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Abstract

In the case of a critical point being a center, the isochronicity problem (or linearizability problem) is far
to be solved in general. A progressive way to find necessary conditions for isochronicity is to compute period
constants. In this paper, we establish a new recursive algorithm of calculation of the so-called generalized
period constants. Furthermore, we verify the new algorithm by the existing results for the Lotka-Volterra
system with 3 : −2 resonance. Finally, the algorithm is applied to solve the linearizability problem for the
Lotka-Volterra system in the ratio 4 : −5. c©2016 All rights reserved.
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1. Introduction

Consider a planar autonomous analytic differential system in the form of linear center perturbed by
higher degree terms, that is

dx

dt
= −y +

∞∑
α+β=2

Aαβx
αyβ = −y +X(x, y),

dy

dt
= x+

∞∑
α+β=2

Bαβx
αyβ = x+ Y (x, y), (1.1)

where X and Y are real polynomial functions whose series expansions in a neighborhood of the origin start
with terms at least second degree. This system can be regarded as a perturbation of the canonical linear
center

dx

dt
= −y, dy

dt
= x. (1.2)
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Conversion to polar coordinates shows that near the origin either all non-stationary trajectories of the
system (1.1) are ovals (in which case the origin is called a center) or they are all spirals (in which case the
origin is called a focus). If all solutions near x = 0, y = 0 are periodic (that is, the origin is a center), the
problem then arises to determine whether the period of oscillations is constant for all solutions near the
origin. A center with such property is called an isochronous center. It follows form Poincaré and Lyapunov
that the center of system (1.1) is isochronous if and only if it is linearizable, that is, there exists an analytic

coordinates U = x +
∞∑

k+j=2

ckjx
kyj , V = y +

∞∑
k+j=2

dkjx
kyj , such that it reduces system (1.1) to the linear

system dU
dt = −V, dVdt = U . Many mathematicians have attached their attention to the isochronicity problem

and made a systematic research. We do not mention any contribution here, for more details, see the survey
[4].

The method to characterize isochronous center is not unique. Usually, there are two active methods:
one is the calculation of isochronous constants (See [1, 2, 3]) while another is to compute period constants,
which can be obtained recurrently. The authors of [5] pointed out that it was obviously a much more
difficult problem to compute period constants. The vanishing of all of the period constants is a necessary
and a sufficient condition for isochronicity. Although theoretically the isochronous center problem can be
solved by letting all period constants be zero, it is not the fact in practice which is due to the difficulty of
computing the period constants. Questions relating to calculation of period constants have been studied by
a number of authors (See [7, 8, 10, 11]). However, only the first few ones can be given. The main trouble
lies in the large amount of computations that involved which break down the capacity of computers.

In [12], Liu and Huang gave a new algorithm to compute period constants of complex polynomial
systems, and the period constants of real polynomial systems are the special case of them. Wang and
Liu generalized and developed the algorithm mentioned above in [16], they established a new algorithm to
compute generalized period constants for general complex polynomial differential system with a resonant
critical point.

In this paper, on the basis of the work of [13], we develop a new method of computation of generalized
period constants for the following system

dz

dT
= pz +

∞∑
k=2

Zk(z, w) = Z(z, w),
dw

dT
= −qw −

∞∑
k=2

Wk(z, w) = −W (z, w), (1.3)

with two complex straight line solutions z = 0, w = 0, i.e., a0k = b0k = 0, k = 2, 3, · · · , where p, q ∈
Z+, (p, q) = 1, z, w, T are complex parameters, and

Zk(z, w) =
∑

α+β=k

aαβz
αwβ, Wk(z, w) =

∑
α+β=k

bαβw
αzβ. (1.4)

We now describe more precisely the organization of this paper. In Section 2, we come back to some
preliminary knowledge which is necessary to demonstrate the results in Sections 3 and 4. Among them,
we introduce a new detection criterion-node point value to decern linearizability. In Section 3, we derive
a new recursive formula to compute generalized period constants of the origin of system (1.3). In the last
section, to illustrate the effectiveness of our new method of computing generalized period constants, we use
it to study the necessary conditions for linearizability of the Lotka-Volterra system with 3 : −2 resonance.
Moreover, as an application, we investigate the linearizability problem for the Lotka-Volterra system with
4 : −5 resonance.

The technique used in this paper is different from more than the usual ones. Our recursive algorithm
is new and origin. With the algorithm, in order to obtain the generalized period constants of a system,
one only needs to force addition, subtraction, multiplication and division to the coefficients of the system
which avoids complex integrating operation and solving equations. It is symbolic and easy to realize with
computer algebra system such as Mathematica or Maple. What’s also worth mentioning is that, for the first
time, node point value is introduced to characterize the linearizability of the Lotka-Volterra system.
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2. Some preliminary results

First of all, we briefly restate some main notions and results for system (1.3).

Lemma 2.1 ([6, 9]). System (1.3) is normalizable at the origin if and only if there exists an analytic change
of variables

ξ = z + Φ(z, w) = z + o(|z, w|), η = w + Ψ(z, w) = w + o(|z, w|) (2.1)

bringing the system to its normal form

dξ

dT
= pξ

(
1 +

∞∑
i=1

piU
i

)
,

dη

dT
= −qη

(
1 +

∞∑
i=1

qiU
i

)
, (2.2)

where U = ξmηn.

We write µ0 = τ0 = 0, µk = pk − qk, τk = pk + qk, k = 1, 2, · · · .

Definition 2.2 ([16]). For any positive integer k, µk is called k-th singular point quantity of the origin of
system (1.3). If system (1.3) is real planar differential system, µk is the k-th saddle quantity. If system (1.3)
is concomitant system of (1.1), µk is the k-th focus quantity. Moreover, the origin of system (1.3) is called
generalized center if µk = 0, k = 1, 2, · · · .

Definition 2.3 ([16]). For any positive integer k, τk is called k-th generalized period constant of the origin
of system (1.3). And the origin of system (1.3) is called generalized isochronous center if µk = τk = 0, k =
1, 2, · · · .

The next lemmas are some results of a general nature concerning with linearizability of quadratic systems
with resonance saddles.

Lemma 2.4 ([6]). The system

ẋ = x+ c20x
2 + c11xy + c02y

2, ẏ = −λy + d02y
2 (2.3)

for λ > 0 is always linearizable if 1/λ ∈ N.

For the Lotka-Volterra system

ẋ = x(1 + ax+ by), ẏ = y(−λ+ cx+ dy), (2.4)

we have,

Lemma 2.5 ([9]). System (2.4) is linearizable if λ ∈ Q and c
a + λ = k ∈ N, 2 ≤ k < λ+ 1.

There exists a symmetric condition for 0 < λ < 1 by means of change

(x, y, λ, t, a, b, c, d)→
(
y, x,

1

λ
,−λt, d, c, b, a

)
. (2.5)

Lemma 2.6 ([9]). System (2.4) is linearizable if λ > 1,− c
a = n ∈ N∗ and one of the following conditions is

satisfied:
E1. λ ∈ R\Q and 1 ≤ n < λ;
E2. λ ∈ Q and 1 ≤ n < λ− 1;
E3. λ ∈ Q, λ− 1 < n < λ and λ 6= n+ 1

q ;

E4. λ = p
q = n+ 1

q and d
b = −p

q−1 .
Change (2.5) gives the corresponding conditions for 0 < λ < 1.

The following ideas come from [14].
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We consider the real planar system

dz

dT
= γz +

∞∑
k+j=2

Akjz
kwj ,

dw

dT
= nγw +

∞∑
k+j=2

Bkjz
kwj , (2.6)

where the functions of the right hand side are analytic in the neighborhood of the origin, k ≥ 0, j ≥ 0, γ 6= 0
and n(> 1) is a positive integer.

In [15], the authors proved that,

Lemma 2.7. For system (2.6), one can derive successively the terms of a convergent power series

u(z, w) =
∞∑

α+β=1

pαβz
αwβ = z + h.o.t., v(z, w) =

∞∑
α+β=1

qαβz
αwβ = w + h.o.t., (2.7)

in a neighborhood of the origin, where α ≥ 0, β ≥ 0, p10 = q01 = 1, p01 = q10 = 0, qn0 = 0, such that by using
the transformation

u = u(z, w), v = v(z, w), (2.8)

system (2.6) reduces to the norm form

du

dT
= γu,

dv

dT
= nγv + σun. (2.9)

System (2.9) has the first integral
v

un
− σ

γ
lnu = h, (2.10)

where h is a constant.
It is easy to see that when σ = 0, system (2.6) can be linearized. So that, we would like to introduce

the following.

Definition 2.8 ([14]). We say that σ is a node point value of the origin of system (2.6).

To compute u(z, w), v(z, w) and σ, we have the recursive formulae as follows:

Theorem 2.9 ([14]). When α+ β > 1, pαβ of (2.7) are given uniquely by

pαβ =
1

γ(1− α− nβ)

α+β∑
k+j=2

[(α− k + 1)Akjpα−k+1,β−j + (β − j + 1)Bkjpα−k,β−j+1]. (2.11)

When 2 ≤ α+ β ≤ n− 1, qαβ of (2.7) are given uniquely by

qαβ =
1

γ(n− α− nβ)

α+β∑
k+j=2

[(α− k + 1)Akjqα−k+1,β−j + (β − j + 1)Bkjqα−k,β−j+1]. (2.12)

Furthermore, σ is given uniquely by

σ =
n∑
k=2

[(n− k + 1)Ak0qn−k+1,0 +Bk0qn−k,1]. (2.13)

Theorem 2.10 ([14]). If σ = 0, then qn0 can take arbitrary constant. When qn0 is given, for all pairs
(α, β), if α+ β ≥ 2 and (α, β) 6= (n, 0), then, qαβ are given uniquely by (2.12).

Corollary 2.11 ([14]). If B20 = B30 = · · · = Bn−1,0 = 0, then q20 = q30 = · · · = qn−1,0 = 0 and σ = Bn0.

An immediate consequence of Corollary 2.11 is the following.

Corollary 2.12 ([14]). If B20 = B30 = · · · = Bn−1,0 = Bn0 = 0, then σ = 0.
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3. Calculation of period constants

This section is devoted to giving a new recursive algorithm which allows to compute all the generalized
period constants of the origin of system (1.3).

Theorem 3.1. Suppose that system (1.3) is a complex system having two complex straight line solutions
z = 0, w = 0. Then one can derive successively the terms of the following formal series

G(z, w) =
∞∑
k=1

gk(z, w) =
∞∑
k=1

∑
α+β=k

cαβz
αwβ, (3.1)

where ckk, k = 1, 2, · · · can take arbitrary constants, such that

dG

dT
+
p+ q

2
i+

dθ

dT
=

1

2i

∞∑
m=1

τ ′m(zw)m. (3.2)

For all pα 6= qβ, cαβ is given by the following recursive formula

cαβ =
1

qβ − pα


α+β−1∑
k+j=1

[(α− k)ak+1,j − (β − j)bj+1,k]cα−k,β−j −
i

2
(aα+1,β + bβ+1,α)

 , (3.3)

and for any positive integer m, τ ′m is given by the following recursive formula

τ ′m = aqm+1,pm + bpm+1,qm + 2i

(p+q)m−1∑
k+j=1

[(qm− k)ak+1,j − (pm− j)bj+1,k]cqm−k,pm−j . (3.4)

In addition, for α < 0 or β < 0, one defines aαβ = bαβ = cαβ = 0.

Proof. From expression (1.4), for any integer l, we have

Zl+1(z, w) =
∑
α+β=l

aα+1,βz
α+1wβ, Wl+1(z, w) =

∑
α+β=l

bβ+1,αw
β+1zα. (3.5)

Observe that the transformation of polar coordinate

z = reiθ, w = re−iθ, T = it, i =
√
−1, (3.6)

hence
dθ

dT
=

1

2i
(
1

z

dz

dT
− 1

w

dw

dT
). (3.7)

By straight computation, we have for system (1.3)

dG

dT
+
p+ q

2
i+

dθ

dT

=

∞∑
m=1

[
(
∂gm
∂z

pz − ∂gm
∂w

qw) +

m−1∑
l=1

(
∂gm−l
∂z

Zl+1 −
∂gm−l
∂w

Wl+1)−
i

2

wZm+1 + zWm+1

zw

]

=

∞∑
m=1

 ∑
α+β=m

(pα− qβ)cαβz
αwβ +

m−1∑
l=1

 ∑
α+β=m−l

∑
k+j=l

(αak+1,j − βbj+1,k)cαβz
α+kwβ+j


− i

2

∑
α+β=m

(aα+1,β + bβ+1,α)zαwβ


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=

∞∑
m=1

∑
α+β=m

{(pα− qβ)cαβ +

α+β−1∑
k+j=1

[(α− k)ak+1,j − (β − j)bj+1,k]cα−k,β−j −
i

2
(aα+1,β + bβ+1,α)}zαwβ.

Denote that

sαβ =

α+β−1∑
k+j=1

[(α− k)ak+1,j − (β − j)bj+1,k]cα−k,β−j −
i

2
(aα+1,β + bβ+1,α). (3.8)

For all integers pα 6= qβ and m, we take cαβ =
sαβ

qβ−pα and τ ′m = 2isqm,pm.

The relations between τm and τ ′m (m = 1, 2, · · · ) are as follows:

Theorem 3.2. Denote that τ ′0 = 0. For all positive integers m, τ ′0 = τ ′1 = · · · = τ ′m−1 = 0 if and only if
τ0 = τ1 = · · · = τm−1 = 0, τm = τ ′m.

Proof. We see from expressions (3.2) and (3.6) that

p+ q

2
=
dθ

dt
− 1

2

∞∑
k=1

τ ′kr
2k +

dG

dt
. (3.9)

Formally integrating the two sides of (3.9) from 0 to τ(2π, h), it follows

p+ q

2
τ(2π, h) = 2π − 1

2

∫ τ(2π,h)

0

∞∑
k=1

τ ′kr
2kdt = π[2− τ ′mh2m + o(h2m)]. (3.10)

Expression (3.10) implies the result of this theorem.

4. Verification and application

As a verification of the new algorithm obtained in Section 3, let’s consider linearizability of the Lotka-
Volterra system with 3 : −2 resonance.

Case 3 : −2
The corresponding system is

dz

dT
= 3z + a1zw + a2z

2,
dw

dT
= −2w − b1wz − b2w2. (4.1)

Theorem 4.1. System (4.1) is linearizable if and only if one of the following conditions is satisfied:
(1) b1 = 0;
(2) a1 = 0;
(3) 2a1 + b2 = 0;
(4) a2 + b1 = 0, a1 + b2 = 0;
(5) a2 − 3b1 = 0, a1 − b2 = 0.

Proof. We prove the necessity by computing the generalized period constants τk of system (4.1). The
necessary conditions for system (4.1) to be linearizable are τk = 0 for any k ≥ 1. Usually, one needs only a
finite number of τk to reach necessary conditions.

Applying recursive formulae (3.3) and (3.4) to system (4.1) and executing calculations by Mathematica,
we obtain the first three generalized period constants as follows:

τ1 =
a1b1(2a1 + b2)

24
(a1a2 + 5a1b1 − 3a2b2 + b1b2),

τ2 =
a1b1(2a1 + b2)

13226976
(−83430a41a

3
2 − 30666a41a

2
2b1 + 1247156a41a2b

2
1 + 1763674a41b

3
1 − 765724a31b

3
1b2

− 1977003a21b
3
1b

2
2 − 437904a1b

3
1b

3
2 + 204093b31b

4
2),
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τ3 =
a1b1(2a1 + b2)

6177349100482560
(−88413693207840a71a

5
2 + 1424204793214812a71a

4
2b1

− 4347304652288379a71a
3
2b

2
1

− 16461059659171969a71a
2
2b

3
1 + 74035050499453839a71a2b

4
1

+ 109431808333112977a71b
5
1 − 111384091208069408a61b

5
1b2

− 145356575873116382a51b
5
1b

2
2 + 58479246464930400a41b

5
1b

3
2

+ 59887200036254436a31b
5
1b

4
2 − 16906150380762648a21b

5
1b

5
2

− 6871563863754750a1b
5
1b

6
2 + 2265676736483160b51b

7
2).

(4.2)

The greatest common factor of τ1, τ2, τ3 is

G1 = PolynomialGCD[τ1, τ2, τ3] =
a1b1(2a1 + b2)

6177349100482560
. (4.3)

Let F1 = τ1/G1, F2 = τ2/G1, F3 = τ3/G1.
We denote the resultant of the polynomials poly1 and poly2 with respect to the variable x by

Resultant[poly1, poly2, x]. From the algebraic theory, Resultant[poly1, poly2, x] = 0 is a necessary condition
for poly1 = poly2 = 0.

Factually, by computing the resultants of the polynomials F1, F2, F3 with respect to b2, we get

R1,2 = Resultant[F1, F2, b2] = −C69a
4
1(a2 − 3b1)(a2 + b1)

2f12(a2, b1),

R1,3 = Resultant[F1, F3, b2] = C106a
7
1(a2 − 3b1)(a2 + b1)

2f13(a2, b1),

R2,3 = Resultant[F2, F3, b2] = −C71a
28
1 b

20
1 (a2 − 3b1)(a2 + b1)

2f23(a2, b1),

(4.4)

where C69, C106, C71 are all positive integers, whose digits are 69, 106, 71, respectively. f12(a2, b1), f13(a2, b1),
f23(a2, b1) are polynomials with respect to a2, b1.

PolynomialGCD[R1,2, R1,3, R2,3] = C64a
4
1(a2 − 3b1)(a2 + b1)

2. (4.5)

Denote G2 = C64(a2 − 3b1)(a2 + b1)
2. Let F12 = R1,2/G2/a

4
1, F13 = R1,3/G2/a

7
1, F23 = R2,3/G2/a

28
1 /b

20
1 .

The resultants of the polynomials F12, F13, F23 with respect to a2 are respectively

R12,13 = Resultant[F12, F13, a2] = C321b
36
1 ,

R12,23 = Resultant[F12, F23, a2] = −C588b
72
1 ,

R13,23 = Resultant[F13, F23, a2] = −C1925b
162
1 .

It is clear that R12,13 = R12,23 = R13,23 = 0 if and only if b1 = 0, thus {G1 = 0, G2 = 0} is a complete
set of necessary conditions for τ1 = τ2 = τ3 = 0. From G1 = 0 or G2 = 0, we have b1 = 0, or a1 = 0, or
2a1 + b2 = 0, or a2 − 3b1 = 0, or a2 + b1 = 0. Substituting each condition into expression (4.2) and solving
the equation set τ1 = τ2 = τ3 = 0, then we can accomplish the necessity of the theorem.

We can see that conditions (1) − (5) are identical with the corresponding results of Theorem B in [9].
The proof of the sufficiency of these conditions will not be given here.

Additionally, as an application of our new method, we are going to discuss the linearizability problem
of the Lotka-Volterra system with 4 : −5 resonance in the following.

Case 4 : −5
The corresponding system is

dz

dT
= 4z + a1zw + a2z

2,
dw

dT
= −5w − b1wz − b2w2, (4.6)

which is equivalent to
dz

dT
= z + a1zw + a2z

2,
dw

dT
= −5

4
w − b1wz − b2w2. (4.7)
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Theorem 4.2. System (4.7) is linearizable if and only if one of the following conditions is satisfied:
(1) b1 = 0;
(2) a1 = 0;
(3) 3a2 + 4b1 = 0;
(4) a2 + b1 = 0, a1 + b2 = 0;
(5) a2 − b1 = 0, 5a1 − 3b2 = 0;
(6) a2 − b1 = 0, 43a21 − 33a1b2 + 6b22 = 0;
(7) a2 + 4b1 = 0, 5a1 + 2b2 = 0;
(8) a2 + 2b1 = 0, 5a1 + 3b2 = 0;
(9) a2 + 2b1 = 0, 5a1 + 6b2 = 0;
(10) 2a2 + 3b1 = 0, 5a1 + 6b2 = 0;
(11) 7a2 + 4b1 = 0, a1 − 2b2 = 0;
(12) 3a2 − 4b1 = 0, 5a1 − 2b2 = 0;
(13) a2 − 2b1 = 0, 5a1 − b2 = 0.

Proof. The necessity can be proved by the same technique employed in the proof of Theorem 4.1, so we
omit it for brevity. Let’s turn to the proof of sufficiency.

(1), (2): Under condition (1), system (4.7) satisfies the condition in Lemma 2.4. Under condition (2),
after using the transformation (z, w, λ, T ) → (w, z, 1λ ,−λT ), system (4.7) also satisfies the condition in
Lemma 2.4.

(3): When condition (3) holds, system (4.7) satisfies the condition in Lemma 2.5.
(4): Under condition (4), system (4.7) can be linearized by the transformation

u = z(5− 4a1w − 5b1z)
−1, v = w(5− 4a1w − 5b1z)

−1.

(5), (12): When condition (5) holds, if b1 = 0, it belongs to (1). Else, by means of transformation
(z, w, T )→ (−3+4a1u−3v

3b1
, u,−4T1), system (4.7) is reduced to

du

dT1
= u+

4

3
a1u

2 + 4uv,
dv

dT1
= 4v + 12a1uv − 4v2. (4.8)

When condition (12) holds, by means of transformation (z, w, T )→ (−3(1+2a1u−v)
4b1

, u,−2T1), system (4.7) is
reduced to

du

dT1
= u+ 2a1u

2 +
3

2
uv,

dv

dT1
= 2v + 9a1uv − 2v2. (4.9)

By virtue of Corollary 2.12, the node point values of the origin of systems (4.8) and (4.9) are zero, then
from Lemma 2.7, they can be linearized.

(6): Condition (6) is equivalent to a2 = b1, b2 = 1
12(33±

√
57)a1, by means of transformation (z, w, T )→

(−3+4a1u−3v
3b1

, u,−4T1), system (4.7) is reduced to

du

dT1
= u+

1

3
(17±

√
57)a1u

2 + 4uv,
dv

dT1
= 4v +

4

9
(13±

√
57)a21u

2 + 12a1uv − 4v2. (4.10)

Applying recursive formulae (2.12) and (2.13) to compute the node point value of system (4.10), we have

σ =
1

4
B20(12A2

20 − 10A20B11 + 2B2
11 − 2A11B20 +B02B20). (4.11)

Substituting A20 = 1
3(17 ±

√
57)a1, A11 = 4, A02 = 0, B20 = 4

9(13 ±
√

57)a21, B11 = 12a1, B02 = −4 into
(4.11), we get σ = 0.

(7), (8), (13): When condition (7) holds, by means of transformation (z, w, T )→ (−−1+u+2a1v
4b1

, v,−T1),
system (4.7) is reduced to

du

dT1
= u− u2 − 9

2
a1uv,

dv

dT1
=

3

2
v − 1

4
uv − 3a1v

2. (4.12)
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When condition (8) holds, by means of transformation (z, w, T ) → (−−3+3u+4a1v
6b1

, v,−T1), system (4.7) is
reduced to

du

dT1
= u− u2 − 3a1uv,

dv

dT1
=

7

4
v − 1

2
uv − 7

3
a1v

2. (4.13)

When condition (13) holds, by means of transformation (z, w, T ) → (−1+u−4a1v2b1
, v,−T1), system (4.7) is

reduced to
du

dT1
= u− u2 + 9a1uv,

dv

dT1
=

3

4
v +

1

2
uv + 3a1v

2. (4.14)

We can note that the origin is transferred into a node and 3
2 ,

7
4 ,

3
4 /∈ N ensure respectively that the nodes

of systems (4.12), (4.13) and (4.14) are linearizable by an analytic change of coordinates (the Poincaré
Theorem in [6]), the three systems are therefore always linearizable at the origin.

(9), (10): When condition (9) or (10) holds, we use the transformation (z, w, T )→ (v, 15+10u−12b1v
10a1

, 45T1)
to bring system (4.7) respectively to

du

dT1
= u+

2

3
u2 − 36

25
b1uv −

144

125
b21v

2,
dv

dT1
= 2v +

4

5
uv − 64

25
b1v

2 (4.15)

or
du

dT1
= u+

2

3
u2 − 36

25
b1uv −

84

125
b21v

2,
dv

dT1
= 2v +

4

5
uv − 54

25
b1v

2. (4.16)

The node point values of the origin of systems (4.15) and (4.16) are zero.
(11): When condition (11) holds, we use the transformation (z, w, T ) → (14+8u−7a1v

8b1
, v,−T1) to bring

system (4.7) respectively to

du

dT1
= u+

4

7
u2 − 9

8
a1uv +

63

64
a21v

2,
dv

dT1
= 3v + uv − 3

8
a1v

2. (4.17)

The node point value of the origin of system (4.17) is zero.
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