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Abstract

In this paper, we introduce and study an iterative viscosity approximation method by modified Cesaro
mean approximation for finding a common solution of split generalized equilibrium, variational inequality and
fixed point problems. Under suitable conditions, we prove a strong convergence theorem for the sequences
generated by the proposed iterative scheme. The results presented in this paper generalize, extend and
improve the corresponding results of Shimizu and Takahashi [K. Shimoji, W. Takahashi, Taiwanese J.
Math., 5 (2001), 387-404]. ©2016 All rights reserved.
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1. Introduction

Let H; and Hj be real Hilbert spaces with inner product (-, -) and norm || -||. Let C' and @) be nonempty
closed convex subsets of H; and Hy, respectively. Let {z,,} be a sequence in Hj, then x,, — = (respectively,
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x, — z) will denote strong (respectively, weak) convergence of the sequence {x,}. A mapping T : C — C
is called nonexpansive if | Tx — Ty|| < ||z — y||, Vz,y € C.
The fixed point problem (FPP) for the mapping T is to find 2 € C such that

Tz = z. (1.1)

We denote Fiz(T) :={x € C: Tz = z}, the set of solutions of FPP.

Assumed throughout the paper that T is a nonexpansive mapping such that Fiz(T) # (). Recall that a
self-mapping f : C — C is a contraction on C if there exists a constant a € (0,1) and x,y € C such that
1f(@) — F@l < alle — .

Given a nonlinear mapping A : C' — H;. Then the variational inequality problem (VIP) is to find x € C
such that

(Az,y —x) <0, VYyeC. (1.2)

The solution of VIP (|1.2)) is denoted by VI(C,A). It is well known that if A is strongly monotone and
Lipschitz continuous mapping on C then VIP has a unique solution. There are several different
approaches towards solving this problem in finite dimensional and infinite dimensional spaces see [6, [7] [8,
141, 16, 20, [31), 35, [40] and the research in this direction is intensively continued.

Variational inequality theory has emerged as an important tool in studying a wide class of obstacle,
unilateral and equilibrium problems, which arise in several branches of pure and applied sciences in a unified
and general framework. Several numerical methods have been developed for solving variational inequalities
and related optimization problems, see, e.g., [Il, 13, [I§] and the references therein.

For finding a common element of Fiz(T)NVI(C, A), Takahashi and Toyoda [34] introduced the following
iterative scheme:

{ xo chosen arbitrary, (1.3)

Tpt1 = AnTn + (1 — an)TPo(zn — AnAzy),¥n > 0,

where A is an p-inverse-strongly monotone, {a,} is a sequence in (0,1) and {\,} is a sequence in (0, 2p).
They showed that if Fiz(T)NVI(C,A) # 0, then the sequence {x,} generated by converges weakly
to zp € Fix(T)NVI(C, A).

On the other hand, for solving the variational inequality problem in the finite-dimensional Euclidean
space R™, Korpelevich [I§] introduced the following so-called Korpelevich’s extragradient method and which
generates a sequence {z,} via the recursion;

Yn = PC($n - )\Al‘n), (1 4)
Tn1 = Po(zn — AMyn), n >0, '

where Pg is the metric projection from R™ onto C, A : C' — Hj is a monotone operator and A is a constant.
Korpelevich [I§] prove that the sequence {x,} converges strongly to a solution of VI(C, A).

In this paper, we will present article, our main purpose is to study the split problem. First, we recall
some background in the literature.

Problem 1: the split feasibility problem (SFP)

Let C and @ be two nonempty closed convex subsets of real Hilbert spaces H; and Hs, respectively and

A : Hy — Hs be a bounded linear operator. The split feasibility problem (SFP) is formulated as finding a
point

xz* € C such that Az™ € Q, (1.5)

which was first introduced by Censor and Elfving [9] in medical image reconstruction.
A special case of the SFP is the convezly constrained linear inverse problem (CLIP) in a finite dimensional
real Hilbert space [12]:
find z* € C such that Az* = b, (1.6)
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where C' is a nonempty closed convex subset of a real Hilbert space Hi and b is a given element of a real
Hilbert space Ha, which has extensively been investigated by using the Landweber iterative method [19]:

Tpal = Tn + 'yAT(b — Azy), neN.

Assume that the SFP (1.5) is consistent (i.e.,(1.5)) has a solution), it is not hard to see that z* € C
solves ([1.5)) if and only if it solves the following fized point equation;

x* = Po(I — vA*(I — Pg)A)z", =" € C, (1.7)

where Pc and Py are the (Orthogonal) projections onto C' and @, respectively, v > 0 is any positive constant
and A* denotes the adjoint of A. Moreover, for sufficiently small v > 0, the operator Po(I — vA*(I —Pg)A)
which defines the fixed point equation in is nonexpansive.

An iterative method for solving the SFP, called the C'Q algorithm, has the following iterative step:

Tha1 = Polar +7AT (Po — 1) Axy,). (1.8)

The operator
T = Po(I —~vA" (I — Pg)A), (1.9)

is averaged whenever v € (0, %) with L being the largest eigenvalue of the matrix AT A (T stands for matrix
transposition), and so the C'Q algorithm converges to a fixed point of T', whenever such fixed points exist.

When the SFP has a solution, the CQ algorithm converges to a solution; when it does not, the C'Q)
algorithm converges to a minimizer, over C, of the proximity function g(x) = ||PgAx — Ax||, whenever such
minimizer exists. The function g(x) is convex and according to [2], its gradient is

Vg(z) = AT(I — Pg)Ax. (1.10)

Problem 2: the split equilibrium problem (SEP)

In 2011, Moudafi [25] introduced the following split equilibrium problem (SEP):
Let F1 : CxC — R and F5 : Q x Q — R be nonlinear bifunctions and A : H; — Hs be a bounded linear
operator, then the split equilibrium problem (SEP) is to find z* € C such that

Fi(z*,2) >0, VzeC, (1.11)
and such that
y* = Ax* € Q solves Fyp(y*,y) >0, Vy € Q. (1.12)

When looked separately, is the classical equilibrium problem (EP) and we denoted its solution set
by EP(F;). The SEP and constitutes a pair of equilibrium problems which have to be solved
so that the image y* = Ax* under a given bounded linear operator A, of the solution z* of the EP ([1.11)) in
H; is the solution of another EP by EP(F3).

The solution set SEP and is denoted by © = {z* € EP(F}) : Az* € EP(F»)}.

Problem 3: the split generalized equilibrium problem (SGEP)

In 2013, Kazmi and Rivi [I7] consider the split generalized equilibrium problem (SGEP):
Let F1,h1 : CxC — R and F5, ha : Q X Q — R be nonlinear bifunctions and A : H; — Hs be a bounded
linear operator, then the split generalized equilibrium problem (SGEP) is to find z* € C such that

Fi(z*,2) + hi(2",2) > 0, Vx e C, (1.13)
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and such that
y* = Az" € Q solves Fy(y*,y)+ ho(y",y) >0, Vye€ Q. (1.14)

They denoted the solution set of generalized equilibrium problem (GEP) (1.13) and GEP by
GEP(Fi,h) and GEP(F5, hs), respectively. The solution set of SGEP ([1.13)-(1.14) is denoted by I' =
{$* S GEP(Fl, hl) Ax* € GEP(FQ, hg)}

If hy = 0 and hg = 0, then SGEP (1.13)-(1.14)) reduces to SEP (L.1I)-(L.12). If hy = 0 and F> = 0, then
SGEP ([1.13)-(1.14) reduces to the equilibrium problem considered by Cianciaruso et al. [10].

In 1975, Baillon [3] proved the first non-linear ergodic theorem.

Theorem 1.1 (Baillons ergodic theorem). Suppose that C' is a nonempty closed convex subset of Hilbert
space Hy and T : C — C is nonexpansive mapping such that Fiz(T) # 0 then Vz € C, the Cesaro mean

1 e
T,x = T 1.15
n¥ n+1 ; ) ( )

weakly converges to a fized point of T'.

In 1997, Shimizu and Takahashi [29] studied the convergence of an iteration process sequence {z,} for a
family of nonexpansive mappings in the framework of a real Hilbert space. They restate the sequence {x,}
as follows:

Tpy1 = an + (1 — o)

n
n+1Zzjn, for n=0,1,2,..., (1.16)
=0

where 9 and x are all elements of C' and «;, is an appropriate point in [0, 1]. They proved that z,, converges
strongly to an element of fixed point of 1" which is the nearest to x.

In 2000, for T" a nonexpansive self-mapping with Fixz(T) # () and f a fixed contractive self-mapping,
Moudafi [23] introduced the following viscosity approximations method for 7T":

Tnt1 = anf(x) + (1 — an)Tzy, (1.17)

and prove that {x,} converges to a fixed point p of T' in a Hilbert space.

On the other hand, iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems; see, e.g., [11, [36, B7] and the references therein. A typical problem is to
minimize a quadratic function over the set of the fixed points of a nonexpansive mapping on a real Hilbert
space H: .

gleiél §(Ax,x> — (z,b), (1.18)

where C' is the fixed point set of a nonexpansive mapping 7" on H; and b is a given point in Hy. Assume A
is strongly positive; that is, there is a constant 4 > 0 with the property

(Az,x) < 7||z||?, Vo< Hi. (1.19)
A typical problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive
mapping on a real Hilbert space Hi:

min

5
x€Fix(T)

Az, x) — h(x), (1.20)

where A is strongly positive linear bounded operator and h is a potential function for v f i.e., (h/ () =~vf(x)
for x € Hy).

In [37] (see also [39]), it is proved that the sequence {x,} defined by the iterative method below, with
the initial guess o € H chosen arbitrarily

Tnt1 = (I — anA)Tx, + apb, n >0, (1.21)
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converges strongly to the unique solution of the minimization problem ([1.18)).
Using the viscosity approximation method, Xu [38], develops Moudafi [23] in both Hilbert and Banach
spaces.

Theorem 1.2 ([38]). Let Hy be a Hilbert space, C a closed convex subset of Hi1,T : C' — C' a nonexpansive
mapping with Fix(T) # 0, and f : C — C a contraction. Let {x,} be generated by

xg9 € C,
{ Tpt1 = (1 —ap)Txy + anf(xy),n >0, (1.22)

where {an,} C (0,1) satisfies:
(H1) o, — 0;
(H2) 325z an = 003

(H3) either Y o7 |omt1 — ap| < 00 or limnﬁoo(agf) =1L

Then under the hypotheses (H1) — (H3), x,, — &, where T is the unique solution of the variational inequality
(I-fz,z—=x) <0,z € Fix(T).
Marino and Xu [22], combine the iterative method (1.21]) with the viscosity approximation method (|1.22]).

Theorem 1.3 ([22]). Let Hy be a real Hilbert space, A be a bounded operator on Hi, T be a nonexpansive
mapping on Hi and f : Hi — Hi be a contraction mapping. Assume that the set of fized point of Hy is
nonempty. Let {x,} be generated by

Tyl = (I — anA)Txp + anyf(zy), n>0, (1.23)
where {ay} is a sequence in (0, 1) satisfying the following conditions:
(N1) o, — 0;
(N2) 3 nZo on = 09;

(N3) either 3507 |omy1 — ap| < 00 or limy, 00 (%2t) = 1.

Then {x,} converges strongly to & of T' which solves the variational inequality:
(A=~f)z, 2 —2) <0,z € Fiz(T).
Equivalently, Ppiyr(I — A+~f)T = 2.

Inspired and motivated by Korpelevich [I§], Kazmi and Rivi [I7], Shimizu and Takahashi [29], and
Marino and Xu [22], we introduce the general Cesaro mean iterative method for a nonexpansive mapping
in a real Hilbert space as follows:

un = T (0, + AT — 1) Awy),
Tn4+1 = O‘n')/f(xn) + Bnan + ((1 - ﬁn)I - OénD)%_H Z?:O Szyn, Vn > 0,

under our conditions, we suggest and analyze an iterative method for approximating a common solution of

FPP (1.1), VI(C,B) (1.2) and SGEP (1.13)-(1.14)). Furthermore, we prove that the sequences generated
by the iterative scheme converge strongly to a common solution of FPP (1.1), VI(C, B) (1.2) and SGEP

C.13)-[C19).
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2. Preliminaries

Let H; be a real Hilbert space. Then

lz =yl = [l=]* = lylI* — 2(z — v, ), (2.1)
2+ ylI* < ll=l* + 2(y, z + v), (2.2)

and
Az + (1= Nyll* = Allz]* + (1 = Vlyl|> = A1 = N)]lz — yl?, (2.3)

for all z,y € H; and y € [0,1]. It is also known that H; satisfies the Opial’s condition [26], i.e., for any
sequence {z,} C H; with =, — z, the inequality

lim inf |}, — 2] < liminf [z, — | (2.4)

holds for every y € Hy with x # y. Hilbert space H; satisfies the Kadee-Klee property [15] that is, for any
sequence {z,} with x,, = z and ||z,|| — ||z|| together imply |z, — x| — 0.

We recall some concepts and results which are needed in sequel. A mapping Pc is said to be metric
projection of Hy onto C'if for every point x € Hy, there exists a unique nearest point in C denoted by Pox
such that

|z — Pez|| < [l —yll, VyeC. (2.5)

It is well known that Pg is a nonexpansive mapping and is characterized by the following property:
|Pcxz — Poy|)* < (z —y, Pox — Poy), Vz,y € Hy. (2.6)

Moreover, Pox is characterized by the following properties:

(x — Pox,y — Pox) <0, (2.7)
lz = yl* > ||z — Pez|® + |ly — Pex||?, Vz € Hi,yeC, (2.8)

and
I(z = y) = (Pox — Poy)|* > ||z = ylI” = | Pex — Peyl?, Va,y € Hi. (2.9)

It is known that every nonexpansive operator T : H; — H; satisfies, for all (z,y) € H; x Hjp, the
inequality

(z =T(x)) = (y = T(y)),T(y) - T(z)) < %H(T(ff) —z) — (T(y) - y)I*, (2.10)

and therefore, we get, for all (z,y) € H; x Fix(T),
(v = T(x),y - T(2)) < 5| T(x) — |, (2.11)

(see, e.g., Theorem 3 in [32] and Theorem 1 in [30]).
Let B be a monotone mapping of C into H;. In the context of the variational inequality problem the
characterization of projection ([2.7) implies the following;:

ueVI(C,B) < u= Pc(u— ABu), A > 0.
Lemma 2.1 ([21]). Let F : C x C — R be a bifunction satisfying the following assumptions:
(i) F(x,x) >0,Vz € C;

(ii) F is monotone, i.e., F(xz,y)+ F(y,z) < 0,Vz € C;
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(i1i) F is upper hemicontinuous, i.e., for each x,y,z € C,

limsup F(tz + (1 — t)z,y) < F(z,y); (2.12)
t—0

(iv) For each x € C fized, the function y — F(z,y) is convex and lower semicontinuous;
let h: C x C — R such that
(i) h(z,y) > 0,Vz € C;
(i) For each y € C fized, the function x — h(x,y) is upper semicontinuous;
(iii) For each x € C fized, the function y — h(x,y) is conver and lower semicontinuous;

and assume that for fited r > 0 and z € C, there exists a nonempty compact convex subset K of Hy and
xz € CNK such that

1
F(y,az)—l—h(y,x)—k;(y—x,x—z)<0, VyeC\ K. (2.13)
The proof of the following lemma is similar to the proof of Lemma 2.13 in [21] and hence omitted.

Lemma 2.2. Assume that Fi,h; : C x C — R satisfy Lemma 2.1 Let r > 0 and x € Hy. Then, there
ezists z € C' such that

1
Fl(z,y)+h1(z,y)+;<y—z,z—x> >0, VyeC. (2.14)

Lemma 2.3 ([9]). Assume that the bifunctions Fi,hy : C x C' — R satisfy Lemma [2.1] and hy is monotone.
For r >0 and for all x € Hy, define a mapping 7 g O as follows:

1
TFLh) (1) = {z €C: Fi(z,y)+ hi(z,y) + ;(y— z,z—1x) >0, Yye C}. (2.15)

Then, the following hold:

(1) T s single-valued.

F1,h1)

(2) TT( s firmly nonexpansive, i.e.,

| TP g — LR 2 < (k) g Lk 0N Yy € H. (2.16)

(3) Fiz(TF"")) = GEP(Fy, hy).
(4) GEP(F1,hy) is compact and convez.

Further, assume that F5, hy : Q X Q — R satisfy Lemma [2.1 For s > 0 and for all w € Hs, define a
mapping 7)o, Q as follows:
1
T(F2:h2) (1) = {d €Q: Fy(d,e)+ ha(d,e) + ;(e —d,d—w) >0, Vee Q}. (2.17)

Then, we easily observe that TS(F2’h2) is single-valued and firmly nonexpansive, GEP(Fy, ha, Q) is compact

and convex, and Fia:(TS(F?’hQ)) = GEP(Fy, ha,Q), where GEP(F, ha, Q) is the solution set of the following
generalized equilibrium problem:

Find y* € @ such that F>(y*,y) + ha(y*,y) > 0,Vy € Q.

We observe that GEP(F3, ha) C GEP(Fs, ha, Q). Further, it is easy to prove that I' is a closed and
convex set.
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Remark 2.4. Lemmas and are slight generalizations of Lemma 3.5 in [I0] where the equilibrium
condition Fi(Z,z) = hi(Z,x) = 0 has been relaxed to Fi(z,x) > 0 and h;(Z,z) > 0 for all x € C. Further,
the monotonicity of k1 in Lemma [2.2]is not required.

Lemma 2.5 ([10]). Let Fy : C x C — R be a bifunction satisfying Lemma hold and let TF' be defined
as in Lemma [2.3] for r > 0. Let x,y € Hy and 1,72 > 0. Then

Tog — T

Ty = Tl < lly — = + 175y = yll-

T2
Lemma 2.6 ([22]). Assume A is a strongly positive linear bounded operator on Hilbert space Hy with

coefficient ¥ > 0 and 0 < p < ||A||7L. Then, |[I — pA|| <1 - p7.

Lemma 2.7 ([33]). Let {z,} and {z,} be bounded sequences in a Banach space X and let {3, } be a sequence
in [0,1] with 0 < liminf, o B, < limsup,,_,.. Bn < 1. Suppose xy11 = (1 — Bn)zn + Bnxy for all integers
n >0 and limsup,,_, o ([|zn+1 — 2nl| — [|Zn+1 — znl]) < 0. Then, lim, |2, — zn|| = 0.

Lemma 2.8 ([27]). Let X be an inner product space. Then, for any x,y,z € X and o, 3,y € [0,1] with
a+ B+ ~v=1, we have

laz + By +v2|* = alle|® + Bllyll* + vll2l* — aBllz — y|I* — arllz — 2| = Bylly — 2|1

Lemma 2.9 ([]). Let C be a nonempty bounded closed convex subset of a uniformly conver Banach space
E and T : C — C a nonexpansive mapping. For each x € C and the Cesaro means Tpx = n%rl Yoo Tix,
then limsup,, . [|Thz — T(Thx)| = 0.

Lemma 2.10 ([38]). Assume {a,} is a sequence of nonnegative real numbers such that
An+1 < (1 - an)an + 5717 n > 07

where {an} is a sequence in (0,1) and {0,} is a sequence in R such that

(i) 2onzr On = 00,

(1) limsup,, 2—’; <0 or Y o2 |6n] < 0o. Then, limy, o0 an = 0.

Lemma 2.11 ([26]). Each Hilbert space Hy satisfies the Opial condition that is, for any sequence {xy} with
Tp — x, the inequality liminf, _, ||z, — x| < liminf,, . ||z, — yl||, holds for every y € H with y # x.

3. Main Result

Theorem 3.1. Let H; and Hs be two real Hilbert spaces and C' C Hy and Q) C Ha be nonempty closed convex
subsets of Hy and Ha, respectively. Let A : Hy — Ho be a bounded linear operator. Let Fi,hy : C x C — R
and Fy,hy : Q x Q@ — R satisfy Lemma 2.1]; hi, he are monotone and Fy is upper semicontinuous. Let
B be p-inverse-strongly monotone mapping from C into Hy. Let f be a contraction of C into itself with
coefficient o € (0,1) and let D be a strongly positive linear bounded operator on Hi with coefficient ¥ > 0
and 0 < v < % Let {S*}_| be a sequence of nonexpansive mappings from C into itself such that

Q=N Fiz(S)YNVI(C,B)NT # 0.
Let {xn},{yn} and {u,} be sequences generated by zo € C, u, € C and

up = T (@, + €A% (T2 — 1) Axy),
Yn = PC(un - )\nBun)7 (3'1)
Tp+1 = an'Yf(xn) + Bnn + ((1 — Bu)I — anD)%H Z?:o S'Yn, Vn >0,

where {o},{Bn} C (0,1), {\s} € [a,b] C (0,28) and {r,} C (0,00) and & € (0, 1), L is the spectral radius
of the operator A*A and A* is the adjoint of A satisfying the following conditions:
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(C1) limp o0y = 0, Y07 oty = 00;
(C2) 0 < liminf, s fp < limsup,, ,o On < 1;
(C3) limy, 00 |[Ant1 — An| = 0;

(C4) liminf, o 1y > 0, imy, 00 |1 — 70| = 0.

Then {x,} converges strongly to q € Q, where ¢ = Po(I — D + ~vf)(q), which is the unique solution of the
variational inequality problem
<(D7,yf)Q7:C7Q> > 0’ Vr € Q’

or, equivalently, q is the unique solution to the minimization problem

1
1;0618 §<Dl‘,$> - h(m)a

where h is a potential function for ~f such that h'(x) = vf(z) for x € Hy.

Proof. From the condition (C1), we may assume without loss of generality that a,, < (1 — ,)||D|~! for all
n € N. By Lemma we know that if 0 < p < ||D||7, then ||[I — pD| < 1 — py. We will assume that
|II — D|| <1—4. Since D is a strongly positive linear bounded operator on H, we have

|D|| = sup{|[(Dz, x)| : x € Hy,||z]| = 1}.
Observe that

<((1 — Bu)I — oan):L‘,ac> =1-03, — an(Dx,z)
> 1= B —an| D
>0,

this show that (1 — 8,)I — a, D is positive. It follows that

(1 = B)] — anD| = sup{‘<((1 B — anD)x,:I;>

Lz € Hy, ||z = 1}

= sup{l — Bn — ap(Dx,z) : x € Hy, ||z|| = 1}
<1- B, —any.
Since A, € (0,25) and B is S-inverse-strongly monotone mapping. For any z,y € C, we have

I(I = AB)z — (I = M B)yl* = [[(x — y) — Au(Bz — By)|?
= |l — y|* = 2An{z — y, Bz — By) + A2 || Bz — By||*
<l = ylI* + An(An — 28)|| Bz — By|?
< [lz —yl*. (3.2)

It follows that |[(I — A,B)x — (I — A\, B)y|| < ||z — y||, hence I — A, B is nonexpansive.
Step 1. We will show that {x,} is bounded.

. . F P
Since z* € Q, i.e., 2* € I, and we have 2* = Tr(nl’hl)x* and Az* = T7£n27h2)A£L‘*.

We estimate

lan = |2 = T (@ + AN (T = 1) Azy) — 27

Tn
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— TP (@, + €A (T — 1) Ay — T |2
< |l + EAS(TF2M2) — 1) Ay — 2|2
< g — |2+ €2 A* (TFH2) — 1) A |2 + 26 (w, — 2%, AH(TEHD) — D Az,).  (3.3)
Thus, we have
lun—a*(* < [l —a*|+€((T} FQ’hZ) I)Amn,AA*(T}fQ’hQ)—I)Aajn>—|—2§<xn—m*,A*(T,SfQ’hQ)—I)A:cn>. (3.4)
Now, we have
ST — D) Awy, AA(TIEM) — DAz, < LE((TIP") — 1) Ay, (T — 1) Auy)
LE|(TM) — I) Axn . (3.5)
Denoting A := 2¢(x,, — x*, A*(T (F2 ha) _ I)Az,,) and using , we have
(xn — a*, AX(T\F2h2) 1) Ag,,)
= 26(A(z,, — x¥), (T\F212) — 1) Aa,,)
(A, — 2%) + (T — 1) A, — (T4 — 1) A, (TF2) — 1) Azs,)

=2€{<T7~(f2 ) Ay, — A, (T2 — 1) Awy) — ||(T, FQ’hZ)—I)Al’n“Z}

< 2ef ST Dyt |2 = T4 — 1t 2}

< —SH(TﬁfQ’hZ) I)Awy . (3.6)
Using . and ( -, we obtain

lun — 2™ |? < llen —a*||* + E(LE = DT — 1) Ay, (3.7)

Since ¢ € (0, 1), we obtain
lun = 2*[1* < fln — 2™ (3.8)
By the fact that Po and I — A\, B are nonexpansive and z* = Po(z* — A\, Bx*), then we get
lyn — 2*|| = | Po(un — AnBun) — z7||
< ||Pc(up — A\yBuy,) — Po(x* — A\, Bz™)||
< (T = A B — (I = \aB)z"|
< Jun — 2|

< lzn =27 (3.9)

Let S, = n%Ll S oS it follows that
1 < 1 <
Sz — Spyll = H Sig——— S g
192 — Spyll n+1z x n+12 y
=0 =0
1 n A A
> 1Stz — Sty
n+1 P
1 n
<> eyl
=0

n+1

= el =l =yl

|
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which implies that S,, is nonexpansive. Since z* € ), we have
1 n n
St = L3
nt+1i= =0
By (3.9),we have
[#n41 = 27| = [lan(vf(2n) = Da™) + Bp(@n — 27) + (1 = Bp)] — anD)
X (Spyn — )|l
< an|[vf(@n) = D™ + Bullzn — 27| + (1 = Bn — an¥)|lyn — 27
< an|[vf(@n) = Da™|[ + Bullzn — 27| + (1 = Bn — an¥)||2n — 27|
< any|[f (@n) = f(@7)]| + anllvf(2") = Da*|[ + (1 — an¥)lzn — 27|
< anyelzn — 2| + anllvf(2") = Da®|| + (1 — an¥)|lzn — 27|
_ ) . [7f(2) — Da”||
= (I —an(y —y®))|lzn — 27| + an(y — o -
( ( Dl I+ an( ) 5= a)
D *
< max{”wn o), &) = Dal }
(¥ —a)
It follows from induction that
N ||7f( ) Dz*||
Tpil — T Smax{ xo — z* }
Hence, {z,} is bounded, so are {uy},{y,} and {S,y,}.

Step 2. We will show that lim,_,c ||Znt+1 — zn|| = 0.

Since T,gnilhl) nd Tﬁfj’lhﬂ both are firmly nonexpansive, for & € (0,7), the mapping T,gni’lhl)(l +
EAX(T, rf:f’lhﬂ — I)A) is nonexpansive, see [5, 24]. Further, since u, = r(fl’hl (xn + EAX(T Fz’h2) I)Az,)
and U,y = Tr(ﬂ’lhl)(a:mr + EAX(T, Tfjf’lhz) — I)Axp41), it follows from Lemma [2 H that

1 — wnll < ITEED (@ + EANTERRD — 1) Ay yr) — T (@, + EAX T2 — 1) Azy))|
FITE (y + EAX(TII) — 1) Azy) — Tz, + €A (T — 1) Aay)|
< lent1 - wnll + [l + éA*( T2 — 1) Azy) — (@0 + EA%( er’hQ) — ) Azy,)||
+ () (0 4 €A% (TP — 1) Ay) — (n + EAMTE — DAz (510,

< lwns1 — :cnll + &I AT, '”)Al‘n TM2) Ay | + <

Tn+1

< llznst — ol + €l AN ‘HT P2) Az, — Aol +

Tn+1

= [|Znt1 — 2ol + E||Allon + Gns
where

| T F2h) Ag,, — Aa,,||

On ::’1—

Tn+1
and

Sn = Tn+1

T'n+1
On the other hand, it follows that

Hyn—H - ynH = HPC(Un—H - )\n+1Dun+1) — Po(un — /\nDun)H

— T (2, 4 AT — 1) Azy) — (@0 + EAT(T2) — 1) Axy)|.
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< (un+1 = Anp1Dunt1) — (un — AnDuy) |
= [[(un+1 — un) = Ant1(Duny1 — Dug) + (Any1 — An) Dug |
< [(unt1 = un) = Ans1(Dunt1 — Dup)|| + [Ant1 — Al Du |
< un+1 — unll + [Ans1 — Anl [ Dun |- (3.11)
So from (3.10)) and (3.11)), we get
[Yn+1 = Ynll < [Tnt1 — zull + | Allon + 6o + [Ant1 = Anll[ Dug||. (3.12)

We compute that

HSn—I—lyn—i—l - SnynH SHSn-i-lyn-i-l - Sn-l-lynH + HSn—&-lyn - SnynH

1 n+1 ) 1 n '
n+2ZSlyn_n+1ZSZyn
=0 =0

1 < 1 1 I
=Yn+1 — ynll + Zszyn—&— — gy, — mzszyn
=0 1=0

<Ynt1 = yull +

n 4 2 4 n—+ 2
1 - 1
_ _ I gt _ - gntl
1 - 1
< - s Sl - Sn+1
<l = vl + DT §|| gnll + 5 15"
1 n
< - — S'yn — S'a* *
<yns1 — ynll + CESICET) ;(II Yn z*|| + ||lz*]])
1 * *
+7n+2(||5”“yn—5”+1w |+ llz*[)
1 n
< _ - _ * *
<yn+1 — ynll + CERICET) ;(Ilyn 2| + ||lz*]])
+7n+2(llyn—$*ll+llx*|!)
n+1
< _ - _ ES *
<yn+1 — ynll + (n+1)(n+2)(\|yn || + [|=*]])

1 . 1,
+m”yn z H+mllw |

2 " *
g1 = all + —lm = " + — 2"

w1 — wall + €l Allon + Gn + [Ang1 — Anl|| Du |

] |
— X T |l.
n+2 Yn n+2

Let 241 = (1 — Bpn)zn + Bntn, it follows that

and hence

_ Tnt1 — Puln
e 1- Bn
_ oy f(@n) + (1= Bu)I — anD)Snyn
1- IBTL '

17 f(@ng1) + (1 = Bug1)! — ang1D)Snt1Ynt1
1 — Bny1

lznt1 = zall =
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_ an f(zn) + (1 = Bp)] — anD)Spyn
1—p5n
_Ho‘n+17f(x”+1) (1= Bnt1)Snt1¥nt1  Anp1DSpi1ynia
1- Bn-&-l - Bn-&-l 11— /Bn+1
_ an f(2n) . (1= Bn)Snyn | anDSnyn
1- Bn 1- 571 1- ﬁn

an
H 1 gl (vf(xn+1) = DSns1yn+1)

(DSnyn /Yf(mn)) + Sn+1yn+1 - Snyn

1 - ﬁn
(8%
< n+1

11— Bn-‘rl

(6%
+ #HDSnyn - ’Vf(xn)H + ||Sn+1yn+1 - SnynH
n

”’Yf(mn-‘rl) - DSn-i-lyn—l-lH

< Qn 1
1= B+
+ |znt1 — zp|| + &l Allon + 6n + |/\n+1 - )‘n‘HDunH

b2 g — ] [
—_— — X X .
n-+2 Yn n

Therefore

Qp41

H’Yf($n+1) DSn-i—lyn—f—lH + HDSnyn
1= Bns1

||Zn+1 - Zn” - ||xn+1 - an <

+ &l Allon + s + [Ant1 — An| | Dug| + mﬂyn _ 4

It follows from n — oo and the conditions (C1)-(C4), that
limsup(||znt1 — 2ull = |Tn4+1 — 2al]) <0
n—oo
From Lemma we obtain lim,, o ||2n — 2| = 0 and also
nh_ggo [Zns1 — 2nll = nh_g.lo(l — Bn)llzn — zn| = 0.

Step 3. We will show that lim,_, ||un — x| = 0.

For z* € Q,2* = Tﬁfl’hl)m* and Tr(fl’hl) is firmly nonexpansive, we obtain

|un — H2 _HT (F1ha) (xn + fA*(T7§527h2) — I)Ax,) — x*H2
:HTrfhhl (xn + éA*(T£52,h2) _ I)Al’n) Tr(fhhl) *HQ
<(uy, — ¥, @ + EAN(TIF2M2) — 1) Az, — 2¥)
1

=2{Ilun—x*||2+||xn EAN(T2 M) — 1) Ay — 2|

(= ) — [ + AT _ 1) Ags, x*HP}

1
2
1

— 26 (up, — @p, AN(TF202) I)Axn>]}.

7 f(@ns1) = DSniagmiall + 751D Sntn = 7/ (@)

v ()|

n—+ 2

={uun B I P Y I>Axn|r2}

5 { = "1+ N =12 = [ = + 24T — D) P

(3.13)
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Hence, we obtain
lun = 27|* < |z — 2*(* = [lun — 2> + 28] Alun — ) | [(T2"2) = T) Az (3.14)
Using (3.7), (3.9) and Lemma we obtain

|21 — 2|12 =l f(@n) + Butn + (1 = Ba)] — D) Snyn — a*||?
=[lon(vf () = Dz*) + Bul(@n — &%) + (1 = Bu)I — anD) X (Spyn — 2*)|?
<anllyf(@n) = D[ + Ballzn — |2 + (1 = B — )l — 2”2
<anllyf (@) = Da*|? + Ballzn — |2 + (1 = B — o) un — 2* |12
<an |7/ (@n) — Dz*||* + Bullwn — 2|
+ (1= o — an¥)([len — 2*|? + E(LE — V[T — 1) Az, |?)
=an|[7f (wn) = Da*|? + Ballzn — 2|2 + (1 = B — onF) wn — 2* |
— (1= Bo — anD)EQ — LE (T2 — T) Az |2,

Therefore,

(L= LOINTIM) — 1) Aw |

lzn = 217 = llzns1 = &*|* + anllyf(zn) = D2*|* — anllan — |

(1 *Bn*an'?

~—

IN A

(lzn = 2"l + 241 = 2" Dlzn = @nsill + anllvf(@n) = Da*[* — anllzn — 2|,
Since ay, — 0, (1 — By — an¥)E(1 — LE) > 0 and limy,—yo0||Tn — Tnt1]] = 0, we obtain

lim [|(TF2h2) — 1Az, || = 0. (3.15)

n—00 n

Using (3.9), (3.14) and Lemma we obtain

|21 = @*|* = llanvf (@n) + Baan + (1 = B)T = @nD)Snyn — ||
= lan(vf(zn) — D2*) + Bulan — %) + ((1 = Bu)I — D) X (Spyy — ™) ||
< anll7f(@n) = Da*|* + Ballen — 2*|* + (1 = B — ) llyn — 2"
< anllf(zn) = Da*|* + Ballwn — 2|2 + (1 = B — ) Jun — |
< apllvf(zn) - Dx*”z + Bnllzn — 3U*H2
+ (1= Bn = an¥) (20 = 2% = [Jun — zal* + 26| A(un — @) | (T2 = 1) A,)
= aglvf(@n) = Da*|* + Bullzn — 2| + (1 = B — an¥) |20 — 27|
= (1= B — anM)llun = l® + 26(1 = B — an?)[[Alun — 2a) (T — I) Az])).

Then, we have

(1= B — an¥) len — un?
<anllyf(@n) = D[ + Ballzn — 212 + (1 = B — an¥)lwn — 2% = l|znss — 2*[|?
+26(1 = B — oY) | Aun — @) [|[(TF12) — 1) Az |
<an|vf(@n) — D2 + [lon — 2% = ||znsr — 2% = anllwn — 2"
+26(1 = Bn — anY)|Aun — z) [||(T>"2) = 1) Az, |))
<an|vf(@n) = D2 + 20 — tngal|(l2n — 21| + [@nsr — 2*[]) — anllan — 2|2
+26(1 = B — )| Aup — 20) [T — 1) Az ).
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By condition (C1), (3.13)) and (3.15), then we have

lim |ju, — z,|| = 0. (3.16)

n—oo

Step 4. We will show that lim,,_,cc ||Snyn — zn| = 0.
Indeed, observe that

|20 = Snynll <llzn — Tnga |l + lzns1 — Spynll
=[|zn — Tpy1 | + llanyf(@n) + Bazn + (1 = Bp)] — anD)Snyn — Spynl|
=[|zn — zns1|l + v f(2n) — anDSnyn + anDSyyn + Bnn — BrSnYn + BaSnyn
+ (1 = Bn)! — anD)Snyn — Snyn||
SHxn - xn—l—lH + an”Vf(xn) - DSnynH + 6onn - SnynH

and then )
a
[xn — Snynl| < 1—- 8, [#n = Tnall + 1 —nﬁn 7S (zn) = DSnyn|-
Since from condition (C1), (C2) and (3.13]), we get
lim |z, — Spyn| = 0. (3.17)
n—oo

Step 5. We will show that
(1) Timsoc lyn — tal] = 0
(i) limnso0 [ Suin — gl = 0.
From , and Lemma we obtain

[E—
Dz*||* + Bpllzn — «*|?
Dx*||2 + Bullzn — x*”z

< a7 f (zn (1= Bp)I — anD)||Snyn — x*HQ

) — +
< apllvf(zn) — + (1= B — an¥)lyn — 37*H2

< anllvf(@n) = D + Ballzn — 2** + (1 = B — an)|| Pe(un — AaBuy) — Po(e* — Ay Bz™)||?

< apllvf(zn) — D$*||2 + Bullzn — x*”Q + (1= Bn — an¥)|[(un — AnBuy) — (2% — )‘an*)”z

< anl[vf(wn) = Dz + Bullzn — 2** + (1 = B — an®){lun — 2|1 + X (An — 28)[|Bun — Bz*||*}
() = Dz + (1 = an¥)llzn — (1> + (1 = By — an¥)An(An — 28)|| Bun — Ba*||?

(€) = Dz*| + [lzn — 2|1 + (1 = B — an¥)An(An — 28)||Buy, — Bz*|?
(2n) = Dz*||* + |z — 2*|* + (1 = B — an¥)a(b — 26)|| Buy, — Bx*||?,

< an||7f Tn
< anH’Yf In
< ap|vf(zn

it follows that

0 < (1—Bn—any)a(2B - b)||Bu, — Bx*|?
< anllyf (@) = Da*|? + [l — 2*|* = |J@nt1 — 2"

< a7 f(@n) = Da* | + lensr — zall(lzn — 27| + l|zn41 — 2]).
Since ay, — 0, ||Tn41 — Tpl] — 0 as n — 0o, so we get

lim ||Bu, — Bz*|| = 0. (3.18)
n—oo

Next, we will show that lim, o ||un — yn|| = 0.
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Further, we observe that
T
= | Po(tn — AnBun) — Po(z* — A Ba™)|?
< (up, — MpBuy) — (2% — A\yBz™), yp, — z¥)
< %{H(un = AnBup) = (2% = M Ba)|* + [lyn — 2*[1* = | (un — AnBug) — (&% = M B™) — (yn — 2*)|*}
< %{Hun —2” + [lyn — 2*||” = [|(un — yn) = An(Buy, — Bz*)|*}
< %{Hun — 12+ [lyn — 21” — lun = yall* + 200 (un — yn, Bup — Ba*) — A7 || Buy, — Bz*||%},
so, we obtain
lyn — 12 < ltm — 12 = ltn — gl + 200 (tn — g, Bun — Ba*) — A2 Bug — Ba*2,  (3.19)
and hence from and , we get
|ns1 — 27
<anllyf(zn) = D + Bullzn — 2*1? + (1 = B — an)|lyn — 2*|?
<anllyf(zn) = Dx*|* + Bullxn — |2
+ (1 = Bn — any){lun — x*HQ — |lun — ynH2 + 22X (un — Yn, Buy, — Br*) — AZHBUH - Bm*Hz}
=an|[7f(xn) = Da*||* + Ballzn — 2*|* + (1 = B — an¥)[Jun — ™|
— (1= Bn — an¥)||un — ?/n||2 +2An (1 = Bn — an¥)(un — Yn, Bun, — Bz™)
— (1= Bn — an¥) A2 || Buy, — Ba*|?
<an|vf(xn) = Da*|? + Bullwn — 2*(1* + (1 = Ba — an?)||lzn — 2|
— (1= Bn — an¥)||un — yn||2 + 220 (1 = Bn — an¥)(un — Yn, Bun, — Bz™)
— (1= Bn — ) A2 || Buy, — Ba*|)?
<an|[vf(n) = Da*||” + |zn — ¥ = anFllzn — 2| = (1 = B — @) |lun — ynll®
+ 20, (1 = Bn — an¥)(ty, — Yn, Buy, — Bx*) — (1 — By — any) A2 || Bu,, — Bx*|?
Soan'yf(xn) Da*|* + [lzn — 2*|” = anFllzn — ¥ = (1 = B — an¥)Jun — ynl[®
+ 2 (1 = B — an¥)llun = yu || Bun — Ba*|| = (1 = B — an¥) A3 || Buy — Ba™ |,

which implies that

(1= Bn — an¥)|lun — Z/nH2

<an|vf(2n) = Da*|* + llan — 2*|* = @nt1 — 2" — anllan — 2|

(
+ 20(1 = B — @) lun = gl Bun — Ba*| = (1 = B — € 7)A2]| Buy, — Ba* |
<an|vf(zn) = Da*|* + llon = zpsil|(Jon — 27l + lznss = 2*])) = anllan — 27|
+2Xn(1 = B = an)llun = yulll| Bun — Ba*|| = (1 = B — 02| Buy — Ba*|.
Since limy, o0 || Buyn — Bx*|| = 0,limy, o0 || Zn4+1 — 2n || = 0 and the conditions (C1)-(C3), we have
Jim fuy, —ya| = 0. (3.20)

Consequently, from (3.16)), (3.17) and (3.20)), we observe that

150y = ynll < [[1Snyn = znll + [[2n = unll + [lun = ynll = 0 as n = oco. (3.21)
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By Lemma we have limsup,, . ||Snyn — S(Snyn)| = 0.
Step 6. We claim that limsup,,_,. (D — vf)q,q — z,) < 0, where ¢ is the unique solution of the
variational inequality ((D — v f)q,x, —¢) > 0.
To show this inequality, we choose a subsequence {yy,} of {y,}, such that
lim (D —vf)q,q = yn,) = limsup((D = v)q, ¢ — yn)-

100 n—00

Since {yn,} is bounded, there exists a subsequence {yn, } of {yn,} which converge weakly to z € C.
Without loss of generality, we can assume that y,,, — z. From ||Spyn — S(Snyn)|| — 0, as n — oo, we obtain
S(Sn,yn;) — =

Step 7. We Will show that z € ). Step 7.1 First, we show that z € Fiz(S,) = %HZ?:O Fix(S).
Assume that z ¢ — 1 > o Fiz(SY). Since y,,, — z and Tz # 2. From Lemma [2.11} we have

liminf ||y,, — z|| < liminf ||y,, — Sz||
1—00 1—00
< lim inf({lyn, = Syn;ll + | Syn; — Sz])
1—00

< liminf {jy,, — 2|,
1—00

which is a contradiction. Thus, we obtain z € Fiz(S,) = n+1 S, Fix(SY).
Step 7.2 We will show that z € T'.
First, we will show z € GEP(F1, hy).

Tr(Fl’hl)

Since u,, = Ty, We have

1
Fi(up,w) + hi(un, w) + —(w — up, up — x,) >0, Yw € C.

n
It follows from the monotonicity of F; that

1
hl(una U}) + 7<w — Up, Up — l‘n> Z Fl(w; un)v
n

and hence replacing n by n;, we get

Up, — T,
M> > Fy(w, up,).

ng

hi (tp,;, w) + <w — Up,,

Since ||u, — x| — 0, and z, — z, we get u,, — z and * . Unifri (. Tt follows by Lemma (iv) that

0> Fi(w,2),Vz € C. For any t with 0 <t <1 and w € C, let wy = tw~+ (1 —t)z. SIDCGMEC,ZGC, we
have w; € C, and hence, Fj(wy, z) < 0. So, from Lemma (i) and (iv), we have

0 = Fy(wg, wy) + hy(we, wy)
< [ (we, w) + ha(we, w)] + (1 = ) [Fi(we, 2) + ha(wy, 2)]
< P (we, w) + hy(we, w)] + (1 = ) [F1(z, we) + ha(z, we)]
< [Fi(we, w) + ha(wy, w)).

Therefore, 0 < Fj(w¢, w) + hy(wy, w). From Lemma (iii), we have 0 < Fy(z,w) + hi(z,w). This
implies that z € GEP(Fy, hy).

Next, we show that Az € GEP(Fy, ha). Since ||u, — x| — 0,u,, = z as n — oo and {z,} is bounded,
there exists a subsequence {x,,} of {z;} such that z,, — z, and since A is bounded linear operator, so
Azy, — Az.

Now, setting k,, = Ax,, — T, (F2’h2)Axni. It follows from (3.15) that lim; o0 ky, = 0 and Az, — ky, =

Fy,h
Tr(nf’ 2)Axm .
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Therefore, from Lemma we have

1
Fy(Azxy, — kn,;, 2) + ho(Azp, — kn,;, 2) + — (2 — (Azp, — kn,), (Azp, — kpn,) — Azp,) >0, VZ € Q.

Tn,;

7

Since Fy and hs are upper semicontinuous taking limsup to above inequality as i — oo and using
condition (iv), we obtain

Fy(Az, %) + ho(Az,2) >0, VZ€Q,

which means that Az € GEP(Fy, he) and hence z € T'.
Step 7.3 We will show that z € VI(C, B).
Let M : H — 2" be a set-valued mapping defined by

Mo — Bv+ Nov, v eC,
YT, v,

where Nov := {z € Hy : (v —wu,2) > 0,Vu € C} is the normal cone to C at v € C. Then M is maximal
monotone and 0 € Mv if and only if v € VI(C, B); (see [28]) for more details. Let (v,u) € G(M). Then we
have

u € Mv = Bv+ Ngv,

and hence
u — Bv € Now.

Since y, € C,Vn, so we have
(V= Yn,u — Bv) > 0. (3.22)

On the other hand, from y,, = Po(u, — A\pBuy,), we have
<U —Yn,Yn — (Un - )\nBun)> >0,

that is

<U — Yn, Yn —fn + Bun> > 0.
Therefore, we have

<1} _ym‘vu> Z <’U - yni,Bv)

An;
= <’U — yni7BU — M _ Bunl>
A,
Yn; — Un,
= <U - yniaBU - Byn,> + <U - yniaByni - Bun,> - <’U - ynia )\7>
ng
. — Up.
2 <U—ynzaByn, _Buni>_<v_yni;w>- (323)
n;

Note that yn, = 2, [|yn, — un,|| = 0 as i — co and B is S-inverse-strongly monotone, hence from (3.23), we
obtain (v—z,u) > 0 as i — co. Since M is maximal monotone, we have z € M 10, and hence z € VI(C, B).
Therefore z € ().

Since ¢ = Po(I — D +vf)(q), we have

limsup((vf — D)g, 2 —q) = lLimsup{(7f — D)g, Snyn — q)

= ((vf—=D)g,z—q) <0. (3.24)
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Step 8. Finally, we show that {z,} converge strongly to g, we obtain that

i1 — QHQ =[lanyf(wn) + Bnrn + (1 = Bu)] — anD)Snyn — QH2
=llan(vf(@n) — Dq) + Bu(zn — q) + (1 = Bu)I — anD)(Snyn — )|
=ap|lvf (@n) = Dall* + 11Bn(@n — @) + (1 = Bu)I — anD)(Snyn — @)
+ 2(Bn(xn — @) + (1 = Bu)I — anD)(Snyn — q), an(vf(2n) — Dq))
<ap|lvf(zn) — Dl + {Bullzn — al + (1 = Bn — an¥)lyn — all}?
+ 25710‘71(3371 - %'Yf(xn) - DQ> + 20471(1 — Bn — an:)/)<5nyn - Q7'7f(xn) - DQ>
=a |7 f(2n) — Dall* + {Bullzn — qll + (1 = Bn — an¥) |z — gl }?
+ 2Bnan(zn — ¢, vf(xn) —vf(@) +vf(q) — D(q))
+ 200 (1 = Bn — an¥)(Snyn — ¢, 7f (xn) —vf(q) +vf(q) — Dq)
<ap|lvf(zn) — Dl + {Bullzn — gl + (1 = Bn — an¥) |20 — qll}*
+ 2Bnan Ty — ¢, vf(xn) = v (q)) + 20080 (2 — ¢,7f(q) — Dq)
+ 20, (1 = Bn — @ ¥)(Snyn — ¢, 7f (@n) — vf())
+ 205 (1 = Bn — a¥){Snyn — ¢, 7f (@) — Dg)
<apllvf(zn) — Dall> + (1 — on¥)?|ln — qll* + 20 Bullzn — || f (@n) — f(9)]
+ 200 Bn(Tn — ¢,7f (@) — Dq) + 2an(1 — B — an¥)V|[Snyn — qllll f(zn) — f(@)|
+ 200 (1 — B — an¥){(Snyn — ¢,7f(q) — Dq)
<ap|lvf(zn) — Dl + (1 — an¥)? ||z — qll” + 2anBpyellzn — ql?
+ 200, B (0 — 4,7F (@) = Dq) + 200 (1 = B — an¥)varl|zn — gl?
+ 200 (1 = B — an¥){(Snyn — ¢,7f(¢) — Dq)
=ap|lvf (wn) — Dall* + (1 = 2007 + a27°) a0 — g + 200 Bnyal|zn — q?
+ 200 Bn (0 — ¢,7f(q) — Dq) + (20mya — 20 Bnya — 205770 ||z — g
+ 205 (1 = Bn — a¥){(Snyn — ¢, 7f(q) — Dg)
=ap|lvf (wn) — Dgll” + (1 — 2007 + 027 + 2anya — 200770) |0 — g
+ 200 Bn{Tn — ¢,7f(¢) — Dq) + 2an(1 — B — an¥){Snyn — ¢, 7f(q) — Dq)
<(1 = an(2y — an¥* — 2y + 200,570)) |20 — q||* + |7 (zn) — Dgl|®
+ 2an6n<xn - 49, 'Yf(Q) - DQ> + 20, (1 — By — Oln:)/) <Snyn - 49, 'Yf(Q) - DQ>
<(1 = n(27? — ¥ — 2va + 20,770)) || — q||* + @ndn, (3.25)

where 9§, := an||7f($n) - DQ||2 + 2/8n<xn - Q77f(Q) - DQ> + 2(1 — Bn — an:}’)<5nyn - qﬂ’Vf(Q) - DQ>'

By (3.24]), the conditions (C1) and (C2), we get limsup,,_,., 6, < 0. Applying Lemma to (3.25) we
conclude that x, — ¢. This completes the proof. O

4. Consequently results

Corollary 4.1. Let Hy and Hs be two real Hilbert spaces and C C Hy and QQ C Hy be nonempty closed convex
subsets of Hi and Ha, respectively. Let A : Hy — Hoy be a bounded linear operator. Let F1 : C x C' — R and
Fy: Q x Q — R satisfy Lemma [2.1] and F is upper semicontinuous. Let B be 3-inverse-strongly monotone
mapping from C into Hy. Let f be a contraction of C into itself with coefficient o € (0,1) and let D be
a strongly positive linear bounded operator on Hi with coefficient ¥ > 0 and 0 < v < g Let {S"}"_, be a
sequence of nonexpansive mappings from C' into itself such that

Q=N Fiz(S)YNVI(C,B)NO # ().
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Let {zp}, {yn} and {u,} be sequences generated by xo € C, uy, € C and

Uy, = TTI;} (xn + §A*(Tff —I)Ax,),
Yn = PC’(un - AnBun)y A (41)
Tpy1 = anVf(Tn) + Bron + (1 — Ba)l — O‘nD)T%H ZZ‘L:() S"Yn, Vn >0,

where {an},{Bn} C (0,1), {\n} € [a,b] C (0,28) and {r,} C (0,00) and & € (0, %),L is the spectral radius
of the operator A*A and A* is the adjoint of A satisfy the following conditions (C1)-(C4). Then {z,}
converges strongly to q € ), where ¢ = Po(I — D + vf)(q), which is the unique solution of the variational
inequality problem

<(D_’7f)Q7m_q> > O, Vo € Q’

or, equivalently, q is the unique solution to the minimization problem

1
1;0618 §<Dl‘,$> - h(:p),

where h is a potential function for ~vf such that h'(x) = vf(z) for x € Hy.
Proof. Taking hy = hy = 0 in Theorem then the conclusion of Corollary [4.1]is obtained. O

Corollary 4.2. Let H be real Hilbert spaces and C C H. Let F : C x C' — R satisfying Lemma [2.1] Let
B be B-inverse-strongly monotone mapping from C into H. Let f be a contraction of C into itself with
coefficient a € (0,1) Let S : C — C' be nonexpansive mapping such that

Q= Fiz(S) N VI(C, B) N EP(F) # 0.
Let {xp}, {yn} and {u,} be sequences generated by xy € C, uy, € C and

_ pF
Uy, = Trnxn,

Yn = Po(un — A\ Buy,), (4.2)
Tpy1 = anVf(Tn) + Bnon + (1 = Bn — o) Syn, Vn >0,

where {an},{Bn} C (0,1), {\,} € [a,b] C (0,28) and {r,} C (0,00) satisfy the following conditions (C1)-
(C4). Then {z,} converges strongly to q € §, where ¢ = Pof(q).

Proof. Taking S' = S, fori =0,1,2,...,n,F} = Fy = F,H = Hy = H,hy =hy =0,A=0and D = [ in
Theorem [3.1], then the conclusion of Corollary [£.2]is obtained. O

Corollary 4.3. Let H be real Hilbert space and C C H. Let F : C x C' — R satisfy Lemma 2.1 Let B be
B-inverse-strongly monotone mapping from C into H. Let f be a contraction of C into itself with coefficient
a € (0,1). Let S: C — C be nonexpansive mapping such that

Q:= Fiz(S)NVI(C,B)NEP(F) # 0.
Let {z,},{yn} and {u,} be sequences generated by xy € C, u, € C and

Uy = Tf;mn,
Yn = Po(un — A\yBuy,), (4.3)
Tntl = QpU + Bpy + (1 — By — an)Syn, Yn >0,

where {an},{Bn} C (0,1), {\n} € [a,b] C (0,28) and {r,} C (0,00) satisfy the following conditions (C1)-
(C4). Then {z,} converges strongly to q € Q, where ¢ = Po(q).

Proof. Taking v =1 and f(z,) = v in Corollary then the conclusion of Corollary is obtained. O
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Corollary 4.4. Let H be real Hilbert space and C C H. Let f be a contraction of C' into itself with
coefficient a € (0,1). Let S : C — C be nonexpansive mapping such that Fix(S) # 0. Let {x,} be sequences
generated by xg € C, and

Tnt1 = AV f(zn) + Bnxn + (1 — Bn — ap)Sxy, Yn >0, (4.4)

where {an},{Bn} C (0,1), satisfy the following conditions (C1)-(C2). Then {x,} converges strongly to
q€ FZ.%‘(S), where q = PFzz(S)f(q)

Proof. Taking S* = 8, for i = 0,1,2,...,n,Hy = Hy = HF}, = Fo = h; = ho = 0,4 =0,y, = u, =
Tn, D = Po =1 and B = 0 in Theorem then the conclusion of Corollary [4.4] is obtained. O
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