Ay1), C1(y1)) < r∗κ1

(
1 + κ1 − 2κ3

1

1− κ1

)
+ κ1r

∗ + r∗

= r∗
(

1 + κ1 − 2κ4
1

1− κ1

)
< r.

(3.15)

Thus, ProjC1(y1)[y1 + γA∗(z1 − Ay1)] 6= ∅. Let x2 ∈ ProjC1(y1)[y1 + γA∗(z1 − Ay1)]. In the same way of
(3.9), (3.10) and (3.11), we have

d(x2 − ρT1(x2), C1(x2)) ≤ κ1‖x2 − y1‖+ r∗

‖x2 − y1‖ < r∗
(

1 + κ1 − 2κ4
1

1− κ1

)
+ r∗

and

d(x2 − ρT1x2, C1(x2)) ≤ r∗
(

1 + κ1 − 2κ5
1

1− κ1

)
.

Thus, ProjC1(x2)[x2 − ρT1x2] 6= ∅. Let y2 ∈ ProjC1(x2)[x2 − ρT1x2]. In similar way (3.12), we obtain

d(Ay2 − λT2(Ay2), C2(Ay2)) ≤ s∗.

Thus, ProjC2(Ay2)[Ay2−λT2(Ay2)] 6= ∅. Let z2 ∈ ProjC2(Ay2)[Ay2−λT2(Ay2)]. In the same way as obtaining
(3.13), (3.14) and (3.15), we have
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d(y2 + γA∗(z2 −Ay2), C1(y2)) ≤ κ1‖y2 − x2‖+ r∗

‖y2 − x2‖ < r∗
(

1 + κ1 − 2κ5
1

1− κ1

)
+ r∗,

and

d(y2 + γA∗(z2 −Ay2), C1(y2)) < r∗
(

1 + κ1 − 2κ6
1

1− κ1

)
.

Thus, ProjC1(y2)[y2 + γA∗(z2 −Ay2)] 6= ∅, and we then put x3 ∈ ProjC1(y2)[y2 + γA∗(z2 −Ay2)].

By using this process, we can construct the sequences {xn}, {yn} in H1 and {zn} in H2 such that

xn − ρT1(xn) ∈ [C1(xn)] r(1+κ1)
1+µκ1

yn ∈ ProjC1(xn)[xn − ρT1(xn)]

Ayn − λS(Ayn) ∈ [C2(Ayn)]s∗

zn ∈ ProjC2(Ayn)[Ayn − λT2(Ayn)]

yn + γA∗(zn −Ayn) ∈ [C1(yn)] r(1+κ1)
1+µκ1

xn+1 ∈ ProjC1(yn)[yn + γA∗(zn −Ayn)],

(3.16)

which is, in fact, the Algorithm (A).

Remark 3.3. Let us consider the proposed assumptions of Lemma 3.2. In the application point of view, one
may ask for the best choice of the real number µ, and hence r∗ and s∗. We would like to notice here that, the
real number µ = κ∆−1

κ(1−∆) , where ∆ = β(1−ω)√
β2−σ2

, should provide the answer. This is because, by the following

observation:
• the domain of function f is β(1−ω)√

β2−σ2
,

• r∗ = r(1−κ)
1+µκ ⇔ tr = 1+µκ

κ(1−µ) and s∗ = s(1−κ)
1+µκ ⇔ ts = 1+µκ

κ(1−µ) ,

• the function µ 7→ 1+µκ
κ(1+µ) is an increasing function on its domain,

• 1+µκ
κ(1+µ) = ∆⇔ µ = κ∆−1

κ(1−∆) , where ∆ = β(1−ω)√
β2−σ2

.

The following theorem shows that the sequences {xn}, {yn} and {zn}, which are considered in Lemma
3.2 are all convergent sequences.

Theorem 3.4. Let H1, H2 be real Hilbert spaces. Assume that Assumption (C) and all of assumptions
in Lemma 3.2 hold. If γ < min{ 2

‖A‖2 ,
1−ω1−ϕ
ϕθ2‖A‖2 }, where ϕ = 1+µκ1

κ1(µ−1) , θ2 = ts∗
√

1− 2λσ2 + λ2β2
2 + ω2 and

ts∗ = s
s−s∗ , then {xn}, {yn} and {zn}, which are constructed in Algorithm (A), are convergent sequences.

Proof. Using the definition of sequence {xn}, {yn} and {zn} in Algorithm (A), we have

‖yn+1 − yn‖ = ‖ProjC1(xn+1)[xn+1 − ρT1(xn+1)]− ProjC1(xn)[xn − ρT1(xn)]‖
≤ ‖ProjC1(xn+1)[xn+1 − ρT1(xn+1)]− ProjC1(xn+1)[xn − ρT1(xn)]‖

+ ‖ProjC1(xn+1)[xn − ρT1xn]− ProjC1(xn)[xn − ρT1(xn)]‖

≤ 1 + µκ1

κ1(µ− 1)
‖xn+1 − ρT1(xn+1)− xn + ρT1(xn)‖+ ω1‖xn+1 − xn‖.

(3.17)

On the other hand, we have

‖xn+1 − ρT1(xn+1)− xn + ρT1(xn)‖2

≤ ‖xn+1 − xn‖2 − 2ρ〈T1(xn+1)− T1(xn), xn+1 − xn〉+ ρ2‖T1(xn+1)− T1(xn)‖2

≤ ‖xn+1 − xn‖2 − 2ρσ1‖xn+1 − xn‖2 + ρ2β2
1‖xn+1 − xn‖2

= (1− 2ρσ1 + ρ2β2
1)‖xn+1 − xn‖2.

(3.18)
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From (3.17) and (3.18), we get

‖yn+1 − yn‖ ≤
1 + µκ1

κ1(µ− 1)

√
1− 2ρσ1 + ρ2β2

1‖xn+1 − xn‖+ ω1‖xn+1 − xn‖

=

(
1 + µκ1

κ1(µ− 1)

√
1− 2ρσ1 + ρ2β2

1 + ω1

)
‖xn+1 − xn‖

= θ1‖xn+1 − xn‖,

(3.19)

where θ1 = 1+µκ1
κ1(µ−1)

√
1− 2ρσ1 + ρ2β2

1 + ω1. Observe that, by the choice of ρ, µ and κ1, we have θ1 < 1.

Next, by the definition of {zn}, we have

‖zn+1 − zn‖ = ‖ProjC2(Ayn+1)[Ayn+1 − λT2(Ayn+1)]− ProjC2(Ayn)[Ayn − λT2(Ayn)]‖
≤ ‖ProjC2(Ayn+1)[Ayn+1 − λT2(Ayn+1)]− ProjC2(Ayn+1)[Ayn − λT2(Ayn)]‖

+ ‖ProjC2(Ayn+1)[Ayn − λT2(Ayn)]− ProjC2(Ayn)[Ayn − λT2(Ayn)]‖
≤ ts∗‖(Ayn+1 −Ayn)− λ(T2(Ayn+1)− T2(Ayn))‖+ ω2‖Ayn+1 −Ayn‖.

(3.20)

And, since

‖(Ayn+1 −Ayn)− λ(T2(Ayn+1)− T2(Ayn))‖2

≤ ‖Ayn+1 −Ayn‖2 − 2λ〈T2(Ayn+1)− T2(Ayn)), Ayn+1 −Ayn〉+ λ‖T2(Ayn+1)− T2(Ayn)‖2

≤ ‖A‖2‖yn+1 − yn‖2 − 2λσ2‖Ayn+1 −Ayn‖2 + λ2β2
2‖Ayn+1 −Ayn‖2

= (1− 2λσ2 + λ2β2
2)‖A‖2‖yn+1 − yn‖2,

we obtain

‖zn+1 − zn‖ ≤ ts∗
√

1− 2λσ2 + λ2β2
2‖A‖‖yn+1 − yn‖+ ω2‖A‖‖yn+1 − yn‖

=

(
ts∗
√

1− 2λσ2 + λ2β2
2 + ω2

)
‖A‖‖yn+1 − yn‖

= θ2‖A‖‖yn+1 − yn‖.

(3.21)

Note that, by the choice of λ, we have θ2 < 1. Next, we consider

‖xn+1 − xn‖
= ‖ProjC1(yn)[yn + γA∗(zn −Ayn)]− ProjC1(yn+1)[yn+1 + γA∗(zn−1 −Ayn−1)]‖
≤ ‖ProjC1(yn)[yn + γA∗(zn −Ayn)]− ProjC1(yn−1)[yn + γA∗(zn −Ayn)]‖

+ ‖ProjC1(yn−1)[yn + γA∗(zn −Ayn)]− ProjC1(yn−1)[yn−1 + γA∗(zn−1 −Ayn−1)]‖
≤ ω1‖yn − yn−1‖+ ϕ‖yn − yn−1 − γ(A∗(zn−1 −Ayn−1)−A∗(zn −Ayn))‖
≤ ω1‖yn − yn−1‖+ ϕ‖yn − yn−1 − γ(A∗(Ayn −Ayn−1))‖+ ϕγ‖A∗(zn)−A∗(zn−1)‖.

(3.22)

Since,

‖yn − yn−1 − γ(A∗(Ayn −Ayn−1))‖2

≤ ‖yn − yn−1‖2 − 2γ〈yn − yn−1, A
∗(Ayn −Ayn−1)〉+ γ2‖A∗(Ayn −Ayn−1)‖2

= ‖yn − yn−1‖2 − 2γ〈Ayn −Ayn−1, Ayn −Ayn−1〉+ γ2‖A∗(Ayn −Ayn−1)‖2

≤ ‖yn − yn−1‖2 − 2γ‖Ayn −Ayn−1‖2 + γ2‖A‖2‖Ayn −Ayn−1‖2

= ‖yn − yn−1‖2 − (2γ − γ2‖A‖2)‖Ayn −Ayn−1‖2

= ‖yn − yn−1‖2 − γ(2− γ‖A‖2)‖Ayn −Ayn−1‖2

≤ ‖yn − yn−1‖2

(3.23)
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and ‖A∗(zn)−A∗(zn−1)‖ ≤ ‖A‖‖zn − zn−1‖, we get

‖xn+1 − xn‖ ≤ ω1‖yn − yn−1‖+ ϕ‖yn − yn−1‖+ ϕγ‖A‖‖zn − zn−1‖
≤ ω1‖yn − yn−1‖+ ϕ‖yn − yn−1‖+ ϕγθ2‖A‖2‖yn − yn−1‖
= (γθ2ϕ‖A‖2 + ϕ+ ω1)‖yn − yn−1‖
≤ θ1(γθ2ϕ‖A‖2 + ϕ+ ω1)‖xn − xn−1‖
= θ3‖xn − xn−1‖,

(3.24)

where θ3 = θ1(γθ2ϕ‖A‖2 +ϕ+ω1). Also, by the choice of γ, we know that θ3 < 1. Hence, for any m ≥ n > 1,
we see that

‖xm − xn‖ ≤ Σm−1
i=n ‖xi+1 − xi‖

≤ Σm−1
i=n θ

i
3‖x1 − x0‖

≤ ‖x1 − x0‖Σ∞i=nθi3

≤ θn3
1− θ3

‖x1 − x0‖.

(3.25)

Since θ3 < 1, we can conclude that {xn} is a Cauchy sequence in H1. By the completeness of H1,we know
that {xn} is a convergent sequence. Also, by (3.19) and the convergence of the sequence {xn}, we see that
{yn} is a convergent sequence. In similar way, by (3.21) and the convergence of the sequence {yn}, we obtain
that {zn} is a convergent sequence. This completes the proof.

Now, we are in position to present the sufficient condition for existence of solution of problem (3.1) our
main theorem.

Theorem 3.5. Let H1, H2 be real Hilbert spaces. Let Ti : Hi → Hi be nonlinear mappings for i = 1, 2 and
C1 : H1 → [Cl(H1)]r and C2 : H2 → [Cl(H2)]s be nonlinear set-valued mappings. Assume that all of the
assumptions in Theorem 3.4 hold and if limn→∞ xn = limn→∞ yn and limn→∞Axn = limn→∞ zn. Then, the
problem (3.1) has a solution.

Proof. Let limn→∞ xn = limn→∞ yn = x∗ and limn→∞Axn = limn→∞ zn = z∗. Firstly, we will show that
−T1(x∗) ∈ NP

C1(x∗)(x
∗). Since yn ∈ ProjC1(xn)[xn − ρT1(xn)], we see that xn − yn − ρT1(xn) ∈ NP

C1(xn)(yn).
Using this one together with the closedness property of the proximal cone, we obtain that −ρT1x

∗ ∈
NP
C1(x∗)(x

∗). This means, −T1(x∗) ∈ NP
C1(x∗)(x

∗).

Next, we want to show that −T2(z∗) ∈ NP
C2(z∗)(z

∗). Since zn ∈ ProjC2(Ayn)[Ayn − λT2(Ayn)], we have

Ayn− zn−λT2(Ayn) ∈ NP
C2(Ayn)(zn). Again, by using the closedness property of the proximal cone, we have

Ax∗ − z∗ − λT2(Ax∗) ∈ NP
C2(Ax∗)(z

∗). This is −λT2(Ax∗) ∈ NP
C2(z∗)(z

∗). Hence, −T2(z∗) ∈ NP
C2

(z∗). The
proof is completed.

Recall that a multivalued mapping C : H → 2H is said to be a Hausdorff Lipschitz continuous if there
exists a real number κ > 0 such that

H(C(x), C(y)) ≤ κ‖x− y‖, for all x, y ∈ H,

where H stands for the Hausdorff distance relative to norm associated with the Hilbert space H, that is

H(A,B) = max

{
sup
x∈A

inf
y∈B
‖x− y‖, sup

y∈B
inf
x∈A
‖x− y‖

}
,

for all A,B ∈ 2H .
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It is easy to check that the class of κ-Lipschitz continuous mapping in Definition 2.7 is larger than the
class of above Hausdorff Lipschitz continuous mappings. Thus, the following results is followed immediately
from Theorem 3.5.

Corollary 3.6. Let H1, H2 be real Hilbert spaces. Let Ti : Hi → Hi be nonlinear mappings for i = 1, 2 and
C1 : H1 → [Cl(H1)]r and C2 : H2 → [Cl(H2)]s be Hausdorff Lipschitz continuous mappings. Assume that
Assumption (A)(i) and (iii) and all of assumptions in Theorem 3.5 hold. Then, the problem (3.1) has a
solution.

Remark 3.7.

(i) Corollary 3.6 recovers the result which was presented by K. R. Kazmi[18] as a special case.

(ii) It is well known that if K is a closed convex set then it is r-prox regular set for every r > 0, so, in this
case, the control condition (ii) of Lemma 3.2 can be omitted.

4. Conclusion

In this work, we introduce and study a type of split quasi variational inequality problem over a class
of nonconvex sets. In order to prove the existence theorems, an algorithm is constructed as an important
tool. This problem generalizes and extends the variational inequality problems and the split variational
inequality problems from the setting of convex sets to nonconvex case. We desire that the results presented
here will be useful and valuable for researchers who study the branch of variational inequality and related
applications.

Acknowledgements

The authors wish to express their gratitude to the referees for careful reading of the manuscript. The
first author is supported by Pibulsongkram Rajabhat University.

References

[1] J. Balooee, Y. J. Cho, Pertubed projection and iterative algorithms for a system of general regularized nonconvex
variational inequalities, J. Inequal. Appl., 2012 (2012), 23 pages.1

[2] J. Balooee, Y. J. Cho, Algorithms for solutions of extended general mixed variational inequalities and fixed points,
Optim. Lett., 7 (2013), 1929–1955.1

[3] A. Bensoussan, M. Goursat, J. L. Lions, Control impulsinnel et inequations quasi-variationnelles stationaries, C.
R. Acad. Sci., 276 (1973), 1279–1284.1

[4] M. Bounkhel, L. T. Tadj, A. Hamdi, Iterative schemes to solve nonconvex variational problems, J. Inequal. Pure
Appl. Math., 4 (2003), 14 pages.1, 2, 2.8

[5] C. Byrne, Iterative oblique projection onto convex sets and split feasibility problem, Inverse Problems, 18 (2002),
441–453.1

[6] Y. Censor, T. Bortfeld, B. Martin, A. Trofimos, A unified approach for inversion problems in intensity modulated
radiation therapy, Phys. Med. Biol., 51 (2006), 2353–2365.1

[7] Y. Censor, T. Elfving, A multiprojection algorithm using Bergman projections in product space, Numer. Algo-
rithms, 8 (1994), 221–239.1

[8] Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59
(2012), 301–323.1

[9] D. Chan, J. S. Pang, The generalized quasi-variational inequality problem, Math. Oper. Res., 7 (1982), 211–222.
1

[10] S. S. Chang, Variational inequality and complementarity problem theory with applications, Shanghai Scientific
and Tech. Literature Publishing House, Shanghai, (1991).1

[11] Y. J. Cho, Y. P. Fang, N. J. Huang, H. J. Hwang, Algorithms for systems of nonlinear variational inequalities,
J. Korean Math. Soc., 41 (2004), 489–499.1



J. Tangkhawiwetkul, N. Petrot, J. Nonlinear Sci. Appl. 9 (2016), 2364–2375 2375

[12] Y. J. Cho, J. K. Kim, R. U. Verma, A class of nonlinear variational inequalities involving partially relaxed
monotone mappings and general auxiliary principle, Dyn. Sys. Appl., 11 (2002), 333–338.1, 2

[13] Y. J. Cho, X. Qin, Systems of generalized nonlinear variational inequalities and its projection methods, Nonlinear
Anal., 69 (2008), 4443–4451.1

[14] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, (1983).2
[15] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-

Verlag, New York, (1998).2, 2, 2
[16] F. H. Clarke, R. J. Stern, P. R. Wolenski, Proximal smoothness and the lower C2 property, J. Convex Anal., 2

(1995), 117–144.2, 2
[17] P. L. Combettes, The convex feasibility problem in image recovery, Adv. Imaging Electron Phys., 95 (1996),

155–270.1
[18] K. R. Kazmi, Split nonconvex variational inequality problem, Math. Sci., 7 (2013), 5 pages.3, 3.7
[19] K. R. Kazmi, Split general quasi-variational inequality problem, Georgian Math. J., 22 (2015), 385–392.1
[20] A. Moudafi, Projection methods for a system of nonconvex variational inequalities, Nonlinear Anal., 71 (2009),

517–520.1
[21] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275–283.1
[22] M. A. Noor, An iterative scheme for a class of quasi variational inequalities, J. Math. Anal. Appl., 110 (1985),

463–468.1
[23] M. A. Noor, Quasi variational inequalities, Appl. Math. Lett., 1 (1988), 367–370.1
[24] M. A. Noor, Generalized set-valued mixed nonlinear quasi variational inequalities, Korean J. Comput. Appl.

Math., 5 (1998), 73–89.1
[25] M. A. Noor, Iterative schemes for nonconvex variational inequalities, J. Optim. Theory Appl., 121 (2004), 385–

395.1, 2
[26] M. A. Noor, N. Petrot, J. Suwannawit, Existence theorems for multivalued variational inequality problems on

uniformly prox-regular sets, Optim. Lett., 8 (2014), 99–111.1, 2
[27] L. P. Pang, J. Shen, H. S. Song, A modified predictor-corrector algorithm for solving nonconvex generalized

variational inequalities, Comput. Math. Appl., 54 (2007), 319–325.1
[28] N. Petrot, Some existence theorems for nonconvex variational inequalities problems, Abstr. Appl. Anal., 2010

(2010), 9 pages.2
[29] N. Petrot, J. Suwannawit, Existence theorems for some systems of quasi-variational inequalities problems on

uniformly prox-regular sets, Math. Inequal. Appl., 16 (2013), 1229–1242.2
[30] R. A. Poliquin, R. T. Rockafellar, L. Thibault, Local differentiability of distance functions, Trans. Amer. Math.

Soc., 352 (2000), 5231–5249.2, 2
[31] G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964),

4413–4416.1
[32] J. Suwannawit, N. Petrot, Existence Theorems for Quasi variational Inequality Problem on Proximally Smooth

Sets, Abstr. Appl. Anal., 2013 (2013), 7 pages.2
[33] N. X. Tan, Random quasi-variational inequality, Math. Nachr., 125 (1986), 319–328.1
[34] R. U. Verma, Projection methods, algorithms, and a new system of nonlinear variational inequalities, Comput.

Math. Appl., 41 (2001), 1025–1031.1
[35] R. U. Verma, Generalized system for relaxed cocoercive variational inequalities and projection methods, J. Optim.

Theory Appl., 121 (2004), 203–210.1
[36] Y. H. Yao, Y. C. Liou, J. C. Yao, An extragradient method for fixed point problems and variational inequality

problems, J. Inequal. Appl., 2007 (2007), 12 pages.1


	1 Introduction
	2 Preliminaries
	3 Main results
	4 Conclusion

