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Abstract

Let (X, d) be a complete partially ordered cone metric space, g : X → X and F : X × X × X → X
be two mappings. In this paper, a new concept of F having the mixed comparable property with respect
to g is introduced and some tripled coincidence point results of F and g are obtained if F has the mixed
comparable property with respect to g and some other natural conditions are satisfied. Moreover, a support
example of one of our results is given. c©2016 All rights reserved.
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1. Introduction

One of the important subjects of nonlinear sciences is to study the existence or uniqueness of fixed
points for nonlinear mappings. Most recently, Bhaskar and Lakshmikantham [6] introduced the concepts of
coupled fixed point and mixed monotone property for contractive operators of the form F : X ×X → X,
where X is a partially ordered metric space and established some existence and uniqueness coupled fixed
point theorems. Sabetghadam et al. [19] extended the results of Gnana Bhaskar and Lakshmikantham [6]
to the setting of complete cone metric spaces. Based on the works of Bhaskar and Lakshmikantham [6]
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and Sabetghadam [19], Berinde and Borcut [1] introduced the concept of tripled fixed point for nonlinear
mappings in partially ordered complete metric spaces and obtained existence and uniqueness theorems for
contractive type mappings. The results given by V. Berinde and M. Borcut [1] generalized and extended
the works of Bhaskar and Lakshmikantham and Sabetghadam.

In 2007, Huang and Zhang [7] introduced the concept of cone metric spaces as a generalization of general
metric spaces, in which the distance d(x, y) of x and y is defined to be a vector in an ordered Banach space
E and proved that the Banach contraction principle remains true in the setting of cone metric spaces. Since
then, many fixed point results of the mappings with certain contractive property on cone metric spaces have
been proved on the basis of the work of Huang and Zhang [7] (see [2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 20] and the references therein). Among those works, the results of [15] attract much attention since
the authors of [15] introduced the concept of cone metric spaces over Banach algebras by replacing Banach
spaces with Banach algebras in order to generalize the Banach contraction principle to a more general form.
In 2013, Liu and Xu [14] proved some fixed point theorems of generalized Lipschitz mappings with weaker
and natural conditions on the generalized Lipschitz constant k by means of spectral radius in the setting
of cone metric spaces over Banach algebras. But the proofs of the main results in [14] strongly depend on
the condition that the underlying solid cone is normal. In 2014, without the assumption of normality of the
cone involved, Xu and Stojan [20] proved the conclusions of [14] remain valid by means of some properties
of spectral radius.

Let (X, d) be a complete partially ordered cone metric space, g : X → X and F : X ×X ×X → X be
two mappings. In this paper, on the basis of [1], [15] and [20], we introduce the concept of F having the
mixed comparable property with respect to g and prove some tripled coincidence point results of F and g
provided F has the mixed comparable property with respect to g and some other natural conditions are
satisfied. Moreover, we give some support examples of part of our results.

2. Preliminaries

The following definitions and results come from Huang and Zhang [7] and Liu and Xu [14], which are
needed in the sequel.

Let A always be a real Banach algebra, that is, A is a real Banach space in which an operation of
multiplication is defined, subject to the following properties (for all x, y, z ∈ A, α ∈ R):

(1) (xy)z = x(yz);
(2) x(y + z) = xy + xz and (x+ y)z = xz + yz;
(3) α(xy) = (αx)y = x(αy);
(4) ‖xy‖ ≤ ‖x‖‖y‖.
Here and subsequently, we assume that a Banach algebra has a unit (i.e., a multiplicative identity) e

such that ex = xe = x for all x ∈ A. x ∈ A is said to be invertible if there is y ∈ A such that xy = yx = e.
The inverse of x is denoted by x−1. We refer the reader to [14] for more details.

A non-empty closed convex subset P of a Banach algebra A is called a cone if
(i) {θ, e} ⊂ P ;
(ii) αP + βP ⊂ P ;
(iii) P 2 = PP ⊂ P ;
(iv) P ∩ (−P ) = {θ},

where θ denotes the null of the Banach algebra A.
Fix a cone P ⊂ A, a partial ordering ‘�’ with respect to P can be defined by x � y if and only if

y − x ∈ P . x ≺ y stands for x � y and x 6= y. x � y stands for y − x ∈ int(P ), here int(P ) denotes the
interior of P . P is called a solid cone if int(P ) 6= ∅.

Definition 2.1 ([14]). Let X be a non-empty set and A be a real Banach algebra. Suppose that the
mapping d : X ×X → A satisfies:

(1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
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(3) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a cone metric on X and (X, d) is called a cone metric space over the Banach algebra A.

One can refer to [14] for some examples of cone metric spaces over Banach algebras.

Definition 2.2 ([14]). Let (X, d) be a cone metric space over the Banach algebra A, x ∈ X and let {xn}
be a sequence in X. Then

(1) {xn} converges to x if for each c ∈ A with θ � c, there is a natural number N such that d(xn, x)� c
for all n > N . We denote this by limn→∞ xn = x or xn → x.

(2) {xn} is a Cauchy sequence if for each c ∈ A with θ � c, there is a natural number N such that
d(xn, xm)� c for all n,m > N .

(3) (X, d) is a complete cone metric space if every Cauchy sequence is convergent.

Definition 2.3 ([11]). Let P be a solid cone in a Banach space E. A sequence {un} ⊂ P is a c-sequence if
for each c� θ there exists n0 ∈ N such that un � c for n ≥ n0.

Definition 2.4 ([21]). Let (X,6) be a partial ordering set and A be a Banach algebra, d : X×X → A be a
cone metric on X such that (X, d) is a cone metric space over the Banach algebra A. We say that x, y ∈ X
are comparable if x 6 y or y 6 x holds.

In the rest of this section, we always assume that A is a real Banach algebra, (X, d) is a complete partial
ordering cone metric space over A with the partial ordering ‘6’ and P is a solid cone of A which gives the
partial ordering ‘�’ in A.

Lemma 2.5 ([17]). If E is a real Banach space with a solid cone P and if ||xn|| → 0(n→∞), then for any
θ � c, there exists N ∈ N such that for any n > N , we have xn � c.

Lemma 2.6 ([17]). If E is a real Banach space with a solid cone P and if θ � u� c for each θ � c, then
u = θ.

Lemma 2.7 ([20]). Let x, y be vectors in A. If x and y commute, then the spectral radius r satisfies the
following properties:

(i) r(xy) ≤ r(x)r(y);

(ii) r(x+ y) ≤ r(x) + r(y);

(iii) |r(x)− r(y)| ≤ r(x− y).

Lemma 2.8 ([17]). Let A be a Banach algebra with a unit e, P be a cone in A and � be the semi-order
generated by P . Let λ ∈ P . If the spectral radius r(λ) of λ is less than 1, then the following assertions hold.

(i) Suppose that x is invertible and that x−1 � θ implies x � θ, then for any integer n ≥ 1, we have
λn � λ � e.

(ii) For any u � θ, we have u � λu, i.e., λu− u /∈ P .

(iii) If λ � θ, then we have (e− λ)−1 � θ.

Lemma 2.9 ([17]). Let P be a solid cone in a Banach algebra A and let {xn} be a sequence in P . Then
the following conditions are equivalent:

(1) {xn} is a c-sequence.

(2) For each c� θ there exists n0 ∈ N such that xn ≺ c for n ≥ n0.

(3) For each c� θ there exists n1 ∈ N such that xn � c for n ≥ n1.

Lemma 2.10 ([17]). Let P be a solid cone in a Banach algebra A and let {un} be a sequence in P . Suppose
that k ∈ P is an arbitrarily given vector and {un} is a c-sequence in P . Then {kun} is a c-sequence.
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3. Main results

In this section, we will present the main results and their proofs. For simplicity, we always assume that
A is a real Banach algebra and (X, d) is a complete partial ordering cone metric space over A with the
partial ordering ‘6’. Let P be a solid cone of A which gives the partial ordering ‘�’ in A. Consider on the
product space X ×X ×X the following partial ordering: for (x, y, z), (u, v, w) ∈ X ×X ×X,

(u, v, w) ≤ (x, y, z)⇔ x > u, y 6 v, z > w.

Let F : X × X × X → X and g : X → X be two mappings. Following the basic concepts and results
established in [1] and as generalizations, we introduce the new concepts of g-continuous mapping and mixed
comparable property with respect to g and obtain some tripled coincidence point results for g and F , where
F has the mixed comparable property with respect to g. Next, we introduce some concepts.

Definition 3.1. We say that F has the mixed comparable property with respect to g if F (x, y, z) and
F (u, v, w) are comparable for any pair (x, y, z) and (u, v, w) in X × X × X for which g(x) and g(u), g(y)
and g(v) and g(z) and g(w) are comparable.

Definition 3.2. An element (x, y, z) ∈ X × X × X is called a tripled coincidence point of g and F if
F (x, y, z) = g(x), F (y, x, y) = g(y) and F (z, y, x) = g(z). If there exists x ∈ X such that g(x) = F (x, x, x),
then we say that x is a coincidence point of g and F .

Definition 3.3. If g(xn)→ g(x) as well as g(yn)→ g(y) and g(zn)→ g(z) implies F (xn, yn, zn)→ F (x, y, z)
as n→∞ for any sequences {xn}, {yn} and {zn} of X, then F is said to be g-continuous.

Example 3.1. Let R be the set of all real numbers with the usual metric d, that is, d(x, y) = |x−y| for any
x, y ∈ R. Suppose that g : R→ R is a mapping defined as follows: for any x ∈ R, if x 6= 0, then g(x) = sin 1

x
and g(x) = 0 if x = 0. Let F (x, y, z) = (2g(x), g(y), g(z)) for any (x, y, z) ∈ R × R × R. Obviously, F is
g-continuous but not continuous.

Remark 3.4. The concept of g-continuous mapping generalizes continuous mapping, because if g is just
taken as the identity mapping on X, then each g-continuous mapping is continuous.

The following theorem is our first main result.

Theorem 3.5. Let g be a surjection and F be a g-continuous mapping possessing the mixed comparable
property with respect to g. Assume that:

(1) there exist j, k, l ∈ A with r(j + k + l) < 1 for which

d(F (x, y, z), F (u, v, w)) � jd(g(x), g(u)) + kd(g(y), g(v)) + ld(g(z), g(w)) (3.1)

for any (x, y, z) and (u, v, w) ∈ X ×X ×X satisfying that g(x) and g(u), g(y) and g(v) and g(z) and
g(w) are comparable;

(2) there exist x0, y0, z0 ∈ X such that g(x0) and F (x0, y0, z0), g(y0) and F (y0, x0, y0) and g(z0) and
F (z0, y0, x0) are comparable.

Then g and F have a tripled coincidence point in X.

Proof. Since g is surjective, there exists x1 ∈ X such that g(x1) = F (x0, y0, z0) and g(x1) and g(x0) are
comparable. Similarly, there exist y1, z1 ∈ X such that g(y1) = F (y0, x0, y0) and g(z1) = F (z0, y0, x0),
furthermore, g(y1) and g(y0) are comparable and g(z1) and g(z0) are comparable. Continuing this process
and noting that F has the mixed comparable property with respect to g, for n ≥ 1, there exist xn, yn, zn ∈ X
such that

g(xn) = F (xn−1, yn−1, zn−1), g(yn) = F (yn−1, xn−1, yn−1) and g(zn) = F (zn−1, yn−1, xn−1),
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and g(xn) and g(xn−1), g(yn) and g(yn−1) and g(zn) and g(zn−1) are comparable. To simplify the writing,
we denote

Dx
n = d(g(xn−1), g(xn)), Dy

n = d(g(yn−1), g(yn)) and Dz
n = d(g(zn−1), g(zn)).

Then by (3.1), we have

Dx
2 = d(g(x1), g(x2)) = d(F (x0, y0, z0), F (x1, y1, z1))

� jd(g(x0), g(x1)) + kd(g(y0), g(y1)) + ld(g(z0), g(z1))

= jDx
1 + kDy

1 + lDz
1.

Similarly, we have Dy
2 � (j + l)Dy

1 + kDx
1 + 0Dz

1, Dz
2 � jDz

1 + kDy
1 + lDx

1 and

Dx
3 � (j2 + k2 + l2)Dx

1 + (2jk + 2kl)Dy
1 + 2jlDz

1,

Dy
3 � (kl + 2jk)Dx

1 + ((j + l)2 + k2)Dy
1 + klDz

1,

Dz
3 � (2jl + k2)Dx

1 + (2kj + 2kl)Dy
1 + (j2 + l2)Dz

1.

For simplicity, we also consider the matrix

A =

 j k l
k j + l 0
l k j

 denoted by

 a1 b1 c1
d1 e1 f1
g1 b1 h1


and further denote

A2 =

 j2 + k2 + l2 2jk + 2kl 2jl
kl + 2jk (j + l)2 + k2 kl
2jl + k2 2jk + 2kl j2 + l2

 =

 a2 b2 c2
d2 e2 f2
g2 b2 h2

 ,

where
a2 + b2 + c2 = d2 + e2 + f2 = g2 + b2 + h2 = (j + k + l)2. (3.2)

Here the operational laws of matrices are same to those of general matrices.
Now we prove by induction that

An =

 an bn cn
dn en fn
gn bn hn

 ,

where
an + bn + cn = dn + en + fn = gn + bn + hn = (j + k + l)n. (3.3)

In fact, if we assume that (3.3) is true for some n ≥ 1, then since

An+1 = AnA =

 an bn cn
dn en fn
gn bn hn

 j k l
k j + l 0
l k j


=

 jan + kbn + lcn kan + (j + l)bn + kcn lan + jcn
jdn + ken + lfn kdn + (j + l)en + kfn ldn + jfn
jgn + kbn + lhn kgn + (j + l)bn + khn lgn + jhn

 ,

we have

an+1 + bn+1 + cn+1 = anj + bnk + cnl + ank + bnj + cnk + anl + bnl + cnj

= an(j + k + l) + bn(k + j + l) + cn(l + k + j)

= (an + bn + cn)(j + k + l) = (j + k + l)n(j + k + l)

= (j + k + l)n+1.
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Similarly one has
dn+1 + en+1 + fn+1 = gn+1 + bn+1 + hn+1 = (j + k + l)n+1.

Therefore, we have  Dx
n+1

Dy
n+1

Dz
n+1

 �
 j k l

k j + l 0
l k j

n Dx
1

Dy
1

Dz
1

 .

That is,
Dx

n+1 � anDx
1 + bnD

y
1 + cnD

z
1, (3.4)

Dy
n+1 � dnD

x
1 + enD

y
1 + fnD

z
1, (3.5)

Dz
n+1 � gnDx

1 + bnD
y
1 + hnD

z
1. (3.6)

Following from (3.4 and 3.6), we can easily show that {g(xn)}, {g(yn)} and {g(zn)} are Cauchy sequences.
In fact, for m > n, we have

d(g(xm), g(xn)) � d(g(xm), g(xm−1)) + · · ·+ d(g(xn+1, g(xn)) = Dx
m +Dx

m−1 + · · ·+Dx
n+1

� (am−1D
x
1 + bm−1D

y
1 + cm−1D

z
1) + · · ·+ (anD

x
1 + bnD

y
1 + cnD

z
1)

= (an + · · ·+ am−1)D
x
1 + (bn + · · ·+ bm−1)D

y
1 + (cn + · · ·+ cm−1)D

z
1

� (αn + · · ·+ αm−1)Dx
1 + (αn + · · ·+ αm−1)Dy

1 + (αn + · · ·+ αm−1)Dz
1

= (αn + αn+1 + · · ·+ αm−1)(Dx
1 +Dy

1 +Dz
1)

� (αn(e− α)−1)(Dx
1 +Dy

1 +Dz
1),

where α = j + k+ l. Since r(α) = r(j + k+ l) < 1, by Remark 2.1 in [20], we get ||αn|| → 0, which together
with Lemma 2.5, Lemma 2.9 and Lemma 2.10 shows that {g(xn)} is a Cauchy sequence. Similarly one can
verify that {g(yn)} and {g(zn)} are Cauchy sequences too. Since X is complete and g : X → X is surjective,
there exist x, y, z ∈ X such that

lim
n→∞

g(xn) = g(x), lim
n→∞

g(yn) = g(y) and lim
n→∞

g(zn) = g(z). (3.7)

Finally, we prove F (x, y, z) = g(x), F (y, x, y) = g(y) and F (z, y, x) = g(z). By using the g-continuity
of F and noting (3.7), we have, as n→∞,

g(xn+1) = F (xn, yn, zn)→ F (x, y, z). (3.8)

Thus g(x) = F (x, y, z). Similarly, we have g(y) = F (y, x, y) and g(z) = F (z, y, x). So (x, y, z) is a tripled
coincidence point of g and F .

Next we replace the g-continuity of F by an additional property. We discuss this in the following theorem.

Theorem 3.6. Let g be a surjection and F be a mapping with the mixed comparable property with respect
to g and the following conditions be satisfied:

(1) there exist j, k, l ∈ A with r(j + k + l) < 1 such that (3.1) is satisfied for any (x, y, z) and (u, v, w) ∈
X ×X ×X for which g(x) and g(u), g(y) and g(v) and g(z) and g(w) are comparable;

(2) for any sequence {xn} ⊂ X satisfying that g(xn) and g(xn+1) are comparable for all n and g(xn)
converges to g(x), we have that g(xn) and g(x) are comparable for all n;

(3) there exist x0, y0, z0 ∈ X such that g(x0) and F (x0, y0, z0), g(y0) and F (y0, x0, y0) and g(z0) and
F (z0, y0, x0) are comparable.
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Then there exists a tripled coincidence point of g and F in X ×X ×X.

Proof. From the proof of Theorem 3.5, we get, for all n > 0, g(xn) and g(xn+1) are comparable. The same
argument holds for {g(yn)} and {g(zn)} and g(xn)→ g(x), g(yn)→ g(y) and g(zn)→ g(z) as n→∞. By
the given condition (2), we obtain that g(xn) and g(x) are comparable for all n. Similarly, g(yn) and g(y)
and g(zn) and g(z) are comparable for all n. Next we only prove that g(x) = F (x, y, z), g(y) = F (y, x, y)
and g(z) = F (z, y, x).

For any θ � c, since g(xn)→ g(x), g(yn)→ g(y) and g(zn)→ g(z), there exists N ∈ N such that for all
n ≥ N , we have d(g(xn), g(x))� c

4 , d(g(yn), g(y))� c
4 and d(g(zn), g(z))� c

4 . Taking n > N , we get

d(F (x, y, z), g(x)) � d(F (x, y, z), g(xn+1)) + d(g(xn+1), g(x))

= d(F (x, y, z), F (xn, yn, zn)) + d(g(xn+1), g(x))

� jd(g(x), g(xn)) + kd(g(y), g(yn)) + ld(g(z), g(zn)) + d(g(xn+1), g(x))

� (j + k + l + e)
c

4
.

Lemma 2.6 together with Lemma 2.9 and Lemma 2.10 gives that F (x, y, z) = g(x). Similarly, we can prove
F (y, x, y) = g(y) and F (z, y, x) = g(z), that is, (x, y, z) ∈ X ×X ×X is a tripled coincidence point of g and
F .

Example 3.2. Let A = R2. For each x = (x1, x2) ∈ A, let ‖x‖ = |x1| + |x2|. For x = (x1, x2) and y =
(y1, y2) ∈ A, the multiplication is defined by

xy = (x1, x2)(y1, y2) = (x1y1 + x2y2, x2y1 + x1y2).

Then it is easy to verify that A is a Banach algebra with unit e = (1, 0). Let X = R2 and P = {(x1, x2) ∈
R2|x1 ≥ 0, x2 ≥ 0}. Then P is a cone in A. A metric d on X is defined by

d(x, y) = d((x1, x2), (y1, y2)) = (|x1 − y1|, |x2 − y2|) ∈ P.

Then (X, d) is a complete cone metric space over the Banach algebra A.
A mapping g : X → X is defined as follows: g(x) = (x1, 2x2) for each x = (x1, x2) ∈ X. Clearly, g is a

surjection. Define F : X ×X ×X → X by F (x, y, z) = (18 ,
1
8)g(x) + ( 1

16 ,
1
16)g(y) + ( 1

12 ,
1
12)g(z) + (−2, 4) for

each x = (x1, x2), y = (y1, y2) and z = (z1, z2) in X. It is easy to check that all the conditions of Theorem
3.5 are satisfied for j =

(
1
8 ,

1
8

)
, k =

(
1
16 ,

1
16

)
and l =

(
1
12 ,

1
12

)
. Moreover by a simple calculation, we can get

that ((−2, 2), (−2, 2), (−2, 2)) ∈ X ×X ×X is the tripled coincidence point of g and F .

4. Uniqueness of tripled coincidence point of g and F

In this section, we consider some additional conditions to ensure the uniqueness of the tripled coincidence
point of g and F and appropriate conditions to ensure that for the tripled coincidence point (x, y, z) of g
and F , we have x = y = z.

Theorem 4.1. Let g be a bijection and F be a g-continuous mapping satisfying the mixed comparable
property with respect to g. Assume that the following hold:

(1) there exist j, k, l ∈ A with r(j + 2k + l) < 1 for which

d(F (x, y, z), F (u, v, w)) � jd(g(x), g(u)) + kd(g(y), g(v)) + ld(g(z), g(w)) (4.1)

for any (x, y, z) and (u, v, w) ∈ X ×X ×X satisfying that g(x) and g(u), g(y) and g(v) and g(z) and
g(w) are comparable;

(2) there exist x0, y0, z0 ∈ X such that g(x0) and F (x0, y0, z0), g(y0) and F (y0, x0, y0) and g(z0) and
F (z0, y0, x0) are comparable;
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(3) for every (a, b, c), (a1, b1, c1) ∈ X×X×X, there exists (u, v, w) ∈ X×X×X such that (g(u), g(v), g(w))
is comparable to (g(a), g(b), g(c)) and (g(a1), g(b1), g(c1)).

Then g and F have a unique tripled coincidence point in X ×X ×X.

Proof. By the proof of Theorem 3.5, we obtain that there exists (x, y, z) ∈ X × X × X such that g(x) =
F (x, y, z), g(y) = F (y, x, y) and g(z) = F (z, y, x). If g and F have another tripled fixed point (u, v, w) ∈
X ×X ×X, then we can prove that g(x) = g(u), g(y) = g(v) and g(z) = g(w) as follows.

In fact, by the conditions of Theorem 4.1, there exists (r, s, t) ∈ X×X×X such that g(r) is comparable
to g(x) and g(u), g(s) is comparable to g(y) and g(v), and g(t) is comparable to g(z) and g(w). Let
r0 = r, s0 = s and t0 = t. By a proof similar to Theorem 3.5, we can prove that there exist sequences {rn},
{sn} and {tn} such that, for all n ≥ 0,

g(rn+1) = F (rn, sn, tn), g(sn+1) = F (sn, rn, sn) and g(tn+1) = F (tn, sn, rn).

Since F has the mixed comparable property with respect to g and by induction, we can prove easily that
g(rn) is comparable to g(x) for all n. Similarly, g(sn) is comparable to g(y) and g(tn) is comparable to g(z)
for all n. Set Rn+1 = d(g(rn+1), g(x)), Sn+1 = d(g(sn+1), g(y)) and Tn+1 = d(g(tn+1), g(z)). Then from the
given conditions of Theorem 4.1, we have

Rn+1 = d(g(rn+1), g(x)) = d(F (rn, sn, tn), F (x, y, z)) � jRn + kSn + lTn. (4.2)

Sn+1 = d(g(sn+1), g(y)) = d(F (sn, rn, sn), F (y, z, y)) � jSn + k ·Rn + lSn. (4.3)

Tn+1 = d(g(tn+1), g(z)) = d(F (tn, sn, rn), F (z, y, x)) � jTn + kSn + lRn. (4.4)

From (4.2), (4.3) and (4.4), we obtain that, for all n,

Rn+1 + Sn+1 + Tn+1 � α(Rn + Sn + Tn), (4.5)

where α = j + 2k + l. Hence,

Rn+1 + Sn+1 + Tn+1 � α(Rn + Sn + Tn) � α2(Rn−1 + Sn−1 + Tn−1)

� · · · � αn(R1 + S1 + T1).

Noting that r(j+2k+l) < 1 and by Lemma 2.7, Lemma 2.5 and Remark 2.1 in [20], we have limn→∞ g(rn) =
g(x), limn→∞ g(sn) = g(y) and limn→∞ g(tn) = g(z). Similarly, we can prove that limn→∞ g(rn) = g(u),
limn→∞ g(sn) = g(v) and limn→∞ g(tn) = g(w). So g(x) = g(u), g(y) = g(v) and g(z) = g(w). The
injective property of g implies that x = u, y = v and z = w. Hence g and F have a unique tripled
coincidence point.

Theorem 4.2. Let g be a bijection and F be a mapping having the mixed comparable property with respect
to g and the following conditions be satisfied:

(1) there exist j, k, l ∈ A with r(j + 2k+ l) < 1 such that (3.1) is satisfied for any (x, y, z) and (u, v, w) ∈
X ×X ×X for which g(x) and g(u), g(y) and g(v) and g(z) and g(w) are comparable;

(2) for any sequence {xn} ⊂ X satisfying that g(xn) and g(xn+1) are comparable for all n and g(xn)
converges to g(x), we have that g(xn) and g(x) are comparable for all n;

(3) there exist x0, y0, z0 ∈ X such that g(x0) and F (x0, y0, z0), g(y0) and F (y0, x0, y0) and g(z0) and
F (z0, y0, x0) are comparable;

(4) for any (a, b, c) and (a1, b1, c1)∈X×X×X, there exists (u, v, w)∈X×X×X such that (g(u), g(v), g(w))
is comparable to (g(a), g(b), g(c)) and (g(a1), g(b1), g(c1)).
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Then g and F have a unique tripled coincidence point in X ×X ×X.

Proof. The proof is similar to that of Theorem 4.1, so we omit it.

Theorem 4.3. Suppose the hypothesis of Theorem 3.5 (resp. Theorem 3.6) and the following conditions
are satisfied: g is an injection and for the elements x, y and z appearing in the proof of Theorem 3.5 (resp.
Theorem 3.6), g(x), g(y) and g(z) are mutually comparable. Then x = y = z, that is, x is a coincidence
point of g and F .

Proof. Suppose g(x), g(y) and g(z) are mutually comparable and g is an injection. By the mixed comparable
property with respect to g of F , we have

d(g(x), g(z)) = d(F (x, y, z), F (z, y, x)) � (j + l)d(g(x), g(z)). (4.6)

Lemma 2.7 gives that r(j+ l) ≤ r(k+j+ l) < 1, so by Lemma 2.8, we have g(x) = g(z). As g is an injection,
we get x = z. By the mixed comparable property with respect to g of F again, we obtain

d(g(x), g(y)) = d(F (x, y, z), F (y, x, y)) � jd(g(x), g(y)) + kd(g(y), g(x)) + ld(g(z), g(y)). (4.7)

Noting x = z and by (4.7), we have

d(g(x), g(y)) = d(F (x, y, z), F (y, x, y)) � (j + k + l)d(g(x), g(y)).

Since r(k+j+ l) < 1, by Lemma 2.8 again, we get g(x) = g(y) which implies x = y by the injective property
of g. Thus x = y = z, that is, x is a coincidence point of g and F .

Corollary 4.4. By adding to the hypothesis of Theorem 3.5 (resp. Theorem 3.6) the condition: X is a
totally ordering set, then g and F have a unique coincidence point, that is, there exists unique x ∈ X such
that g(x) = F (x, x, x).

Proof. According to Theorem 4.3, it suffices to prove the uniqueness of the coincidence point of g and F .
Suppose on the contrary that there exist two elements x and x1 in X such that g(x) = F (x, x, x) and
g(x1) = F (x1, x1, x1). Since X is a totally ordering set, g(x) and g(x1) are comparable. By the mixed
comparable property with respect to g of F , we have

d(g(x), g(x1)) = d(F (x, x, x), F (x1, x1, x1)) � (j + k + l)d(g(x), g(x1)). (4.8)

Noting r(j + k + l) < 1, by Lemma 2.8, we get g(x) = g(x1) which together with g is an injection implies
x = x1.

Example 4.1. Let A = R3. For each x = (x1, x2, x3) ∈ A, let ‖x‖ = |x1| + |x2| + |x3|. For x =
(x1, x2, x3), y = (y1, y2, y3) ∈ A, the multiplication is defined by

xy = (x1, x2, x3)(y1, y2, y3) = (x1y1 + x2y3 + x3y2, x1y2 + x2y1 + x3y3, x1y3 + x2y2 + x3y1).

Then one can easily verify that A is a Banach algebra with unit e = (1, 0, 0). Set X = R3 and P =
{(x1, x2, x3) ∈ R3|x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}. Obviously, P is a cone in A. A metric d on X is defined by

d(x, y) = d((x1, x2, x3), (y1, y2, y3)) = (|x1 − y1|, |x2 − y2|, |x3 − y3|) ∈ P.

Under the metric d, (X, d) is a complete cone metric space over the Banach algebra A.
A mapping g : X → X is defined as follows: g(x) = (x1, 2x2, 3x3) for each x = (x1, x2, x3) ∈ X. Then g

is a surjection. Define F : X ×X ×X → X by

F (x, y, z) =

(
1

12
,

1

12
,

1

12

)
g(x) +

(
1

18
,

1

18
,

1

18

)
g(y) +

(
1

24
,

1

24
,

1

24

)
g(z) + (−2, 4, 1)

for each x = (x1, x2, x3), y = (y1, y2, y3) and z = (z1, z2, z3) in X. It is easy to check that all the conditions
of Theorem 4.1 are satisfied for j =

(
1
12 ,

1
12 ,

1
12

)
, k =

(
1
18 ,

1
18 ,

1
18

)
and l =

(
1
24 ,

1
24 ,

1
24

)
. By Theorem 4.1, there

exists a unique tripled coincidence point of g and F in X ×X ×X.
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[5] L. Gajić, V. Rakočević, Quasi-contractions on a nonnormal cone metric space, Funct. Anal. Appl., 46 (2012),

62–65. 1
[6] T. Gnana Bhaskar, T. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications,

Nonlinear Anal., 265 (2006), 1379–1393. 1
[7] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal.

Appl., 332 (2007), 1468–1476. 1, 2
[8] D. Ilić, V. Rakočević, Quasi-contraction on a cone metric space, Appl. Math. Lett., 22 (2009), 728–731. 1
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