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Abstract

In this paper, an implicit iterative process is considered for strongly continuous semigroup of Lipschitz
pseudocontraction mappings. Weak and strong convergence theorems for common fixed points of strongly
continuous semigroup of Lipschitz pseudocontraction mappings are established in a real Banach space.
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1. Introduction and Preliminaries

The study of fixed points of mappings has been at the center of vigorous research activity in the last years.
The idea of considering fixed point iteration procedures comes from practical numerical computations. The
class of pseudocontractive mappings in their relation with iteration procedures has been studied by several
researchers under suitable conditions; for more details, see [17, 18, 20] and the references therein. The class
of strongly pseudocontractive mappings has been studied by many researchers (see, [3, 12, 15]) under certain
conditions.

Viscosity method provides an efficient approach to a large number of problems coming from different
branches of Mathematical Analysis. Various applications of the viscosity methods can be found in optimal
control theory, singular perturbations, minimal cost problem. Dewangan et al. [6] studied the strong
convergence of viscosity iteration and modified viscosity iteration process for strongly continuous semigroup
of uniformly Lipschitzian asymptotically pseudocontractive mappings.
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The variational inequality problem was first introduced by Hartman and Stampacchia [9]. Then, the
variational inequality has achieved an increasing attention in many research fields, such as mathematical
programming, constrained linear and nonlinear optimization, automatic control, manufacturing system de-
sign, signal and image processing and the complementarity problem in economics and pattern recognition
(see [4, 7, 8] and the references therein).

Let E denote an arbitrary real Banach space and E∗ denote the dual space of E. The normalized duality
map J : E → 2E

∗
is defined by

Jx := {u∗ ∈ E∗ : 〈x, u∗〉 = ‖x‖2; ‖u∗‖ = ‖x‖},

where 〈·, ·〉 denotes the generalized duality pairing between elements of E and E∗. First of all, we recall and
define the concepts as follows:

Definition 1.1. Let E be a real Banach space and T be a mapping with domain D(T ) and range R(T ) in
E.

(1) A mapping T is said to be nonexpansive, if ‖Tx− Ty‖ ≤ ‖x− y‖ holds for all x, y ∈ D(T ).

(2) A mapping T is said to be strongly pseudocontractive, if for all x, y ∈ D(T ), there exists j(x − y) ∈
J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ β‖x− y‖2, for some 0 < β < 1. (1.1)

(3) A mapping T is said to be pseudocontractive if there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 (1.2)

for all x, y ∈ D(T ).

If I denotes the identity operator, then (1.2) is equivalent to the following [16]:

‖x− y‖ ≤ ‖x− y + s[(I − T )x− (I − T )y]‖, ∀s > 0. (1.3)

Closely related to the class of pseudocontractive mappings is strongly continuous semigroup of Lipschitz
pseudocontractive mappings. Let E be a real Banach space, K be a nonempty subset of E. One parameter
family T := { T (t) : t ∈ R+ }, where R+ denotes the set of nonnegative real numbers, is said to be strongly
continuous semigroup of Lipschitz pseudocontraction mappings from K into itself if the following conditions
are satisfied:

(1) T (0)x = x for all x ∈ K;

(2) T (s+ t)x = T (s)T (t)x for all x ∈ K and s, t ∈ R+;

(3) T (t) is pseudocontractive for each t ∈ R+;

(4) for each x ∈ K, the mapping T (·)x from R+ into K is continuous;

(5) for each t > 0, there exists a bounded measurable function L(t) : (0,∞)→ [0,∞) such that

‖T (t)x− T (t)y‖ ≤ L(t)‖x− y‖, ∀x, y ∈ K.

If L(t) = 1 in (5), (3) is replaced by the following (3’): T (t) is a nonexpansive mapping for each t ∈ R+,
then T is said to be a strongly continuous semigroup of nonexpansive mapping on K. T is said to have a
fixed point if there exists y ∈ K such that T (t)y = y for all t ∈ R+. We denote by F (T ), the set of fixed
points of T , i.e., F (T ) := ∩t∈R+F (T (t)).

Recall that a mapping f : K → K is a contraction on K if there exists a constant α ∈ (0, 1) such that
‖f(x)− f(y)‖ ≤ α‖x− y‖, x, y ∈ K. We use ΠK to denote the collection of mappings f verifying the above
inequality. That is, ΠK = {f : K → K | f is a contraction with constant α}. Note that each f ∈ ΠK has a
unique fixed point in K.
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Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖·‖, respectively.

Assume that A is strongly positive bounded linear operator on H, that is, there is a constant
−
γ > 0 with

property

〈Ax, x〉 ≥ −γ‖x‖2 ∀x ∈ H.

A typical problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive
mapping on a real Hilbert space H:

min
x∈C

1

2
〈Ax, x〉 − 〈x, b〉,

where C is the fixed point set of a nonexpansive mapping T on H and b is given point in H.
Let T : H → H be a nonexpansive mapping and f ∈ ΠH . Recently, Marino and Xu [10] introduced, in

Hilbert spaces, the following general iteration process

xt = (I − tA)Txt + tγf(xt), (1.4)

t ∈ (0, 1) such that t < ‖A‖−1 and 0 < γ <
−
γ/α and proved that the sequence {xt} generated by (1.4)

converges strongly to the unique solution of the variational inequality

〈(A− γf)x∗, x− x∗〉 ≥ 0, x ∈ Fix(T ),

which is the optimality condition for the minimization problem

min
x∈Fix(T )

1

2
〈Ax, x〉 − h(x),

where h is a potential function for γf (i.e., h′(x) = γf(x), for x ∈ H) and Fix(T ) = {x ∈ H : Tx = x}.
Construction of common fixed points of nonexpansive semigroup is an important subject (see, e.g.,

[2, 21]). This brings us to the following question.
Question. Can the following implicit iteration sequence

un = αnγf(un) + (I − αnA)T (tn)un,

provide the same result for the more general class of strongly continuous semigroups of Lipschitz pseudo-
contraction mappings in Banach spaces?

It is our purpose, in this paper to prove a convergence theorem for a strongly continuous semigroup
of Lipschitz pseudocontraction mappings in Banach spaces. More precisely, Let K be a nonempty closed
convex subset of a uniformly convex Banach space which has uniformly Gâteaux differentiable norm such that
K+K ⊂ K. Let T := { T (t) : t ∈ R+ } be a strongly continuous semigroup of Lipschitz pseudocontraction
mappings from K into itself such that F (T ) 6= ∅. Then, for all n ≥ 1, the implicit iteration sequence

un = αnγf(un) + (I − αnA)T (tn)un,

converges strongly to a point of F (T ). This provides an affirmative answer to the above Question.
Now we recall the well-known following concepts and results.
A Banach space E is said to be strictly convex if ‖x‖ = ‖y‖ = 1 for x 6= y implies 1

2‖x + y‖ < 1. In a
strictly convex Banach space E, we have if ‖x‖ = ‖y‖ = ‖tx + (1 − t)y‖, for t ∈ (0, 1) and x, y ∈ E, then
x = y.

Let E be a Banach space with dimension E ≥ 2. The modulus of E is the function δE : (0, 2] → [0, 1]
defined by

δE(ε) = inf

{
1− 1

2
‖x+ y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε

}
.

A Banach space E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2].
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Let S(E) = {x ∈ E : ‖x‖ = 1 }. The space E is said to be smooth if

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for all x, y ∈ S(E). For any x, y ∈ E(x 6= 0), we denote this limit by (x, y). The norm ‖·‖ of E is said
to be Fréchet differentiable if for all x ∈ S(E), the limit (x, y) exists uniformly for all y ∈ S(E). E is said
to have a uniformly Gâteaux differentiable norm if for each y ∈ S(E) the limit (x, y) is attained uniformly
for x ∈ S(E).

We need the following notation: xn ⇀ x denotes a sequence {xn} converges weakly to x.
A Banach space E is said to satisfy Opial’s condition [14] if for any sequence {xn} in E, xn ⇀ x implies

that
lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ∈ E (y 6= x).

A mapping T : K → K is said to be demiclosed at zero if, for each sequence {xn} in K, xn ⇀ x and
Txn → 0 strongly imply Tx = 0.

Let µ be a continuous linear functional on l∞ and (a0, a1, . . .) ∈ l∞. We write µn(an) instead of
µ((a0, a1, . . .)). Recall a Banach limit µ is a bounded functional on l∞ such that

‖µ‖ = µn(1) = 1, lim infn→∞ an ≤ µn(an) ≤ lim supn→∞ an,
µn(an+r) = µn(an)

for any fixed positive integer r and for all (a0, a1, . . .) ∈ l∞.
Recall that an operator A is strongly positive on a smooth Banach space E if there exists a constant

−
γ > 0 with the property

〈Ax, J(x)〉 ≥ −γ‖x‖2, ‖aI − bA‖ = sup
‖x‖≤1

|〈(aI − bA)x, J(x)〉|, (1.5)

where x ∈ E and a ∈ [0, 1], b ∈ [−1, 1], I is the identity mapping and J is the normalized duality mapping.
The following Lemma is useful in the sequel.

Lemma 1.2. Assume that A is a strongly positive linear bounded operator on a smooth Banach space E

with coefficient
−
γ > 0 and 0 < ρ < ‖A‖−1. Then ‖I − ρA‖ ≤ 1− ρ−γ.

Proof. The proof follows as in the proof of Lemma 2.5 of [10].

Lemma 1.3 ([5]). Let E be a Banach space. Let K be a nonempty closed and convex subset of E and let
T : K → K be a continuous and strong pseudocontraction mapping. Then T has a unique fixed point in K.

Lemma 1.4 ([13]). Let E be a real normed linear space and J be the normalized duality map on E. Then
for any given x, y ∈ E, the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀j(x+ y) ∈ J(x+ y).

Lemma 1.5 ([22]). Let E be a real reflexive Banach space which satisfies Opial’s condition. Let K be a
nonempty closed convex subset of E and T : K → K be a continuous pseudocontractive mapping. Then
I − T is demiclosed at zero.

Lemma 1.6 ([19]). Let r > 0. Then a real Banach space E is uniformly convex if and only if there exists
a continuous and strictly increasing convex function g1 : R+ → R+ with g1(0) = 0 such that

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g1(‖x− y‖)

for all x, y ∈ Br, λ ∈ [0, 1], where Br = { x ∈ E : ‖x‖ ≤ r }.
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2. Main results

Theorem 2.1. Let K be a nonempty closed convex subset of a real smooth Banach space E such that
K + K ⊂ K. Let T := {T (t) : t ∈ R+} be a strongly continuous semigroup of Lipschitz pseudocontraction
mappings from K into itself such that F (T ) 6= ∅. Let A be a strongly positive linear bounded operator with

coefficient
−
γ > 0, f ∈ ΠK . Assume that 0 < γ <

−
γ/α. Let {un} be a sequence defined by

un = αnγf(un) + (I − αnA)T (tn)un (2.1)

for all n ≥ 1 such that limn→∞ tn = limn→∞(αn/tn) = 0, 0 < αn < 1 for all n ≥ 1. Then limn→∞‖un −
T (t)un‖ = 0 for any t ∈ R+.

Proof. First, we show that {un} is well defined. Let

Tx := αnγf(x) + (I − αnA)T (tn)x, ∀x ∈ K, ∀n ≥ 1.

Since

〈Tx− Ty, j(x− y)〉 = αnγ〈f(x)− f(y), j(x− y)〉
+ 〈(I − αnA)(T (tn)x− T (tn)y), j(x− y)〉

≤ αnγ‖f(x)− f(y)‖‖x− y‖+ (1− αn
−
γ)‖x− y‖2

≤ (1− αn(
−
γ − γα))‖x− y‖2,

we know that T is strongly pseudocontractive and strongly continuous. It follows from Lemma 1.3 that T
has a unique fixed point un for each n ≥ 1 such that

un = αnγf(un) + (I − αnA)T (tn)un.

That is, the sequence {un} is well defined.
Next, we show that {un} is bounded. Indeed, fixing p ∈ F (T ), we have

‖un − p‖2 = 〈αn(γf(un)−Ap) + (I − αnA)(T (tn)un − p), j(un − p)〉
= αnγ〈f(un)− f(p), j(un − p)〉+ αn〈γf(p)−Ap, j(un − p)〉

+ 〈(I − αnA)(T (tn)un − p), j(un − p)〉
≤ αnγ‖f(un)− f(p)‖‖un − p‖+ αn〈γf(p)−Ap, j(un − p)〉

+ ‖I − αnA‖‖un − p‖2

≤ (1− αn(
−
γ − αγ))‖un − p‖2 + αn〈γf(p)−Ap, j(un − p)〉.

This implies that

‖un − p‖2 ≤
1

−
γ − αγ

〈γf(p)−Ap, j(un − p)〉. (2.2)

Thus we have

‖un − p‖ ≤
1

−
γ − αγ

‖γf(p)−Ap‖.

This shows that {un} and hence {f(un)}, {T (tn)un} are bounded. Additionally, from (2.1) we have ‖un −
T (tn)un‖ = αn‖f(un)−AT (tn)un‖ → 0 as n→∞.

Put M = supt≥0 L(t). From the assumption, we have that M <∞. For each given t > 0,

‖un − T (t)un‖ ≤
[t/tn]−1∑
k=0

‖T ((k + 1)tn)un − T (ktn)un‖+ ‖T (t)un − T ([t/tn]tn)un‖
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≤ [t/tn]L(ktn)‖T (tn)un − un‖
+ L([t/tn]tn)‖T (t− [t/tn]tn)un − un‖
≤M [t/tn]αn‖γf(un)−AT (tn)un‖+M‖T (t− [t/tn]tn)un − un‖
≤ t(αn/tn)M‖γf(un)−AT (tn)un‖

+M max{ ‖T (s)un − un‖ : 0 ≤ s ≤ tn }

for each n ≥ 1, where [t/tn] is a nonnegative integer not greater than t/tn. Since limn→∞(αn/tn) = 0
and T (·)x : R+ → K is continuous for any x ∈ K, it follows from limn→∞‖un − T (tn)un‖ = 0 that
‖un − T (t)un‖ → 0 as n→∞. This completes the proof.

Theorem 2.2. Let E be a reflexive and smooth Banach space which satisfies the Opial’s condition and K
a nonempty closed convex subset of E such that K + K ⊂ K. Let T := { T (t) : t ∈ R+ } be a strongly
continuous semigroup of Lipschitz pseudocontraction mappings from K into itself such that F (T ) 6= ∅. Let

A be a strongly positive linear bounded operator with coefficient
−
γ > 0, f ∈ ΠK . Assume that 0 < γ <

−
γ/α.

Suppose that {un} is a sequence defined by (2.1) and

(i) 0 < αn < 1 for all n ≥ 1;

(ii) limn→∞ tn = limn→∞(αn/tn) = 0.

Then the sequence {un} converges weakly to a common fixed point of the semigroup T .

Proof. Let ωw({un}) := { u : ∃unj ⇀ u } denote the weak limit set of {un}. Since E is reflexive and {un}
is bounded, it follows from Lemma 1.5 that ωw({un}) ⊂ F (T ). Additionally, since the space E satisfies
Opial’s condition, we conclude that ωw({un}) is singleton. This completes the proof.

Theorem 2.3. Let K be a nonempty closed convex subset of a uniformly convex Banach space which has
uniformly Gâteaux differentiable norm such that K + K ⊂ K. Let T := { T (t) : t ∈ R+ } be a strongly
continuous semigroup of Lipschitz pseudocontraction mappings from K into itself such that F (T ) 6= ∅. Let

A be a strongly positive linear bounded operator with coefficient
−
γ > 0, f ∈ ΠK . Assume that 0 < γ <

−
γ/α.

Suppose that {un} is a sequence defined by (2.1) and

(i) 0 < αn < 1 for all n ≥ 1;

(ii) limn→∞ tn = limn→∞(αn/tn) = 0.

Then the sequence {un} converges strongly to a point p of F (T ) which solves the variational inequality:

〈(A− γf)p, j(p− z)〉 ≤ 0, z ∈ F (T ). (2.3)

Proof. Define a mapping g(x) := 2x − T (t)x, then the mapping g has a nonexpansive inverse, denoted
by h, which maps K into K. Additionally, it follows from Theorem 6 of [11] that F (h) = F (T ). From
‖un − T (t)un‖ → 0 as n→∞, we have that ‖un − h(un)‖ → 0 as n→∞. Define a mapping φ : K → R by

φ(y) := µn‖un − y‖2, ∀y ∈ K,

where µn is a Banach limit. Since E is reflexive and φ is continuous, convex and φ(x) → ∞ as ‖x‖ → ∞,
we get that φ attains its infimum over K (see, e.g., [1]). Hence

C := { x∗ ∈ K : φ(x∗) = min
x∈K

φ(x) }

is a nonempty bounded closed convex subset of K. Next, we shall show that C is singleton. Since C and
{un} are bounded, there exists r > 0 such that C, {un} ⊂ Br for all n ≥ 1. Since E is uniformly convex, it
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follows from Lemma 1.6 that there exists a continuous and strictly increasing convex function g1 : R+ → R+

with g1(0) = 0 such that, for any p1, p2 ∈ C,

‖un −
p1 + p2

2
‖2 ≤ 1

2
‖un − p1‖2 +

1

2
‖un − p2‖2 −

1

4
g1(‖p1 − p2‖).

Taking Banach limit µn on the above inequality, it follows that

1

4
g1(‖p1 − p2‖) ≤ 1

2µn‖un − p1‖
2 + 1

2µn‖un − p2‖
2 − µn‖un − p1+p2

2 ‖2 ≤ 0.

This implies p1 = p2 and so C is a singleton. Now, we show that T (t) has a fixed point in C. Indeed, since
limn→∞‖un − h(un)‖ = 0, for all q ∈ C, we get that

φ(h(q)) = µn‖un − h(q)‖2 = µn‖h(un)− h(q)‖2 ≤ µn‖un − q‖2 = φ(q),

we have that C is h−invariant and hence h(q) = q. Therefore, T (t)q = q. That is, q ∈ F (T ). It follows
from (2.2) that

µn‖un − q‖2 ≤ µn
1

−
γ − αγ

〈γf(q)−Aq, j(un − q)〉.

Now observing that unj ⇀ q implies j(unj − q) ⇀ 0, we conclude from the above inequality that µn‖un −
q‖2 → 0 as j →∞. Hence, there exists a subsequence {unj} of {un} such that {unj} converges strongly to
q. Next, we prove that q solves the variational inequality (2.3). For any z ∈ F (T ), we have that

〈(I − T (tn))un − (I − T (tn))z, j(un − z)〉 = 〈un − z, j(un − z)〉
− 〈T (tn)un − T (tn)z, j(un − z)〉
≥ ‖un − z‖2 − ‖un − z‖2 = 0. (2.4)

It follows from (2.1) that we can derive

(A− γf)un = − 1

αn
(I − T (tn))un +A(I − T (tn))un.

Then

〈(A− γf)un, j(un − z)〉 = − 1

αn
〈(I − T (tn))un − (I − T (tn))z, j(un − z)〉

+ 〈A(I − T (tn))un, j(un − z)〉
≤ 〈A(I − T (tn))un, j(un − z)〉. (2.5)

It follows from Lemma 1.5 and (2.5) that we obtain

〈(A− γf)q, j(q − z)〉 ≤ 0.

So, q ∈ F (T ) is a solution of the variational inequality (2.3), and hence q = p by the uniqueness. In a
summary, we have shown that each cluster point of {un} equals p. Thus, un → p as n→∞. This completes
the proof.

Remark 2.4. Theorem 2.3 improves Theorem 3.2 of Marino and Xu [10] in the sense that our theorem is
applicable in uniformly convex Banach spaces for the more general class of strongly continuous continuous
semigroup of Lipschitz pseudocontraction mappings.
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