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Abstract

The research of optical flow is vitally important topic in computer vision. In this paper we research a
topological analysis of space of optical flow locally. We use the methods of computing topology to the spaces
of 4 × 4 and 6 × 6 high contrast optical flow patches. We experimentally prove that in both cases there
exist subspaces of the spaces of all high contrast optical flow patches that is topologically equivalent to a
circle, which states that some results on the topological analysis of natural images and range images can be
extended to the scope of image motion. c©2016 All rights reserved.
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1. Introduction

Optical flow was defined by J. J. Gibson [10], it is the ostensible motion of brightness patterns viewed by
the viewer, when a camera is moving relative to the objects being imaged. Hence, optical flow can provide
very important information about the spatial arrangement of objects observed. Optical flow estimation is
a basic study topic in computer vision, it involves with calculating the motion of pixels between consistent
image frames. A large number of results about this topic have been obtained in recent years [4, 5, 11, 15].
Natural image statistics have attracted a large number of scholars to study and have gained fruitful results
on them, but for statistics of optical flow, because of the difficulty of gaining data of optical flow, the
optical flow statistics are comparatively unexplored. In recent years, some databases of optical flow are
built sequentially, for example, S. Roth and M. J. Black created a database of natural scene motions by
using of range images and camera motions [13]. The other two databases of optical flow are constructed
respectively in the papers [4, 9]. H. Adams, A. Atanasov and G. Carlsson [1] used the nudged elastic band
method to analyze the optical flow database. They discovered a new topological property of an optical flow
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data set of 3 × 3 patches. As the optical flow database [13] is constructed from the Brown range image
database, spaces of 4 × 4 and 6 × 6 optical flow patches perhaps have same topological characteristics as
small range image patches. In fact, such similar topological properties between 3× 3, 5× 5 and 7× 7 range
image patches and optical flow patches have been discovered in the papers [1, 2, 16, 17].

The spaces of 4 × 4 and 6 × 6 range image patches were studied in [18]. In this paper, we apply the
methods of the paper [7] to high contrast regions of optical flow and discuss the topological structure of
spaces of 4 × 4 and 6 × 6 optical flow patches. We experimentally show that there exist two dimensional
subspaces in each of spaces of 4 × 4 and 6 × 6 optical flow patches, whose homology is that of a circle.
Furthermore, we detect that there exist subspaces of 4× 4 and 6× 6 patches of optical flow, they probably
have Klein bottle feature. Thus there exist similar topological properties between 4 × 4 and 6 × 6 range
image patches and optical flow patches.

2. Persistent homology

For a finite point set X sampled from a fundamental space Y ⊆ Rm, along with a parameter ε, we could
build a simplicial complex with it, called the Vietoris-Rips complex, represented by Rε. The vertex set of
the complex is X and a subset {x0, x1, ..., xk} will define a k-simplex in Rε if and only if d(xi, xj) ≤ ε for
all 0 ≤ i, j ≤ k. A Rε complex can be computed at every value ε. It is obvious that R0 is a 0-complex and
R∞ is an (| X | −1)-simplex.

In order to study the space Y by using a Rε complex, Edelsbrunner, Letscher and Zomorodian [8]
introduced the concept of persistence, later, Carlsson and Zomorodian [19] elaborated it. If ε ≤ ε′, a natural
inclusion of simplicial complexes Rε ↪→ Rε′ is obvious and therefore Hk(Rε) −→ Hk(Rε′) for any k.

For persistence vector spaces, they can be described by an invariant called a barcode which is just a
finite collection of intervals, it was shown that any two persistence vector spaces having same barcodes are
isomorphic. Long intervals in barcodes denote a real topological structure of an underlying space, but small
intervals are thought to be inadequate sampling.

Because V R complexes could yield simplex in dimensions much higher than that of the fundamental
space, in a real application we utilize the witness complex introduced in [14].

For a point cloud Q, a landmark subset L and a parameter r ∈ N, if r = 0, let m(q) = 0 for all q ∈ Q. If
r > 0, let m(q) be the distance q to the r-th closest landmark point. The lazy witness complex LWr(Q,L, ε)
is defined as follows:

(i) the vertex set is L;
(ii) for vertices a and b, edge [ab] is in LWr(Q,L, ε) if there is a witness point q ∈ Q such that

max{d(a, q), d(b, q)} ≤ ε+m(q);

(iii) a higher dimensional simplex is in LWr(Q,L, ε) if all of its edges are.
The lazy witness complex depends upon a parameter r ∈ {0, 1, 2} which we select r = 1. De Silva and

Carlsson in [14] discover r = 0 to be generally less effective and r = 2 has the disadvantage of connecting
every landmark point to at least one other at R = 0. Please refer to the papers [3, 6, 14, 19] for more details
about lazy witness complexes and persistent homology.

We consider a point cloud set and a sequence of V R complexes as illustrated in Figure 1 (a), (b), (c),
and (d). This point cloud is a sampling of points on a planar circle. Can this be deduced? We observe that
there exists an inclusion of the current complex in the next complex (from (a) to (d)), as the current one
corresponds to a smaller parameter value than the next one. From the Figure 1, we note that there are two
small holes in Figure 1 (b), while one small hole has been filled in, a new large hole has been introduced in
Figure 1 (c). As increasing, the two small holes vanish, because they are filled in as indicated in Figure 1
(d). Therefore, we conclude that the image consists exactly of the larger hole, which is what we regard as
the correct answer in this case.

The bottom of Figure 1 shows an example of barcode denotations of the homology of the sampling of
points. Form Figure 1 we survey that there exist one long line in dimension 0, one in dimension 1 and
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no line in dimension 2 ( ε varying from 3.82 to 7) which reflects the fact that a circle has one connected
component and one hole in dimension one.

Figure 1: The barcodes for the sequence complexes V Rε, 0 ≤ ε ≤ 7.

3. Constructing spaces of small optical flow patches

We gather data sets of high contrast 4×4 and 6×6 optical flow patches from the Roth and Black optical
flow database [13], the database is available at http://www.visinf.tu-darmstadt.de/vi research/vi datasets/
vi flowstats.en.jsp. There are two samples of it in Figure 2.

We randomly choose data sets of 4× 4 and 6× 6 high contrast patches from the optical flow database.
The main spaces M4 and M6 are sets of 4× 4 and 6× 6 high contrast patches produced by the follows six
steps (similar to [2, 7, 12]). M4 and M6 posses about 220000 points.

Step 1. For each flow field sequence in the database, we utilize the second optical flow frame of a sequence
and randomly pick 1500 n× n (n = 4, 6) patches for it. One 4× 4 patch is arranged as

(u1, v1) (u5, v5) (u9, v9) (u13, v13)
(u2, v2) (u6, v6) (u10, v10) (u14, v14)
(u3, v3) (u7, v7) (u11, v11) (u15, v15)
(u4, v4) (u8, v8) (u12, v12) (u16, v16)


and one 6× 6 patch is arranged as

(u1, v1) (u7, v7) (u13, v13) (u19, v19) (u25, v25) (u31, v31)
(u2, v2) (u8, v8) (u14, v14) (u20, v20) (u26, v26) (u32, v32)
(u3, v3) (u9, v9) (u15, v15) (u21, v21) (u27, v27) (u32, v32)
(u4, v4) (u10, v10) (u16, v16) (u22, v22) (u28, v28) (u34, v34)
(u5, v5) (u11, v11) (u17, v17) (u23, v23) (u29, v29) (u35, v35)
(u6, v6) (u12, v12) (u18, v18) (u24, v24) (u30, v30) (u36, v36)

 ,
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where u indicates optical flow in the horizontal direction and v indicates the vertical direction. Consider
each 4 × 4 patch as a vector x = (u1, ..., u16, v1, ..., v16) ∈ R32 and each 6 × 6 patch as a vector x =
(u1, ..., u36, v1, ..., v36) ∈ R72.

Step 2. We calculate the D-norm ‖ x ‖D for each vector x, it is a measure of the contrast of a optical
flow patch. Two pairs of coordinates (ui, vi) and (uj , vj) of x are adjacent, represented by i ∼ j, if the
corresponding pixels in the n× n patch are neighbors. We compute the D-norm for a vector x by using the

formula: ‖ x ‖D=
√∑

i∼j ‖ (ui, vi)− (uj , vj) ‖2.
Step 3. We choose the patches which have a D-norm in the top 20% of each sequence as usually.
Step 4. For u components, subtract an average of u coordinates and for v components, subtract an

average of v coordinates, this will produce a new 32-dimension vector and a new 72-dimension vector,
respectively.

Step 5. We map the spaces into a unit sphere by dividing each vector with its Euclidean norm, that is
not zero since the patches are high contrast. We do not transform to the DCT basis for convenience.

Step 6. For the convenience of calculations, we randomly choose 50,000 from above patches in the top
20% and these sets are subspaces of M4 and M6, represented as MS4 and MS6, respectively.

Figure 2: Two samples from the database. Horizontal motions are on the top and vertical motions are on the bottom.

4. Experimental results for MSm(k, p)

The 3 × 3, 5 × 5 and 7 × 7 range image patches have core subsets with topological feature of a circle
were shown by Xia in [16] and H. Adams and G. Carlsson in [2]. The spaces of 3 × 3 , 5 × 5 and 7 × 7
optical flow patches having core subsets with topology of a circle were shown in the papers [1, 17]. We will
extend the result to 4× 4 and 6× 6 optical flow patches. The concept of core subsets is used to detect the
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Figure 3: Barcodes for MS4(200, 30).
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Figure 4: Barcodes for MS6(200, 30).

circle feature of MS4 and MS6. We estimate the local density of the space at a point x by its the nearest
neighbor. For x ∈ X and k > 0 , set ρk(x) =| x − xk |, where xk is the k-th nearest neighbor of x. Larger
k-values generate more global evaluations, while small k-values provide local density evaluates. For a given
k, we order points of X by descending density, we choose the points denoted by X(k, p) whose densities are
in the top p percent.

We think about the core subsets MS4(200, 30) and MS6(200, 30) and calculate their barcodes, samples
Betti barcode plots for them are shown in Figures 3 and 4 separately. There exist a long Betti0 interval
and a long Betti1 interval in the plots, that is β0 = 1, β1 = 1, with the topology of a circle. We make three
hundreds experiments on the core subsets MS4(100, 30), MS4(300, 30), MS6(100, 30) and MS6(300, 30),
all the barcode plots have the homology of the circle and the results are stable.

5. A theoretic model for Klein bottle

The Klein bottle can be obtained by pasting a square as shown in Figure 5. In the process of identification,
three circles are informed (Figure 6), represented by C3.

To detect the topological features of subspaces of M4 and M6, we create another theoretical model for the
Klein bottle. We think n× n optical flow patches as obtained by sampling smooth real-valued polynomials
on the xy-plane at n × n grid points. We now consider the space P, consisting of polynomials in form of
a2(a1x+ b1y)2 + b2(a1x+ b1y), (a1, b1) ∈ S1, (a2, b2) ∈ S1, where S1 is the unit circle.

We define the map g : S1×S1 7−→ P by (a1, b1, a2, b2) 7−→ a2(a1x+b1y)2+b2(a1x+b1y) ([7]). Clearly, the
map g is onto, but not one-one, this means that (a1, b1, a2, b2) ∼ (−a1,−b1, a2,−b2) is an equivalent relation.
If (a1, b1, a2, b2) is denoted by (cosα, sinα, cosβ, sinβ), both α and β vary in [0, 2π], then the equivalent
relation is (α, β) ∼ (π+α, 2π−β). The space P= im(g) is homeomorphic to S1×S1/(α, β) ∼ (π+α, 2π−β),
because no other identifications mapped by g.

The result of the map g acting on a square is shown in Figure 7. Each half is an indication of the Klein
bottle, hence the image of g is homeomorphic to the Klein bottle and so is P ([7]).

The model C3 is included in the space P. The primary circle of C3 is the subspace obtained by set-
ting (a2, b2) = (0, 1) and (a1, b1) ∈ S1, however the other circles are gained by setting a1 = 1, b1 = 0 and
a1 = 0, b1 = 1 respectively.

We define h4 : P 7−→ S31 by a composite of evaluating the polynomial at every point in the grid G4 =
{−3,−2,−1, 0, 1, 2, 3, 4} × {−1, 0, 1, 2} subtracting the mean and normalizing. We define h6 : P 7−→ S71 by
a composite of evaluating polynomials at each point in the grid G6 = {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6}×
{−2,−1, 0, 1, 2, 3} subtracting the mean and normalizing.
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Figure 5: One denotation of Klein bottle.
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Figure 7: Klein bottle, the image of the map g.
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Figure 8: Barcodes for C4
3 (400).

As the proof in [7], h4 and h6 are one-to-one. Since a compact space is homeomorphic to its image under
continuous one-to-one mapping, hence the image im(hn | P)(n = 4, 6) is homeomorphic to the Klein bottle.

To embed the space C3 into the unit sphere S31, we randomly take 400 points {(x1, y1), ..., (x400, y400)}
on S1, then put a2 = 0, b2 = 1; a1 = 1, b1 = 0; a1 = 0, b1 = 1 respectively, we denote the set of all images
of the 400 points under the map h4 ◦ g as C4

3 (400). Similarly, we have C6
3 (400). Figures 8, 9 display the

PLEX result for the spaces C4
3 (400) and C6

3 (400), they have the topology of C3, i.e. β0 = 1, β1 = 5, thus we
acquire an appropriate approach of C3 in S31 and S71, respectively.

In order to embed the Klein bottle into a unit sphere, firstly, we uniformly take 200 points ({x1, ..., x200})
on the unit circle, all possible tuples (xi, xj) form a point set on S1 × S1. Next, we denote the images of
the 40000 points under the mappings h4 ◦ g and h6 ◦ g as K4(200) and K6(200), respectively. Figure 10
gives the PLEX result for the spaces K4(200) with β0 = 1, β1 = 2 and β2 = 1, which are the mod 2 Betti
numbers of the Klein bottle. Hence, K4(200) is a proper approach of the Klein bottle in S31. We have a
similar result for the space K6(200) (Figure 11).
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Figure 9: Barcodes for C6
3 (400).
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Figure 10: Barcodes for K4(200).
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Figure 11: Barcodes for K6(200).
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Figure 12: Barcodes for CC4
3 (400).

6. Results for M4 and M6

To detect subspaces of M4 whose topology is that of C3, for any point p ∈ C3
3 (400), we collect the points

of M4 that is the closest point to p (in Euclidean distance), written as CC4
3 (400). One sample PLEX Betti

barcode plot for CC4
3 (400) is shown in Figure 12, which gives that CC4

3 (400) has Betti numbers β0 = 1 and
β1 = 5, i.e. having the topology of C3. Similarly, we get one barcode plot result for the space CC6

3 (400) in
Figure 13, the result gives β0 = 1 and β1 = 5 in very small range of ε (from 0.26 to 0.31).

Remark 6.1. The Betti barcode result of space CC6
3 (400) is not very stable, sometime it has not the homology

of C3. We ran 100 experiments on CC6
3 (400), there only exist 69 experiments giving β0 = 1, β1 = 5.

As shown in above section, S31 and S71 have subspaces K4(200) and K6(200) with homology of a Klein
bottle respectively. By using K4(200) and K6(200), subspaces of M4 and M6 are built, the method is as
following.

We collect all the t closest points of M4 to any p ∈ K4(200) (according to Euclidean distance) and denote
it as Kopt4(200, t). The subspace Kopt6(200, t) of M6 are constructed by the same way.

we consider the subspace Kopt4(200, 10), Figures 14, 15, 16 are three barcode results for Kopt4(200, 10).
Figure 14 gives β0 = 1, β1 = 2 and β2 = 1 from ε = 0.141 to ε = 0.196, Figure 15 indicates β0 = 1, β1 = 2
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Figure 13: Barcodes for CC6
3 (400).
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Figure 14: Barcodes for Kopt4(200, 10).

and β2 = 1 in a very small range ( only from ε = 0.195 to ε = 0.206), Figure 16 shows that there is no Klein
bottle feature in Kopt4(200, 10).

Remark 6.2. We ran 300 trials on Kopt4(200, t) for t = 10, 11, 12, there are 92 experiments whose PLEX
barcodes giving β0 = 1, β1 = 2 and β2 = 1, the others have no homology of the Klein bottle. Hence we are
not sure yet that Kopt4(200, 10) has Klein bottle feature, a further study need to be done.

Figures 17, 18 display two PLEX results for Kopt6(200, 10). In Figure 17, the PLEX barcode indicates
β0 = 1, β1 = 2 and β2 = 1 from 0.123 to 0.16. But in Figure 18, the PLEX barcode has no Klein bottle
feature in Kopt6(200, 10). We ran 400 trials on Kopt6(200, t) for t = 10, 11, 12, there are 118 experiments
whose PLEX barcodes giving β0 = 1, β1 = 2 and β2 = 1 and some barcode intervals with β0 = 1, β1 = 2
and β2 = 1 are very short, but the others have no homology of the Klein bottle.
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Figure 15: Barcodes for Kopt4(200, 10).
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Figure 16: Barcodes for Kopt4(200, 10).

Remark 6.3. The authors of the paper [18] shown that there exist subspaces of spaces of 4×4 and 6×6 range
image patches having the Klein bottle’s homology, but when we use the same method to analyze 4× 4 and
6× 6 patches of optical flow, their Klein bottle feature are not obvious. Although the optical flow database
are constructed from the range image database, spaces of 4 × 4 and 6 × 6 optical flow patches may have
different topological characteristics as 4× 4 and 6× 6 range image patches.
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Figure 17: Barcodes for Kopt6(200, 10).
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Figure 18: Barcodes for Kopt6(200, 10).

7. Conclusions

In this paper we study qualitative analysis of spaces of small optical flow patches by persistent homology.
We show that the spaces of high contrast 4× 4 and 6× 6 patches have core subsets with the topology of a
circle. The techniques used in this paper is not new, but we extend known results in the cases of 4× 4 and
6 × 6 optical flow patches. Different sizes optical flow patches have similar properties, but they also have
different features. By the current methods, we can not conclude that the spaces M4 and M6 have subspaces
with homology of Klein bottle, perhaps they in fact have such subspaces, we seem to see their existence, so
further investigation need to be done to determine whether M4 and M6 have subspaces with homology of
the Klein bottle.
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