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1. Introduction and Preliminaries

Let E be a real Banach space and let E∗ be the dual space of E. Let C be a nonempty subset of a E.
Let g be a bifunction from C × C to R, where R denotes the set of real numbers. Recall that the following
equilibrium problem [4]: Find x̄ ∈ C such that

g(x̄, y) ≥ 0 ∀y ∈ C. (1.1)

We use Sol(g) to denote the solution set of equilibrium problem (1.1). That is,

Sol(g) = {x ∈ C : g(x, y) ≥ 0 ∀y ∈ C}.

Given a mapping A : C → E∗, let

G(x, y) = 〈Ax, y − x〉 ∀x, y ∈ C.
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Then x̄ ∈ Sol(g) iff x̄ is a solution of the following variational inequality. Find x̄ such that

〈Ax̄, y − x̄〉 ≥ 0 ∀y ∈ C. (1.2)

The following restrictions (R-a), (R-b), (R-c) and (R-d) imposed on g are essential in this paper.

(R-a) g(y, x) + g(x, y) ≤ 0 ∀x, y ∈ C;

(R-b) g(x, x) = 0 ∀x ∈ C;

(R-c) y 7→ g(x, y) is weakly lower semi-continuous and convex ∀x ∈ C;

(R-d) g(x, y) ≥ lim supt↓0 g(tz + (1− t)x, y),∀x, y, z ∈ C.

Equilibrium problem (1.1) is a bridge between nonlinear functional analysis and convex optimization
theory. Many problems arising in economics, medicine, engineering and physics can be studied via the
problem; see [3, 7, 8, 9, 10, 12, 14, 18, 19, 25] and the references therein.

Recall that the normalized duality mapping J from E to 2E
∗

is defined by

Jx := {x∗ ∈ E∗ : ‖x∗‖2 = 〈x, x∗〉 = ‖x‖2}.

Let SE be the unit sphere of E. Recall that E is said to be a strictly convex space iff ‖x + y‖ < 2 for all
x, y ∈ SE and x 6= y. Recall that E is said to have a Gâteaux differentiable norm iff limt→∞(‖tx+y‖− t‖x‖)
exists ∀x, y ∈ SE . In this case, we also say that E is smooth. E is said to have a uniformly Gâteaux
differentiable norm if for every y ∈ SE , the limit is attained uniformly for each x ∈ SE . E is also said to
have a uniformly Fréchet differentiable norm iff the above limit is attained uniformly for each x, y ∈ SE . In
this case, we say that E is uniformly smooth. It is known if E is uniformly smooth, then J is uniformly
norm-to-norm continuous on every bounded subset of E; if E is a smooth Banach space, then J is single-
valued and demicontinuous, i.e., continuous from the strong topology of E to the weak star topology of E;
if E is a strictly convex Banach space, then J is strictly monotone; if E is a reflexive and strictly convex
Banach space with a strictly convex dual E∗ and J∗ : E∗ → E is the normalized duality mapping in E∗,
then J−1 = J∗; if E is a smooth, strictly convex and reflexive Banach space, then J is single-valued, one-
to-one and onto; if E is a uniformly smooth, then it is smooth and reflexive. It is also known that E∗ is
uniformly convex if and only if E is uniformly smooth. From now on, we use ⇀ and→ to stand for the weak
convergence and strong convergence, respectively. Recall that E is said to have the Kadec-Klee property
if limn→∞ ‖xn − x‖ = 0 as n → ∞ for any sequence {xn} ⊂ E and x ∈ E with xn ⇀ x and ‖xn‖ → ‖x‖
as n → ∞. It is well known that if E is a uniformly convex Banach spaces, then E has the Kadec-Klee
property; see [11] and the references therein.

Let f be a mapping on C. Recall that a point p is said to be a fixed point of f if and only if p = fp. p is
said to be an asymptotic fixed point of f if and only if C contains a sequence {xn}, where xn ⇀ p such that

xn − fxn → 0. From now on, We use Fix(f) to stand for the fixed point set and F̃ ix(f) to stand for the
asymptotic fixed point set. f is said to be closed if for any sequence {xn} ⊂ C such that limn→∞ xn = x′

and limn→∞ fxn = y′, then fx′ = y′.
Next, we assume that E is a smooth Banach space. Consider the functional defined on E by

φ(x, y) = ‖x‖2 + ‖y‖2 − 2〈x, Jy〉 ∀x, y ∈ E.

Let C be a closed convex subset of a real Hilbert space H. For any x ∈ H, there exists a unique nearest
point in C, denoted by PCx, such that ‖x − PCx‖ ≤ ‖x − y‖ for all y ∈ C. The operator PC is called the
metric projection from H onto C. It is known that PC is firmly nonexpansive. In [2], Alber studied a new
mapping ΠC in a Banach space E which is an analogue of PC , the metric projection, in Hilbert spaces.
Recall that the generalized projection ΠC : E → C is a mapping that assigns to an arbitrary point x ∈ E
the minimum point of φ(x, y). It is obvious from the definition of function φ that

(‖y‖+ ‖x‖)2 ≥ φ(x, y) ≥ (‖x‖ − ‖y‖)2 ∀x, y ∈ E, (1.3)
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and
φ(x, y)− 2〈z − x, Jz − Jy〉 = φ(x, z) + φ(z, y) ∀x, y, z ∈ E. (1.4)

Remark 1.1. If E is a strictly convex, reflexive and smooth Banach space, then φ(x, y) = 0 iff x = y.

Recall that a mapping f is said to be relatively nonexpansive ([5]) iff

φ(p, x) ≥ φ(p, fx) ∀x ∈ C,∀p ∈ F̃ ix(f) = Fix(f) 6= ∅.

f is said to be relatively asymptotically nonexpansive ([1]) iff

φ(p, fnx) ≤ (1 + µn)φ(p, x) ∀x ∈ C,∀p ∈ F̃ ix(f) = Fix(f) 6= ∅, ∀n ≥ 1,

where {µn} ⊂ [0,∞) is a sequence such that µn → 0 as n→∞.

Remark 1.2. The class of relatively asymptotically nonexpansive mappings, which include the class of rela-
tively nonexpansive mappings ([5]) as a special case, were first considered in [1] and [26]; see the references
therein.

f is said to be quasi-φ-nonexpansive ([21]) iff

φ(p, x) ≥ φ(p, fx) ∀x ∈ C,∀p ∈ Fix(f) 6= ∅.

f is said to be asymptotically quasi-φ-nonexpansive ([22]) iff there exists a sequence {µn} ⊂ [0,∞) with
µn → 0 as n→∞ such that

φ(p, fnx) ≤ (1 + µn)φ(p, x) ∀x ∈ C,∀p ∈ Fix(f) 6= ∅, ∀n ≥ 1.

Remark 1.3. The class of asymptotically quasi-φ-nonexpansive mappings, which include the class of quasi-
φ-nonexpansive mappings ([21]) as a special case, were first considered in [20] and [22]; see the references
therein.

Remark 1.4. The class of asymptotically quasi-φ-nonexpansive mappings is more desirable than the class
of asymptotically relatively nonexpansive mappings. Quasi-φ-nonexpansive mappings and asymptotically
quasi-φ-nonexpansive do not require Fix(f) = F̃ ix(f).

Recently, Qin and Wang ([23]) introduced the asymptotically quasi-φ-nonexpansive mapping in the inter-
mediate sense, which is a generalization of asymptotically quasi-nonexpansive mapping in the intermediate
sense in Banach spaces. Recall that f is said to be asymptotically quasi-φ-nonexpansive in the intermediate
sense iff Fix(f) 6= ∅ and

lim sup
n→∞

sup
p∈Fix(f),x∈C

(
φ(p, fnx)− φ(p, x)

)
≤ 0.

The so called convex feasibility problems which capture lots of applications in various subjects are to
find a special point in the intersection of convex (solution) sets. Recently, many author studied fixed points
of nonexpansive mappings and equilibrium (1.1); see [6], [13], [15]-[17], [24], [27]-[33] and the references
therein. The aim of this paper is to investigate convergence of a hybrid Halpern process for fixed point and
the equilibrium problem. Strong convergence theorems of common solutions are established in a strictly
convex and uniformly smooth Banach space which also has the Kadec-Klee property. In order to our main
results, we also need the following lemmas.

Lemma 1.5 ([2]). Let E be a strictly convex, reflexive and smooth Banach space and let C be a convex and
closed subset of E. Let x ∈ E. Then

φ(y,ΠCx) ≤ φ(y, x)− φ(ΠCx, x) ∀y ∈ C.
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Lemma 1.6 ([4]). Let C be a convex and closed subset of a smooth Banach space E and let x ∈ E. Then
〈y − x0, Jx− Jx0〉 ≤ 0 ∀y ∈ C iff x0 = ΠCx.

Lemma 1.7 ([4], [21]). Let C be a closed convex subset of a smooth, strictly convex and reflexive Banach
space E. Let g be a bifunction from C × C to R satisfying (R-a), (R-b), (R-c) and (R-d). Let r > 0 and
x ∈ E. Then

(a) There exists z ∈ C such that

〈y − z, Jz − Jx〉+ rg(z, y) ≥ 0 ∀y ∈ C.

(b) Define a mapping τr : E → C by

τrx = {z ∈ C : 〈y − z, Jz − Jx〉+ rg(z, y) ≥ 0 ∀y ∈ C}.

Then the following conclusions hold:

(1) τr is single-valued;

(2) τr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈τrx− τry, Jx− Jy〉 ≥ 〈τrx− τry, Jτrx− Jτry〉;

(3) Fix(τr) = Sol(g);

(4) τr is quasi-φ-nonexpansive;

(5) φ(q, τrx) ≤ φ(q, x)− φ(τrx, x) ∀q ∈ F (τr);

(6) Sol(g) is convex and closed.

Lemma 1.8 ([23]). Let E be a uniformly smooth and strictly convex Banach space which also enjoys the
Kadec-Klee property. Let C be a nonempty closed and convex subset of E. Let f : C → C be a closed
asymptotically quasi-φ-nonexpansive mapping in the intermediate sense. Then Fix(f) is a convex closed
subset of C.

2. Main results

Theorem 2.1. Let E be a strictly convex and uniformly smooth Banach space which also has the Kadec-
Klee property. Let C be a convex and closed subset of E and let Λ be an index set. Let gi be a bifunction
from C × C to R satisfying (R-a), (R-b), (R-c), (R-d) and let fi : C → C be an asymptotically quasi-φ-
nonexpansive mapping in the intermediate sense for every i ∈ Λ. Assume that fi is continuous and uniformly
asymptotically regular on C for every i ∈ Λ and ∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi) is nonempty and bounded. Let

{xn} be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,

C(1,i) = C,

x1 = ΠC1:=∩i∈ΛC(1,i)
x0,

y(n,i) = J−1((1− α(n,i))Jf
n
i z(n,i) + α(n,i)Jx1),

C(n+1,i) = {z ∈ C(n,i) : φ(z, xn) + α(n,i)D + (1− α(n,i))ξ(n,i) ≥ φ(z, y(n,i))},
Cn+1 = ∩i∈ΛC(n+1,i),

xn+1 = ΠCn+1x1,

where ξ(n,i) = max{0, supp∈Fix(fi),x∈C
(
φ(p, fni x) − φ(p, x)

)
, D = sup{φ(w, x1) : w ∈ ∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi)}, z(n,i) ∈ Cn such that r(n,i)gi(z(n,i), y) ≥ 〈z(n,i) − y, Jz(n,i) − Jxn〉 ∀y ∈ Cn, {α(n,i)} is
a real sequence in (0, 1) such that limn→∞ α(n,i) = 0 and {r(n,i)} is a real sequence in [ri,∞), where
{ri} is a positive real number sequence for every i ∈ Λ. Then the sequence {xn} converges strongly to
Π∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi)x1.



Y. Hecai, Z. Min, J. Nonlinear Sci. Appl. 9 (2016), 1776–1786 1780

Proof. We divide the proof into six steps.
Step 1. We prove that ∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi) is convex and closed.

In the light of Lemma 1.7 and Lemma 1.8, we easily find the conclusion. This shows that the generalized
projection onto ∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi) is well defined.

Step 2. We prove that Cn is convex and closed.
C(1,i) = C is convex and closed. Next, we assume that C(k,i) is convex and closed for some k ≥

1. For q1, q2 ∈ C(k+1,i) ⊂ C(k,i), we have q = tq1 + (1 − t)q2 ∈ C(k,i), where t ∈ (0, 1). Notice that
φ(q1, xk) + α(k,i)D + (1− α(k,i))ξ(k,i) ≥ φ(q1, y(k,i)) and φ(q2, xk) + α(k,i)D + (1− α(k,i))ξ(k,i) ≥ φ(q2, y(k,i)).
The above inequalities are equivalent to

‖xk‖2 − ‖y(k,i)‖2 + α(k,i)D + (1− α(k,i))ξ(k,i) ≥ 2〈q1, Jxk − Jy(k,i)〉

and
‖xk‖2 − ‖y(k,i)‖2 + α(k,i)D + (1− α(k,i))ξ(k,i) ≥ 2〈q2, Jxk − Jy(k,i)〉.

Using the above inequalities, we find that

‖xk‖2 − ‖y(k,i)‖2 + α(k,i)D + (1− α(k,i))ξ(k,i) ≥ 2〈q, Jxk − Jy(k,i)〉.

That is,
φ(q, xk) + α(k,i)D + (1− α(k,i))ξ(k,i) ≥ φ(q, y(k,i)),

where q ∈ C(k,i). This finds that C(k+1,i) is convex and closed. We conclude that C(n,i) is convex and closed.
This in turn implies that Cn = ∩i∈ΛC(n,i) is convex and closed. Hence, ΠCn+1x1 is well defined.

Step 3. We prove that ∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi) ⊂ Cn.

∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi) ⊂ C1 = C is clear. Suppose that ∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi) ⊂ C(k,i) for some

positive integer k. For any w ∈ ∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi) ⊂ C(k,i), we see that

φ(w, xk) + α(k,i)D + (1− α(k,i))ξ(k,i) ≥ φ(w, xk) + α(k,i)φ(w, x1)− α(k,i)φ(w, xk) + (1− α(k,i))ξ(k,i)

≥ α(k,i)φ(w, x1) + (1− α(k,i))φ(w, τ(k,i)xk) + (1− α(k,i))ξ(k,i)

= α(k,i)φ(w, x1) + (1− α(k,i))φ(w, fki z(k,i))

≥ ‖w‖2 + α(k,i)‖x1‖2 + (1− α(k,i))‖fki z(k,i)‖2

− 2(1− α(k,i))〈w, Jfki z(k,i)〉 − 2α(k,i)〈w, Jx1〉
= ‖w‖2 + ‖α(k,i)Jx1 + (1− α(k,i))Jf

k
i z(k,i))‖2

− 2〈w,α(k,i)Jx1 + (1− α(k,i))Jf
k
i z(k,i))〉

= φ(w, J−1(α(k,i)Jx1 + (1− α(k,i))Jf
k
i z(k,i)))

= φ(w, y(k,i)),

(2.1)

where D := supw∈∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi) φ(w, x1). This proves w ∈ C(k+1,i). Hence, we have

∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi) ⊂ C(n,i).

This in turn implies that ∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi) ⊂ ∩i∈ΛC(n,i). It follows that

∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi) ⊂ Cn.

Step 4. We prove that {xn} is a bounded sequence.
Using Lemma 1.6, we see

〈xn − z, Jx1 − Jxn〉 ≥ 0 ∀z ∈ Cn.
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Since ∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi) is subset of Cn, we find that

〈xn − w, Jx1 − Jxn〉 ≥ 0 ∀w ∈ ∩i∈ΛF (Ti)
⋂
∩i∈ΛEF (fi). (2.2)

Using Lemma 1.5, we get

φ(Π∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi)x1, xn) + φ(xn, x1) ≤ φ(Π∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi)x1, x1).

Hence, we have
φ(xn, x1) ≤ φ(Π∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi)x1, x1).

This implies that {φ(xn, x1)} is a bounded sequence. It follows from (1.3) that sequence {xn} is also a
bounded sequence.

Step 5. Since the space is reflexive, we may assume that xn ⇀ x̄. We prove x̄∈∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi).

Since Cn is convex and closed, we have x̄ ∈ Cn. Hence, φ(xn, x1) ≤ φ(x̄, x1). On the other hand, we see
from the weakly lower semicontinuity of the norm that

φ(x̄, x1) ≥ lim sup
n→∞

φ(xn, x1)

= lim inf
n→∞

(‖xn‖2 + ‖x1‖2 − 2〈xn, Jx1〉)

= ‖x̄‖2 + ‖x1‖2 − 2〈x̄, Jx1〉
= φ(x̄, x1).

This implies that φ(xn, x1) → φ(x̄, x1) as n → ∞. Hence, we have limn→∞ ‖xn‖ = ‖x̄‖. In view of Kadec-
Klee property of E, we find that xn → x̄ as n→∞. Since xn+1 ∈ Cn, one has φ(xn, x1) ≤ φ(xn+1, x1). So,
{φ(xn, x1)} is a nondecreasing sequence. Since φ(xn, x1) ≤ φ(x̄, x1), one see that limn→∞ φ(xn, x1) exists.
This implies that limn→∞ φ(xn+1, xn) = 0. Since xn+1 ∈ Cn+1, we find that

φ(xn+1, xn) + α(n,i)D + (1− α(n,i))ξ(n,i) ≥ φ(xn+1, y(n,i)) ≥ 0.

Using restriction imposed on {α(n,i)}, on has limn→∞ φ(xn+1, y(n,i)) = 0. Using (1.3), we see that

lim
n→∞

(‖y(n,i)‖ − ‖xn+1‖) = 0,

which in turn finds
lim
n→∞

‖y(n,i)‖ = ‖x̄‖.

That is,
lim
n→∞

‖Jy(n,i)‖ = ‖Jx̄‖ = lim
n→∞

‖y(n,i)‖ = ‖x̄‖.

Since both E∗ and E are reflexive spaces, we may assume that Jy(n,i) ⇀ y(∗,i) ∈ E∗. This shows that there

exists an element yi ∈ E such that y(∗,i) = Jyi. It follows that

‖xn+1‖2 + ‖Jy(n,i)‖2 − 2〈xn+1, Jy(n,i)〉 = ‖xn+1‖2 + ‖y(n,i)‖2 − 2〈xn+1, Jy(n,i)〉
= φ(xn+1, y(n,i)).

Taking lim infn→∞ on the both sides of the equality above yields that

0 ≤ φ(x̄, yi) = ‖x̄‖2 − 2〈x̄, Jyi〉+ ‖yi‖2

= ‖x̄‖2 − 2〈x̄, Jyi〉+ ‖Jyi‖2

≤ ‖x̄‖2 − 2〈x̄, y(∗,i)〉+ ‖y(∗,i)‖2

≤ 0.

This implies yi = x̄. Hence, we have y(∗,i) = Jx̄. It follows that Jy(n,i) ⇀ Jx̄ ∈ E∗. Since limn→∞ α(n,i) = 0
for every i ∈ Λ, we find limn→∞ ‖Jy(n,i) − Jfni z(n,i)‖ = 0. Using the fact
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‖Jx̄− Jfni z(n,i)‖ ≤ ‖Jy(n,i) − Jx̄‖+ ‖Jy(n,i) − Jfni z(n,i)‖,

one has Jfni z(n,i) → Jx̄ as n → ∞ for every i ∈ λ. Since J−1 is demicontinuous, we have fni z(n,i) ⇀ x̄ for
every i ∈ ∆. Since |‖fni z(n,i)‖ − ‖x̄‖| ≤ ‖J(fni z(n,i)) − Jx̄‖, one has ‖fni z(n,i)‖ → ‖x̄‖, as n → ∞ for every
i ∈ Λ. Since E has the Kadec-Klee property, one obtains

lim
n→∞

‖fni z(n,i) − x̄‖ = 0.

On the other hand, we have

‖fn+1
i z(n,i) − x̄‖ ≤ ‖fn+1

i z(n,i) − fni z(n,i)‖+ ‖fni z(n,i) − x̄‖.

In view of the uniformly asymptotic regularity of fi, one has

lim
n→∞

‖fn+1
i z(n,i) − x̄‖ = 0,

that is, fif
n
i z(n,i) − x̄→ 0 as n→∞. Since every fi is a continuous, we find that fix̄ = x̄ for every i ∈ Λ.

Next, we prove x̄ ∈ ∩i∈ΛSol(gi).
Since fi is continuous, using (2.1), we find that limn→∞ φ(xn+1, z(n,i)) = 0. Using (1.3), we see that

limn→∞(‖z(n,i)‖ − ‖xn+1‖) = 0, which in turn finds limn→∞ ‖z(n,i)‖ = ‖x̄‖. That is,

lim
n→∞

‖Jz(n,i)‖ = ‖Jx̄‖ = lim
n→∞

‖z(n,i)‖ = ‖x̄‖.

Since both E∗ and E are reflexive, we may assume that Jz(n,i) ⇀ z(∗,i) ∈ E∗. This shows that there exists

an element zi ∈ E such that z(∗,i) = Jzi. It follows that

‖xn+1‖2 + ‖Jz(n,i)‖2 − 2〈xn+1, Jz(n,i)〉 = ‖xn+1‖2 + ‖z(n,i)‖2 − 2〈xn+1, Jz(n,i)〉
= φ(xn+1, z(n,i)).

Taking lim infn→∞ on the both sides of the equality above yields that

φ(x̄, zi) = ‖x̄‖2 − 2〈x̄, Jzi〉+ ‖zi‖2

= ‖x̄‖2 − 2〈x̄, Jzi〉+ ‖Jzi‖2

≤ ‖x̄‖2 − 2〈x̄, z(∗,i)〉+ ‖z(∗,i)‖2

≤ 0.

This implies zi = x̄. Hence, we have z(∗,i) = Jx̄. It follows that Jz(n,i) ⇀ Jx̄ ∈ E∗. Using the Kadec-Klee
property we find that Jz(n,i) → Jx̄ ∈ E∗. Since J−1 is demicontinuous, we have z(n,i) ⇀ x̄. Using the fact
that

‖Jy(n,i) − Jxn‖ ≤ ‖Jy(n,i) − Jx̄‖+ ‖Jxn − Jx̄‖,

we see that lim
n→∞

‖Jy(n,i) − Jxn‖ = 0. In view of z(n,i) = τr(n,i)
xn, we see that

‖y − z(n,i)‖‖Jz(n,i) − Jxn‖ ≥ r(n,i)gi(y, z(n,i)) ∀y ∈ Cn.

It follows that gi(y, x̄) ≤ 0 ∀y ∈ Cn. For 0 < ti < 1 and y ∈ Cn, define y(t,i) = tiy+ (1− ti)x̄. It follows that
y(t,i) ∈ Cn, which yields that gi(y(t,i), x̄) ≤ 0. Hence, we have

0 = gi(y(t,i), y(t,i)) ≤ tigi(y(t,i), y) + (1− ti)gi(y(t,i), x̄) ≤ tigi(y(t,i), y).

That is, gi(y(t,i), y) ≥ 0. Letting ti ↓ 0, we obtain from (R − d) that gi(x̄, y) ≥ 0, ∀y ∈ C. This implies
that x̄ ∈ Sol(gi) for every i ∈ Λ. This shows that x̄ ∈ ∩i∈ΛSol(gi). This completes the proof that x̄ ∈
∩i∈ΛFix(Ti)

⋂
∩i∈ΛSol(gi).



Y. Hecai, Z. Min, J. Nonlinear Sci. Appl. 9 (2016), 1776–1786 1783

Step 6. Prove x̄ = Π∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi)x1.

Letting n→∞ in (2.2), we see that

〈x̄− w, Jx1 − Jx̄〉 ≥ 0 ∀w ∈ ∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi).

In view of Lemma 1.6, we find that that x̄ = Π∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi)x1. This completes the proof.

If f is a asymptotically quasi-φ-nonexpansive mapping, we find from Theorem 2.1 the following.

Corollary 2.2. Let E be a strictly convex and uniformly smooth Banach space which also has the Kadec-
Klee property. Let C be a convex and closed subset of E and let Λ be an index set. Let gi be a bifunction
from C × C to R satisfying (R-a), (R-b), (R-c), (R-d) and let fi : C → C be an asymptotically quasi-φ-
nonexpansive mapping for every i ∈ Λ. Assume that fi is continuous and uniformly asymptotically regular
on C for every i ∈ Λ and ∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi) is nonempty and bounded. Let {xn} be a sequence

generated in the following manner:

x0 ∈ E chosen arbitrarily,

C(1,i) = C,

x1 = ΠC1:=∩i∈ΛC(1,i)
x0,

y(n,i) = J−1((1− α(n,i))Jf
n
i z(n,i) + α(n,i)Jx1),

C(n+1,i) = {z ∈ C(n,i) : φ(z, xn) + α(n,i)D ≥ φ(z, y(n,i))},
Cn+1 = ∩i∈ΛC(n+1,i),

xn+1 = ΠCn+1x1,

where D = sup{φ(w, x1) : w ∈ ∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi)}, z(n,i) ∈ Cn such that r(n,i)gi(z(n,i), y) ≥ 〈z(n,i) −

y, Jz(n,i) − Jxn〉 ∀y ∈ Cn, {α(n,i)} is a real sequence in (0, 1) such that limn→∞ α(n,i) = 0 and {r(n,i)} is a
real sequence in [ri,∞), where {ri} is a positive real number sequence for every i ∈ Λ. Then the sequence
{xn} converges strongly to Π∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi)x1.

If T is a quasi-φ-nonexpansive mapping, we find from Theorem 2.1 the following.

Corollary 2.3. Let E be a strictly convex and uniformly smooth Banach space which also has the KKP.
Let C be a convex and closed subset of E and let Λ be an index set. Let gi be a bifunction from C × C to
R satisfying (R-a), (R-b), (R-c), (R-d) and let fi : C → C be a quasi-φ-nonexpansive mapping for every
i ∈ Λ. Assume that fi is continuous for every i ∈ Λ and ∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi) is nonempty. Let {xn}

be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,

C(1,i) = C,

x1 = ΠC1:=∩i∈ΛC(1,i)
x0,

y(n,i) = J−1((1− α(n,i))Jfiz(n,i) + α(n,i)Jx1),

C(n+1,i) = {z ∈ C(n,i) : φ(z, xn) ≥ φ(z, y(n,i))},
Cn+1 = ∩i∈ΛC(n+1,i),

xn+1 = ΠCn+1x1,

where z(n,i) ∈ Cn such that r(n,i)gi(z(n,i), y) ≥ 〈z(n,i) − y, Jz(n,i) − Jxn〉 ∀y ∈ Cn, {α(n,i)} is a real sequence
in (0, 1) such that limn→∞ α(n,i) = 0 and {r(n,i)} is a real sequence in [ri,∞), where {ri} is a positive real
number sequence for every i ∈ Λ. Then the sequence {xn} converges strongly to Π∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi)x1.

In the Hilbert spaces, we have the following deduced results.
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Corollary 2.4. Let E be a Hilbert space. Let C be a convex and closed subset of E and let Λ be an index
set. Let gi be a bifunction from C × C to R satisfying (R-a), (R-b), (R-c), (R-d) and let fi : C → C be
an asymptotically quasi-nonexpansive mapping in the intermediate sense for every i ∈ Λ. Assume that fi
is continuous and uniformly asymptotically regular on C for every i ∈ Λ and ∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi) is

nonempty and bounded. Let {xn} be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,

C(1,i) = C,

x1 = PC1:=∩i∈ΛC(1,i)
x0,

y(n,i) = (1− α(n,i))f
n
i z(n,i) + α(n,i)x1,

C(n+1,i) = {z ∈ C(n,i) : ‖z − xn‖2 + α(n,i)D + (1− α(n,i))ξ(n,i) ≥ ‖z − y(n,i)‖2},
Cn+1 = ∩i∈ΛC(n+1,i),

xn+1 = PCn+1x1,

where

ξ(n,i) = max{0, sup
p∈Fix(fi),x∈C

(
‖p− fni x‖2−‖p−x‖2

)
, D = sup{‖w−x1‖2 : w ∈ ∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi)},

z(n,i) ∈ Cn such that r(n,i)gi(z(n,i), y) ≥ 〈z(n,i) − y, z(n,i) − xn〉 ∀y ∈ Cn, {α(n,i)} is a real sequence in (0, 1)
such that limn→∞ α(n,i) = 0 and {r(n,i)} is a real sequence in [ri,∞), where {ri} is a positive real number
sequence for every i ∈ Λ. Then the sequence {xn} converges strongly to Π∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi)x1.

If Tf is an asymptotically quasi-nonexpansive mapping, we find from Theorem 2.1 the following.

Corollary 2.5. Let E be a Hilbert space. Let C be a convex and closed subset of E and let Λ be an index
set. Let gi be a bifunction from C × C to R satisfying (R-a), (R-b), (R-c), (R-d) and let fi : C → C be an
asymptotically quasi-nonexpansive mapping for every i ∈ Λ. Assume that fi is continuous and uniformly
asymptotically regular on C for every i ∈ Λ and ∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi) is nonempty and bounded. Let

{xn} be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,

C(1,i) = C, x1 = PC1:=∩i∈ΛC(1,i)
x0,

y(n,i) = (1− α(n,i))f
n
i z(n,i) + α(n,i)x1,

C(n+1,i) = {z ∈ C(n,i) : ‖z − xn‖2 + α(n,i)D ≥ ‖z − y(n,i)‖2},
Cn+1 = ∩i∈ΛC(n+1,i), xn+1 = PCn+1x1,

where D = sup{‖w − x1‖2 : w ∈ ∩i∈ΛFix(fi)
⋂
∩i∈ΛSol(gi)}, z(n,i) ∈ Cn such that r(n,i)gi(z(n,i), y) ≥

〈z(n,i)−y, z(n,i)−xn〉 ∀y ∈ Cn, {α(n,i)} is a real sequence in (0, 1) such that limn→∞ α(n,i) = 0 and {r(n,i)} is
a real sequence in [ri,∞), where {ri} is a positive real number sequence for every i ∈ Λ. Then the sequence
{xn} converges strongly to Π∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi)x1.

If f is a closed quasi-nonexpansive mapping, we find from Theorem 2.1 the following.

Corollary 2.6. Let E be a Hilbert space. Let C be a convex and closed subset of E and let Λ be an index
set. Let gi be a bifunction from C × C to R satisfying (R-a), (R-b), (R-c), (R-d) and let fi : C → C be
a quasi-nonexpansive mapping for every i ∈ Λ. Assume that fi is continuous and uniformly asymptotically
regular on C for every i ∈ Λ and ∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi) is nonempty. Let {xn} be a sequence generated

in the following manner:
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

x0 ∈ E chosen arbitrarily,

C(1,i) = C, x1 = PC1:=∩i∈ΛC(1,i)
x0,

y(n,i) = (1− α(n,i))fiz(n,i) + α(n,i)x1,

C(n+1,i) = {z ∈ C(n,i) : ‖z − xn‖2 ≥ ‖z − y(n,i)‖2},
Cn+1 = ∩i∈ΛC(n+1,i), xn+1 = PCn+1x1,

where z(n,i) ∈ Cn such that r(n,i)gi(z(n,i), y) ≥ 〈z(n,i) − y, z(n,i) − xn〉 ∀y ∈ Cn, {α(n,i)} is a real sequence
in (0, 1) such that limn→∞ α(n,i) = 0 and {r(n,i)} is a real sequence in [ri,∞), where {ri} is a positive real
number sequence for every i ∈ Λ. Then the sequence {xn} converges strongly to Π∩i∈ΛFix(fi)

⋂
∩i∈ΛSol(gi)x1.
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