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Abstract

In the framework of a b-metric space, by using the compatible and weak compatible conditions of self-
mapping pair, we discussed the existence and uniqueness of the common fixed point for a class of φ-type
contraction mapping, some new common fixed point theorems are obtained. In the end of the paper, we
give some illustrative examples in support of our new results. The results presented in this paper extend
and improve some well-known comparable results in the existing literature. c©2016 All rights reserved.
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1. Introduction and preliminaries

In 1990, Kang et al. [12] applied the compatibility of mappings to prove common fixed point theorem of
ϕ-contractive mappings. The same year, Liu [15] introduced the notion of weak compatibility of mappings
and proved some common fixed point theorems. In 2011, Yu and Gu [20] studied a class of common fixed
point problem of ϕ-contractive mappings and obtained a new common fixed point theorem.

Motivated and inspired by the above results, the aim of the paper is focus on the study of b-metric space
proposed by Czerwik[6]. By using the compatible and weak compatible conditions, we prove some new
common fixed point theorems for six self-maps satisfying a class of φ-type contraction condition. Because
of the metric space is a special case of the b-metric space, our results presented in this paper extend and
improve some well-known corresponding results in the literature due to Kang et al. [12], Roshan et al. [18],
Jungck [10], Diviccaro and Sessa [8], and Ding [7].
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Definition 1.1 ([6]). LetX be a nonempty set and s ≥ 1 be a given real number. A function d : X×X → R+

is a b-metric if the following conditions are satisfied:

(b1) d(x, y) = 0⇔ x = y;

(b2) d(x, y) = d(y, x);

(b3) d(x, z) ≤ s[d(x, y) + d(y, z)]

for all x, y, z ∈ X. In this case, the pair (X, d) is called a b-metric space and the number s is called the
coefficient of (X, d).

Remark 1.2. The class of b-metric spaces is effectively larger than that of metric spaces. Indeed, b-metric is
a metric if and only if s = 1. For the counter-example see [2].

In [6], Czerwik extended the Banach contraction principle from metric spaces to b-metric spaces. Since
then, a number of authors have investigated fixed point problems in b-metric spaces (see [1–4, 9, 13, 14, 16,
17, 19], and the references therein).

Definition 1.3 ([3]). Let (X, d) be a b-metric space, and let {xn} the sequence of points in X.

(a) A sequence {xn} in X is called b-convergent if and only if there exists x ∈ X such that d(xn, x) → 0
as n→∞.

(b) {xn} in X is said to be b-Cauchy if and only if d(xn, xm)→ 0 as n,m→∞.

(c) The b-metric space (X, d) is called b-complete if every b-Cauchy sequence in X is b-convergent.

Proposition 1.4 ([4]). In a b-metric space (X, d) the following assertions hold:

(i) a b-convergent sequence has a unique limit.

(ii) each b-convergent sequence is a b-Cauchy sequence.

(iii) in general, b-metric is not continuous.

Definition 1.5 ([18]). Let (X, d) be a b-metric space. A pair {f, g} is said to be compatible if

lim
n→∞

d (fgxn, gfxn) = 0,

whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = t for some t ∈ X.

Definition 1.6 ([11]). Let (X, d) be a b-metric space. A pair {f, g} is said to be weak compatible if

{t ∈ X : f(t) = g(t)} ⊂ {t ∈ X : fg(t) = gf(t)}.

In [18] the authors proved the following result.

Theorem 1.7 ([18, Theorem 2.1]). Suppose that A, B, S, and T are self-mappings on a b-complete b-metric
space (X, d) such that A(X) ⊂ T (X), B(X) ⊂ S(X). Suppose that the condition

d(Ax,By) ≤ k

s4
max

{
d(Ax,Sx), d(By, T y), d(Sx, T y),

1

2
[d(Ax, T y) + d(By,Sx)]

}
(1.1)

holds for all x, y ∈ X with 0 < k < 1 and s ≥ 1 is the coefficient of (X, d). If S and T are continuous and
pairs {A,S} and {B, T } are compatible, then A, B, S, and T have a unique common fixed point in X.

The purpose of this article is to further improve and extend Theorem 1.7 to the more general nonlinear
contractive type mapping.

To prove our result, we shall use the following lemma.
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Lemma 1.8 ([1]). Let (X, d) be a b-metric space with the parameter s ≥ 1, and suppose that {xn} and {yn}
are b-converge to x and y in X, respectively. Then we have

1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, we have limn→∞ d(xn, yn) = 0. Moreover, for each z ∈ X, we have

1

s
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

Lemma 1.9 ([18]). Let (X, d) be a b-metric space. If there exist two sequences {xn} and {yn} such that
lim
n→∞

xn = t for some t ∈ X and lim
n→∞

d(xn, yn) = 0, then lim
n→∞

yn = t.

Lemma 1.10. Let (X, d) be a b-metric space. Suppose that the sequence {yn} in X satisfies
lim
n→∞

d(yn, yn+1) = 0. If {yn} is not b-Cauchy in X, then there exists an ε0 > 0 and positive integer

sequences {mi} and {ni} such that

(i) mi > ni + 1, ni →∞ (i→∞);

(ii) d(ymi , yni) > ε0; d(ymi−1, yni) ≤ ε0, i = 1, 2, 3, · · · .

Proof. The proof is similar to the proof of Lemma 2.1 in [5], hence it is deleted.

2. Main results

In this section, suppose that Φ1 be the set of functions φ : [0,∞)5 → [0,∞) satisfying the conditions:

(φ1) φ is non-decrease and upper semicontinuous about each variable.

(φ2) For all t > 0,
ψ(t) = max {φ (0, 0, t, t, t) , φ (t, t, t, 0, 2t) , φ (t, t, t, 2t, 0)} < t. (2.1)

Let Φ2 be the set of functions φ : [0,∞)5 → [0,∞) satisfying the condition (φ1) and

(φ3) for all t > 0,

ψ(t) = max {φ (t, t, t, t, t) , φ (t, t, t, 0, 2t) , φ (t, t, t, 2t, 0)} < t. (2.2)

Clearly we can get: If t ≤ ψ(t), then t = 0.

Theorem 2.1. Let A,B, S, T, F , and G be six self-mappings on a b-complete b-metric space (X, d), and the
following conditions hold:

(i) A(X) ⊂ TG(X), B(X) ⊂ SF (X);

(ii) AF = FA, SF = FS, BG = GB, TG = GT ;

(iii) For all x, y ∈ X,

d(Ax,By) ≤ 1

s4
φ

(
d(Ax, SFx), d(By, TGy), d(SFx, TGy),

d(Ax, TGy), d(By, SFx)

)
, (2.3)

where φ ∈ Φ1 and s ≥ 1 is the coefficient of (X, d).

If it satisfies one of the following conditions, then A,B, S, T, F , and G have a unique common fixed point z
in X. Moreover, z is also a unique common fixed point of the pairs {A,SF} and {B, TG}, respectively.

1) Either A or SF is continuous, {S, SF} is compatible and {B, TG} is weak compatible;

2) Either B or TG is continuous, {B, TG} is compatible and {A,SF} is weak compatible;

3) Either SF or TG is surjection, and {A,SF} and {B, TG} are weak compatible.
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Proof. Let x0 ∈ X, as A(X) ⊂ TG(X), B(X) ⊂ SF (X), there exist {xn}, {yn} ⊂ X such that

y2n = Ax2n = TGx2n+1, y2n+1 = Bx2n+1 = SFx2n+2, n = 0, 1, 2, 3, · · · .

Suppose that there exists n0 ∈ N such that y2n0 = y2n0+1, then from (2.3) we have

d(y2n0+1, y2n0+2) = d(Ax2n0+2, Bx2n0+1)

≤ 1

s4
φ

 d(Ax2n0+2, SFx2n0+2), d(Bx2n0+1, TGx2n0+1),
d(SFx2n0+2, TGx2n0+1), d(Ax2n0+2, TGx2n0+1),

d(Bx2n0+1, SFx2n0+2)


=

1

s4
φ

(
d(y2n0+2, y2n0+1), d(y2n0+1, y2n0), d(y2n0+1, y2n0),

d(y2n0+2, y2n0), d(y2n0+1, y2n0+1)

)
=

1

s4
φ (d(y2n0+1, y2n0+2), 0, 0, d(y2n0+1, y2n0+2), 0)

≤ 1

s4
φ

(
d(d(y2n0+1, y2n0+2), d(y2n0+1, y2n0+2),
d(y2n0+1, y2n0+2), 2d(y2n0+1, y2n0+2), 0

)
≤ 1

s4
ψ (d(y2n0+1, y2n0+2))

≤ ψ (d(y2n0+1, y2n0+2)) .

By property of ψ, we obtain d(y2n0+1, y2n0+2) = 0. Consequently, y2n0+1 = y2n0+2.

Similarly, we can get y2n0+2 = y2n0+3. Hence, by the mathematical induction, we obtain y2n0 = y2n0+1 =
y2n0+2 = · · · . This implies that {yn}n≥n0 is a constant sequence. Therefore, the sequence {yn} is a
b-Cauchy sequence in (X, d). The same conclusion holds if we suppose that there exists n0 ∈ N such
that y2n0+1 = y2n0+2. Without loss of generality, we can suppose that yn 6= yn+1 for all n ∈ N. Then
d(yn, yn+1) > 0 for all n ∈ N. Hence, from (2.3) we have

d(y2n, y2n+1) = d(Ax2n, Bx2n+1)

≤ 1

s4
φ

(
d(Ax2n, SFx2n), d(Bx2n+1, TGx2n+1), d(SFx2n, TGx2n+1),

d(Ax2n, TGx2n+1), d(Bx2n+1, SFx2n)

)
=

1

s4
φ

(
d(y2n, y2n−1), d(y2n+1, y2n), d(y2n−1, y2n),

d(y2n, y2n), d(y2n+1, y2n−1)

)
≤ 1

s4
φ

(
d(y2n−1, y2n), d(y2n, y2n+1), d(y2n−1, y2n),

0, sd(y2n−1, y2n) + sd(y2n, y2n+1)

)
.

(2.4)

If d (y2n−1, y2n) < d (y2n, y2n+1), then d (y2n, y2n+1) > 0 (otherwise, we have d (y2n−1, y2n) < 0, which is a

contradiction). In this case, from (2.3) and the property of φ and ψ, we deduce that

d(y2n, y2n+1) ≤
1

s4
φ (sd(y2n, y2n+1), sd(y2n, y2n+1), sd(y2n, y2n+1), 0, 2sd(y2n, y2n+1))

≤ 1

s4
ψ (sd(y2n, y2n+1)) <

1

s4
(sd(y2n, y2n+1)) =

1

s3
d(y2n, y2n+1),

which is a contradiction, hence d(y2n−1, y2n) ≥ d(y2n, y2n+1). Again, by (2.1), (2.4), and the property of φ
and ψ, we get

d(y2n, y2n+1) ≤
1

s4
φ (sd(y2n−1, y2n), sd(y2n−1, y2n), sd(y2n−1, y2n), 0, 2sd(y2n−1, y2n))

≤ 1

s4
ψ (sd(y2n−1, y2n)) <

1

s4
(sd(y2n−1, y2n)) =

1

s3
d(y2n−1, y2n).

(2.5)
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Also, applying (2.3) and the property of φ and ψ, we proceed similarly as above and obtain

d(y2n+1, y2n+2) <
1

s3
d(y2n, y2n+1). (2.6)

Combining (2.5) and (2.6), we get

d(yn, yn+1) <
1

s3
d(yn−1, yn). (2.7)

Applying the above inequality (2.7) n times, we obtain

d(yn, yn+1) <
1

s3
d(yn−1, yn) < · · · <

(
1

s3

)n

d(y0, y1). (2.8)

Taking limit as n→∞ in (2.8), we have

lim
n→∞

d(yn, yn+1) = 0. (2.9)

Next, we shall show that {yn} is a b-Cauchy sequence in X. Otherwise, from Lemma 1.10, there exists
ε0 > 0 and two positive integer sequences {mi} and {ni} such that

(a) mi > ni + 1, ni →∞ (i→∞);

(b) d(ymi , yni) > ε0, d(ymi−1, yni) ≤ ε0, i = 1, 2, 3, · · · .

From the condition (b) and using the triangular inequality, we have

d(ymi , yni) ≤ sd(ymi , ymi−1) + sd(ymi−1, yni) ≤ sd(ymi , ymi−1) + sε0, (2.10)

d(ymi+1 , yni) ≤ sd(ymi+1 , ymi−1) + sd(ymi−1, yni) ≤ s2d(ymi+1 , ymi) + s2d(ymi , ymi−1) + sε0, (2.11)

d(ymi−1, yni+1) ≤ sd(ymi−1 , yni) + sd(yni , yni+1) ≤ sε0 + sd(yni , yni+1), (2.12)

d(ymi , yni+1) ≤ sd(ymi , ymi−1) + sd(ymi−1, yni+1)

≤ sd(ymi , ymi−1) + s2d(ymi−1, yni) + s2d(yni , yni+1)

≤ sd(ymi , ymi−1) + s2ε0 + s2d(yni , yni+1).

(2.13)

Taking the upper limit as i→∞ in (2.10), (2.11), (2.12), and (2.13), we obtain

lim sup
i→∞

d(ymi , yni) ≤ sε0, (2.14)

lim sup
i→∞

d(ymi+1 , yni) ≤ sε0, (2.15)

lim sup
i→∞

d(ymi−1, yni+1) ≤ sε0, (2.16)

lim sup
i→∞

d(ymi , yni+1) ≤ s2ε0. (2.17)

Again, from the condition (b) and using the triangular inequality, we have

ε0 < d(ymi , yni) ≤ sd(ymi , ymi+1) + sd(ymi+1, yni)

≤ sd(ymi , ymi+1) + s2d(ymi+1, yni+1) + s2d(yni+1, yni),
(2.18)

ε0 < d(ymi , yni) ≤ sd(ymi , yni+1) + sd(yni+1, yni). (2.19)

Taking the upper limit as i→∞ in (2.18) and (2.19), we obtain

lim sup
i→∞

d(ymi−1, yni+1) ≥
ε0
s2
,

lim sup
i→∞

d(ymi , yni+1) ≥
ε0
s
. (2.20)

Next, we discuss in following cases.
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(I) Suppose that mi is even number and ni is odd number. It follows from (2.3) that,

d(yni+1, ymi+1) = d(Axni+1, Bxmi+1)

≤ 1

s4
φ

 d(Axni+1, SFxni+1), d(Bxmi+1, TGxmi+1),
d(SFxni+1, TGxmi+1), d(Axni+1, TGxmi+1),

d(Bxmi+1, SFxni+1)


=

1

s4
φ

(
d(yni+1, yni), d(ymi+1, ymi), d(yni , ymi),

d(yni+1, ymi), d(ymi+1, yni)

)
.

Taking the upper limit as i→∞ in the above inequality, and using (2.9), (2.14), (2.15), (2.17), the condition
(b), and the property of φ and ψ, we get

ε0
s2
≤ lim sup

i→∞
d(yni+1, ymi+1)

≤ 1

s4
lim sup
i→∞

φ

(
d(yni+1, yni), d(ymi+1, ymi), d(yni , ymi),

d(yni+1, ymi), d(ymi+1, yni)

)
≤ 1

s4
φ
(
0, 0, sε0, s

2ε0, sε0
)
≤ 1

s4
φ
(
0, 0, s2ε0, s

2ε0, s
2ε0
)

≤ 1

s4
ψ
(
s2ε0

)
<

1

s4
(s2ε0) =

ε0
s2
,

which is a contradiction.

(II) Suppose that mi and ni are both even numbers. It follows from (2.3) that

d(ymi , yni+1) = d(Axmi , Bxni+1)

≤ 1

s4
φ

 d(Axmi , SFxmi), d(Bxni+1, TGxni+1),
d(SFxmi , TGxni+1), d(Axmi , TGxni+1),

d(Bxni+1, SFxmi)


=

1

s4
φ

(
d(ymi , ymi−1), d(yni+1, yni), d(ymi−1, yni),

d(ymi , yni), d(yni+1, ymi−1)

)
.

Taking the upper limit as i→∞ in the above inequality, and using (2.9), (2.14), (2.16), (2.20), the condition
(b), and the property of φ and ψ, we get

ε0s ≤ lim sup
i→∞

d(ymi , yni+1)

≤ 1

s4
lim sup
i→∞

φ

(
d(ymi , ymi−1), d(yni+1, yni), d(ymi−1, yni),

d(ymi , yni), d(yni+1, ymi−1)

)
≤ 1

s4
φ (0, 0, ε0, sε0, sε0)

≤ 1

s4
φ (0, 0, sε0, sε0, sε0)

≤ 1

s4
ψ (sε0) <

1

s4
(sε0) =

1

s3
ε0,

which is a contradiction.

(III) Suppose that mi and ni are both odd numbers. (IV) Suppose that mi is odd number and ni is even
number. Similarly, such two cases can deduce a contradiction. This implies {yn} is a b-Cauchy sequence in
X.

As X is b-complete, there exists z ∈ X such that yn → z (n→∞), then {y2n−1} and {y2n} b-convergent
to z, that is,

Ax2n = y2n → z, SFx2n = y2n−1 → z (n→∞).
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1) Let either A or SF is continuous, {A,SF} is compatible and {B, TG} is weak compatible.
First, suppose that SF is continuous, then {(SF )SFx2n} and {(SF )Ax2n} b-converge to SFz, since

{A,SF} is compatible, then we have

lim
n→∞

d((SF )Ax2n, A(SF )x2n) = 0.

Using Lemma 1.9, we obtain lim
n→∞

A(SF )x2n = SFz.

By (2.3), we have

d(A(SF )x2n, Bx2n−1)≤
1

s4
φ

 d(A(SF )x2n, (SF )(SF )x2n), d(Bx2n−1, TGx2n−1),
d((SF )(SF )x2n, TGx2n−1), d(A(SF )x2n, TGx2n−1),

d(Bx2n−1, (SF )(SF )x2n)

 . (2.21)

Taking the upper limit as i→∞ in (2.21), using Lemma 1.8 and the property of φ and ψ, we obtain

1

s2
d(SFz, z) ≤ lim sup

n→∞
d(A(SF )x2n, Bx2n−1)

≤ 1

s4
lim sup
n→∞

φ

 d(A(SF )x2n, (SF )(SF )x2n), d(Bx2n−1, TGx2n−1),
d((SF )(SF )x2n, TGx2n−1), d(A(SF )x2n, TGx2n−1),

d(Bx2n−1, (SF )(SF )x2n)


≤ 1

s4
φ
(
s2d(SFz, SFz), s2d(z, z), s2d(SFz, z), s2d(SFz, z), s2d(SFz, z)

)
=

1

s4
φ
(
0, 0, s2d(SFz, z), s2d(SFz, z), s2d(SFz, z)

)
≤ 1

s4
ψ
(
s2d(SFz, z)

)
.

The above inequality becomes

s2d(SFz, z) ≤ ψ
(
s2d(SFz, z)

)
.

By the property of ψ, we get s2d(SFz, z) = 0, hence SFz = z. Again from (2.3), we get

d(Az,Bx2n−1) ≤
1

s4
φ

(
d(Az, SFz), d(Bx2n−1, TGx2n−1), d(SFz, TGx2n−1),

d(Az, TGx2n−1), d(Bx2n−1, SFz)

)
. (2.22)

Taking the upper limit as i → ∞ in (2.22), using Lemma 1.8, SFz = z, and the property of φ and ψ, we
obtain

1

s
d(Az, z) ≤ lim sup

n→∞
d(Az,Bx2n−1)

≤ 1

s4
lim sup
n→∞

φ

(
d(Az, SFz), d(Bx2n−1, TGx2n−1), d(SFz, TGx2n−1),

d(Az, TGx2n−1), d(Bx2n−1, SFz)

)
≤ 1

s4
φ
(
d(Az, SFz), s2d(z, z), sd(SFz, z), sd(Az, z), sd(z, SFz)

)
=

1

s4
φ
(
d(Az, z), s2d(z, z), sd(z, z), sd(Az, z), sd(z, z)

)
=

1

s4
φ (d(Az, z), 0, 0, sd(Az, z), 0)

≤ 1

s4
φ (sd(Az, z), sd(Az, z), sd(Az, z), 2sd(Az, z), 0)

≤ 1

s4
ψ (sd(Az, z)) ≤ 1

s2
ψ (sd(Az, z)) .
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The above inequality becomes
sd(Az, z) ≤ ψ (sd(Az, z)) .

By the property (φ3), we get sd(Az, z) = 0, which means Az = z.
As z ∈ A(X) ⊂ TG(X), there exists µ ∈ X such that z = Az = TGµ. Using (2.3) and the property of

φ and ψ, we get

d(z,Bµ) = d(Az,Bµ)

≤ 1

s4
φ (d(Az, SFz), d(Bµ, TGµ), d(SFz, TGµ), d(Az, TGµ), d(Bµ, SFz))

=
1

s4
φ (d(z, z), d(Bµ, z), d(z, z), d(z, z), d(Bµ, z))

=
1

s4
φ (0, d(Bµ, z), 0, 0, d(Bµ, z))

≤ 1

s4
φ (d(Bµ, z), d(Bµ, z), d(Bµ, z), 0, 2d(Bµ, z))

≤ 1

s4
ψ (d(Bµ, z)) ≤ ψ (d(Bµ, z)) .

By the property of ψ, we get d(Bµ, z) = 0, this implies that Bµ = z, and so TGµ = Bµ = z.
By the weak compatibility of {B, TG}, we get

TGz = (TG)Bµ = B(TG)µ = Bz.

Further, from (2.3) and the property of φ and ψ,

d(z, TGz) = d(Az,Bz)

≤ 1

s4
φ (d(Az, SFz), d(Bz, TGz), d(SFz, TGz), d(Az, TGz), d(Bz, SFz))

=
1

s4
φ (d(z, z), d(TGz, TGz), d(z, TGz), d(z, TGz), d(TGz, z))

=
1

s4
φ (0, 0, d(z, TGz), d(z, TGz), d(z, TGz))

≤ 1

s4
ψ (d(z, TGz)) ≤ ψ (d(z, TGz)) .

By the property of ψ, we get d(z, TGz) = 0, this implies that z = TGz, and so z = TGz = Bz. Therefore,
z = TGz = Bz = Az = SFz.

Actually, since AF = FA, SF = FS, then

AFz = FAz = Fz, (SF )Fz = F (SF )z = Fz.

Using (2.2), z = TGz = Bz, and the property of φ and ψ, we have

d(Fz, z) = d(FAz,Bz) = d(AFz,Bz)

≤ 1

s4
φ

(
d(AFz, (SF )Fz), d(Bz, TGz), d((SF )Fz, TGz),

d(AFz, TGz), d(Bz, (SF )Fz)

)
=

1

s4
φ (d(Fz, Fz), d(z, z), d(Fz, z), d(Fz, z), d(z, Fz))

=
1

s4
φ (0, 0, d(Fz, z), d(Fz, z), d(Fz, z))

≤ 1

s4
ψ (d(Fz, z)) ≤ ψ (d(Fz, z)) .
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By the property of ψ, we get d(Fz, z) = 0, this implies that Fz = z. As SFz = z, we know Sz = z. So
Fz = Sz = z.

Since BG = GB, TG = GT , then

BGz = GBz = Gz, (TG)Gz = G(TG)z = Gz.

By (2.3) and the property of φ and ψ, we get

d(z,Gz) = d(Az,GBz) = d(Az,BGz)

≤ 1

s4
φ

(
d(Az, SFz), d(BGz, (TG)Gz), d(SFz, (TG)Gz),

d(Az, (TG)Gz), d(BGz, SFz)

)
≤ 1

s4
φ (d(z, z), d(Gz,Gz), d(z,Gz), d(z,Gz), d(Gz, z))

=
1

s4
φ (0, 0, d(z,Gz), d(z,Gz), d(Gz, z))

≤ 1

s4
ψ (d(z,Gz)) ≤ ψ (d(z,Gz)) .

Using the property of ψ, we have d(z,Gz) = 0, this is z = Gz. Since z = TGz, then z = Tz, so, z = Tz = Gz.
In the above proof, having that

z = Tz = Gz = Az = Bz = Sz = Fz,

we arrive z is the common fixed point of A,B, S, T, F , and G in X.
Second, suppose that A is continuous, then {A2x2n} and {A(SF )x2n} converge to Az, using the com-

patibility of {A,SF}, having that

lim
n→∞

d((SF )Ax2n, A(SF )x2n) = 0.

Using Lemma 1.9, we obtain lim
n→∞

(SF )Ax2n = Az.

By (2.2), we get

d(A2x2n, Bx2n−1) ≤
1

s4
φ

 d(A2x2n, (SF )Ax2n), d(Bx2n−1, TGx2n−1),
d((SF )Ax2n, TGx2n−1), d(A2x2n, TGx2n−1),

d(Bx2n−1, (SF )Ax2n)

 . (2.23)

Taking the upper limit as i→∞ in (2.23), using Lemma 1.8 and the property of φ and ψ, we obtain

1

s2
d(Az, z) ≤ lim sup

n→∞
d(A2x2n, Bx2n−1)

≤ 1

s4
lim sup
n→∞

φ

 d(A2x2n, (SF )Ax2n), d(Bx2n−1, TGx2n−1),
d((SF )Ax2n, TGx2n−1), d(A2x2n, TGx2n−1),

d(Bx2n−1, (SF )Ax2n)


≤ 1

s4
φ
(
s2d(Az,Az), s2d(z, z), s2d(Az, z), s2d(Az, z), s2d(z,Az)

)
=

1

s4
φ
(
0, 0, s2d(Az, z), s2d(Az, z), s2d(Az, z)

)
≤ 1

s4
ψ
(
s2d(Az, z)

)
.

The above inequality becomes
s2d(Az, z) ≤ ψ

(
s2d(Az, z)

)
.

By the property of ψ, we get s2d(Az, z) = 0, this is Az = z.
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Since z ∈ A(X) ⊂ TG(X), there exists µ ∈ X such that z = Az = TGµ. By (2.3), we get

d(Ax2n, Bµ) ≤ 1

s4
φ

(
d(Ax2n, SFx2n), d(Bµ, TGµ), d(SFx2n, TGµ),

d(Ax2n, TGµ), d(Bµ, SFx2n)

)
. (2.24)

Taking the upper limit as i→∞ in (2.24), using Lemma 1.8 and the property of φ and ψ, we obtain

1

s
d(z,Bµ) ≤ lim sup

n→∞
d(Ax2n, Bµ)

≤ 1

s4
lim sup
n→∞

φ

(
d(Ax2n, SFx2n), d(Bµ, TGµ), d(SFx2n, TGµ),

d(Ax2n, TGµ), d(Bµ, SFx2n)

)
≤ 1

s4
φ
(
s2d(z, z), d(Bµ, z), sd(z, z), sd(z, z), sd(Bµ, z)

)
=

1

s4
φ (0, d(Bµ, z), 0, 0, sd(Bµ, z))

≤ 1

s4
φ (sd(Bµ, z), sd(Bµ, z), sd(Bµ, z), 0, 2sd(Bµ, z))

≤ 1

s4
ψ (sd(Bµ, z)) ≤ 1

s2
ψ (sd(Bµ, z)) .

The above inequality becomes sd(Bµ, z) ≤ ψ (sd(Bµ, z)). By the property of ψ, we get sd(Bµ, z) = 0, this
is Bµ = z.

Thus TGµ = Bµ = z. Using the weak compatibility of {B, TG}, we obtain

TGz = (TG)Bµ = B(TG)µ = Bz.

By (2.3), we have

d(Ax2n, Bz) ≤
1

s4
φ

(
d(Ax2n, SFx2n), d(Bz, TGz), d(SFx2n, TGz),

d(Ax2n, TGz), d(Bz, SFx2n)

)
. (2.25)

Taking the upper limit as i→∞ in (2.25), using Lemma 1.8, TGz = Bz, and the property of φ and ψ, we
obtain

1

s
d(z,Bz) ≤ lim sup

n→∞
d(Ax2n, Bz)

≤ 1

s4
lim sup
n→∞

φ

(
d(Ax2n, SFx2n), d(Bz, TGz), d(SFx2n, TGz),

d(Ax2n, TGz), d(Bz, SFx2n)

)
≤ 1

s4
lim sup
n→∞

φ

(
s2d(z, z), d(Bz,Bz), sd(z,Bz),

sd(z,Bz), sd(Bz, z)

)
=

1

s4
φ (0, 0, sd(z,Bz), sd(z,Bz), sd(z,Bz))

≤ 1

s4
ψ (sd(z,Bz)) ≤ 1

s2
ψ (sd(z,Bz)) .

The above inequality becomes sd(z,Bz) ≤ ψ (sd(z,Bz)). By the property of ψ, we obtain sd(z,Bz) = 0,
this is z = Bz, and so z = TGz = Bz.

Since z ∈ B(X) ⊂ SF (X), so, there exists ω ∈ X such that z = Bz = SFω. By (2.3) and the property
of φ and ψ, we have

d(Aω, z) = d(Aω,Bz)

≤ 1

s4
φ

(
d(Aω, SFω), d(Bz, TGz), d(SPω, TGz),

d(Aω, TGz), d(Bz, SFω)

)
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=
1

s4
φ (d(Aω, z), d(z, z), d(z, z), d(Aω, z), d(z, z))

=
1

s4
φ (d(Aω, z), 0, 0, d(Aω, z), 0)

≤ 1

s4
φ (d(Aω, z), d(Aω, z), d(Aω, z), 2d(Aω, z), 0)

≤ 1

s4
ψ (d(Aω, z)) ≤ ψ (d(Aω, z)) .

By the property of ψ, we get d(Aω, z) = 0, this is Aω = z, and so Aω = SPω = z. Using the compatibility
of {A,SF}, we have

Az = A(SF )ω = (SF )Aω = SFz.

In the above proof, we get, z = TGz = Bz = Az = SFz, so, z is the common fixed point of A,B, SF ,
and TG.

Similarly, we can also prove that z is the common fixed point of A,B, S, T, F , and G in X.
Finally, we prove that z is the unique common fixed point of A,B, S, T, F , and G in X, furthermore, z

is also the unique common point of the pairs {A,SF} and {B, TG}, respectively.
Suppose on the contrary, that there exists z∗ ∈ X such that z∗ 6= z and z∗ is also the common fixed

point of the pair {B, TG} in X. Then, by (2.3) and the property of φ and ψ, we obtain

d(z, z∗) = d(Az,Bz∗)

≤ 1

s4
φ

(
d(Az, SFz), d(Bz∗, TGz∗), d(SFz, TGz∗),

d(Az, TGz∗), d(Bz∗, SFz)

)
=

1

s4
φ (d(z, z), d(z∗, z∗), d(z, z∗), d(z, z∗), d(z∗, z))

=
1

s4
φ (0, 0, d(z, z∗), d(z, z∗), d(z, z∗))

≤ 1

s4
ψ (d(z, z∗)) ≤ ψ (d(z, z∗)) .

Then, by the property of ψ, we get d(z, z∗) = 0, this is z = z∗. Thus, z is the unique common fixed point
of the pair {B, TG} in X. Similarly, z is the unique common fixed point of the pair {A,SF} in X. Thus, z
is the unique common fixed point of A,B, S, T, F , and G in X.

2) We show that B or TG is continuous, {B, TG} is compatible and {A,SF} weak compatible, the proof is
similar with 1).

3) We show that SF or TG is onto mapping, furthermore, {A,SF} and {B, TG} are both weak compatible.
Suppose that SF is surjection, then there exists ν ∈ X, such that SFν = z. Using (2.3), we get

d(Aν,Bx2n−1) ≤
1

s4
φ

(
d(Aν, SFν), d(Bx2n−1, TGx2n−1), d(SFν, TGx2n−1),

d(Aν, TGx2n−1), d(Bx2n−1, SFν)

)
. (2.26)

Taking the upper limit as i→∞ in (2.26), using Lemma 1.8, and the property of φ and ψ, we get

1

s
d(Aν, z) ≤ lim sup

n→∞
d(Aν,Bx2n−1)

≤ 1

s4
lim sup
n→∞

φ

(
d(Aν, SFν), d(Bx2n−1, TGx2n−1), d(SFν, TGx2n−1),

d(Aν, TGx2n−1), d(Bx2n−1, SFν)

)
≤ 1

s4
φ
(
d(Aν, z), s2d(z, z), sd(z, z), sd(Aν, z), sd(z, z)

)
=

1

s4
φ (d(Aν, z), 0, 0, sd(Aν, z), 0)
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≤ 1

s4
φ (sd(Aν, z), sd(Aν, z), sd(Aν, z), 2sd(Aν, z), 0)

≤ 1

s4
ψ (sd(Aν, z)) ≤ 1

s2
ψ (sd(Aν, z)) .

The above inequality becomes sd(Aν, z) ≤ ψ (sd(Aν, z)) . Thus, by the property of ψ, we get sd(Aν, z) = 0,
that is Aν = z. So z = Aν = SFν. Since {A,SF} is weak compatible, we have SFz = (SF )Aν =
A(SF )ν = Az.

We replace z with ν in (2.26), then we get

d(Az,Bx2n−1) ≤
1

s4
φ

(
d(Az, SFz), d(Bx2n−1, TGx2n−1), d(SFz, TGx2n−1),

d(Az, TGx2n−1), d(Bx2n−1, SFz)

)
. (2.27)

Taking the upper limit as i→∞ in (2.27), using Lemma 1.8 and the property of φ and ψ, we obtain

1

s
d(Az, z) ≤ lim sup

n→∞
d(Az,Bx2n−1)

≤ 1

s4
lim sup
n→∞

φ

(
d(Az, SFz), d(Bx2n−1, TGx2n−1), d(SFz, TGx2n−1),

d(Az, TGx2n−1), d(Bx2n−1, SFz)

)
≤ 1

s4
φ
(
d(Az,Az), s2d(z, z), sd(Az, z), sd(Az, z), sd(z,Az)

)
=

1

s4
φ (0, 0, sd(Az, z), sd(Az, z), sd(Az, z))

≤ 1

s4
ψ (sd(Az, z)) ≤ 1

s2
ψ (sd(Az, z)) .

The above inequality becomes sd(Az, z) ≤ ψ (sd(Az, z)). Therefore, by the property of ψ, we get sd(Az, z) =
0, this is Az = z, and so Az = SFz = z. Similarly, we can prove that z is the unique common fixed point
of A,B, S, T, F , and G in X, furthermore, z is also the unique common fixed point of the pairs of {A,SF}
and {B, TG}.

If TG is surjection, similarly, we can prove that z is the unique common fixed point of A,B, S, T, F , and
G in X, z is also unique common fixed point of the pairs {A,SF} and {B, TG}.

As in the proof of Theorem 2.1 we have the following result.

Theorem 2.2. Let A,B, S, T, F , and G be six self-mappings on a b-complete b-metric space (X, d), and the
following conditions hold:

(i) A(X) ⊂ TG(X), B(X) ⊂ SF (X);

(ii) AF = FA, SF = FS, BG = GB, TG = GT ;

(iii) For all x, y ∈ X,

d(Ax,By) ≤ 1

s4
φ

(
d(Ax, SFx), d(By, TGy), d(SFx, TGy),

d(Ax, TGy), d(By, SFx)

)
,

where φ ∈ Φ2, s ≥ 1 is the coefficient of (X, d).

If one of the following conditions is satisfied, then the mappings A,B, S, T, F , and G have a unique common
fixed point z. And z is the unique common fixed point of the pairs {A,SF} and {B, TG}.

1) Either A or SF is continuous, {A,SF} is compatible and {B, TG} is weak compatible;

2) either B or TG is continuous, {B, TG} is compatible and {A,SF} is weak compatible;

3) either SF or TG is surjection, and {A,SF} and {B, TG} are weak compatible.

Proof. Since the proof of Theorem 2.2 is very similar to that of Theorem 2.1, so we omit it.
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Remark 2.3. Theorems 2.1 and 2.2 improve and extend the corresponding results of Kang et al. [12] in its
three aspects:

(1) the generalization from four mappings to six mappings;

(2) by using one continuous function as opposed to two;

(3) the two pairs are both compatible decrease to one pair is compatible and another is weak compatible;

(4) the X is a metric space is replaced by the X is a b-metric space.

In Theorems 2.1 and 2.2, if F = G = I (I is identity mapping, the same below), we deduce the following
results of common fixed point for four self-mappings.

Corollary 2.4. Let A,B, S, and T be four self-mappings on a b-complete b-metric space (X, d) and the
following conditions hold:

(i) A(X) ⊂ T (X), B(X) ⊂ S(X);

(ii) For all x, y ∈ X,

d(Ax,By) ≤ 1

s4
φ (d(Ax, Sx), d(By, Ty), d(Sx, Ty), d(Ax, Ty), d(By, Sx)) , (2.28)

where φ ∈ Φ1, s ≥ 1 is the coefficient of (X, d). If it satisfies one of the following condition, then A,B, S
and T have a unique common fixed point z in X. Moreover, z is also a unique common fixed point of the
pairs {A,S} and {B, T}.

1) Either A or S is continuous, {A,S} is compatible, {B, T} is weak compatible;

2) either B or T is continuous, {B, T} is compatible, {A,S} is weak compatible;

3) either S or T is surjection, and {A,S} and {B, T} are weak compatible.

Corollary 2.5. Let A,B, S, and T be four self-mappings on a b-complete b-metric space (X, d), and the
following conditions hold:

(i) A(X) ⊂ T (X), B(X) ⊂ S(X);

(ii) For all x, y ∈ X,

d(Ax,By) ≤ 1

s4
φ (d(Ax, Sx), d(By, Ty), d(Sx, Ty), d(Ax, Ty), d(By, Sx)) , (2.29)

where φ ∈ Φ2, and s ≥ 1 is the coefficient of (X, d). If one of the following conditions is satisfied, then the
mappings A,B, S and T have a unique common fixed point z. And z is the unique common fixed point of
the pairs {A,S} and {B, T}.

1) Either A or SP is continuous, {A,S} is compatible and {B, T} is weak compatible;

2) either B or T is continuous, {B, T} is compatible and {A,S} is weak compatible;

3) either SP or T is surjection, and {A,S} and {B, T} are weak compatible.

Remark 2.6. Corollaries 2.4 and 2.5 improve and extend Theorem 2.1 of Roshan et al. [18] in its three
aspects:

(1) The contractive condition (1.1) is replaced by the new contractive condition defined by (2.28) and
(2.29);

(2) by using one continuous function as opposed to two;

(3) the two pairs maps are both compatible decrease to one pair is compatible and another is weak
compatible.

Remark 2.7. Theorems 2.1, 2.2 and Corollaries 2.4, 2.5 generalize and extend the corresponding results in
Jungck [10], Diviccaro and Sessa [8], and Ding [7].
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If there exists a function φ : [0,∞)5 → [0,∞) in Theorem 2.1 and Corollary 2.4 such that

φ (t1, t2, t3, t4, t5) =
k

s4
max

{
t1, t2, t3,

1

2
(t4 + t5)

}
for all (t1, t2, t3, t4, t5) ∈ [0,∞)5, k ∈ (0, 1) and s ≥ 1, then we can obtain the following results.

Corollary 2.8. Let A,B, S, T, F , and G be six self-mappings on a b-complete b-metric space (X, d) and the
following conditions hold:

(i) A(X) ⊂ TG(X), B(X) ⊂ SF (X);

(ii) AF = FA, SF = FS,BG = GB, TG = GT ;

(iii) For all x, y ∈ X,

d(Ax,By)≤ k

s4
max

{
d(Ax,SFx),d(By,TGy),d(SFx,TGy),

d(Ax,TGy)+d(By,SFx)

2

}
where k ∈ (0, 1) and s ≥ 1 is the coefficient of (X, d). If it satisfies one of the following condition, then
A,B, S, T, F and G have a unique common fixed point z in X. Moreover, z is also a unique common fixed
point of the pairs {A,SF} and {B, TG}.

1) Either A or SF is continuous, {A,SF} is compatible and {B, TG} is weak compatible;

2) either B or TG is continuous, {B, TG} is compatible and {A,SF} is weak compatible;

3) either SF or TG is surjection, and {A,SF} and {B, TG} are weak compatible.

Corollary 2.9. Let A,B, S, and T are four self mappings on a b-complete b-metric space (X, d), and the
following conditions hold:

(i) A(X) ⊂ T (X), B(X) ⊂ S(X);

(ii) For all x, y ∈ X,

d(Ax,By) ≤ k

s4
max

{
d(Ax, Sx), d(By, Ty), d(Sx, Ty),

d(Ax, Ty) + d(By, Sx)

2

}
, (2.30)

where k ∈ (0, 1) and s ≥ 1 is the coefficient of (X, d). If it satisfies one of the following condition, then
A,B, S, and T have a unique common fixed point z in X. Moreover, z is also a unique common fixed point
of the pairs {A,S} and {B, T}.

1) Either A or S is continuous, {A,S} is compatible, {B, T} is weak compatible;

2) Either B or T is continuous, {B, T} is compatible, {A,S} is weak compatible;

3) Either S or T is surjection, and {A,S} and {B, T} are weak compatible.

Remark 2.10. Corollary 2.9 improve and extend the main results in Kang et al. [12] and Roshan et al. [18].

Corollary 2.11. Let A,B, S, T, F , and G be six self-mappings on a b-complete b-metric space (X, d), and
the following conditions hold:

(i) A(X) ⊂ TG(X), B(X) ⊂ SF (X);

(ii) AF = FA, SF = FS,BG = GB, TG = GT ;

(iii) For all x, y ∈ X,

d(Ax,By) ≤ 1

s4
(c1d(Ax, SFx) + c2d(By, TGy) + c3d(SFx, TGy) + c4d(Ax, TGy) + c5d(By, SFx)) ,

where c1, c2, c3, c4, c5 ≥ 0 with c1 + c2 + c3 + 2 max{c4, c5} < 1 and s ≥ 1 is the coefficient of (X, d). If one
of the following conditions is satisfied, then the mappings A,B, S, T, F and G have a unique common fixed
point z, and z is the unique common fixed point of the pairs {A,SF} and {B, TG}.
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1) Either A or SF is continuous, {A,SF} is compatible and {B, TG} is weak compatible;

2) either B or TG is continuous, {B, TG} is compatible and {A,SF} is weak compatible;

3) either SF or TG is surjection, and {A,SF} and {B, TG} are weak compatible.

Proof. It suffices to take φ(t1, t2, t3, t4, t5) = c1t1 + c2t2 + c3t3 + c4t4 + c5t5 in Theorem 2.1.

In Corollary 2.11, if we take F = G = I, we deduce the following result of common fixed point for four
self-mappings.

Corollary 2.12. Let A,B, S, and T be four self-mappings on a b-complete b-metric space (X, d) and the
following conditions hold:

(i) A(X) ⊂ T (X), B(X) ⊂ S(X);

(ii) For all x, y ∈ X,

d(Ax,By)≤ 1

s4
(c1d(Ax,Sx)+c2d(By,Ty)+c3d(Sx,Ty)+c4d(Ax,Ty)+c5d(By,Sx)) , (2.31)

where c1, c2, c3, c4, c5 ≥ 0 with c1 + c2 + c3 + 2 max{c4, c5} < 1 and s ≥ 1 is the coefficient of (X, d). If one
of the following conditions is satisfied, then the mappings A,B, S and T have a unique common fixed point
z, and z is the unique common fixed point of the pairs {A,S} and {B, T}.

1) Either A or S is continuous, {A,S} is compatible and {B, T} is weak compatible;

2) either B or T is continuous, {B, T} is compatible and {A,S} is weak compatible;

3) either S or T is surjection, and {A,S} and {B, T} are weak compatible.

Remark 2.13. Let α, β ≥ 0 and α+ β = 2, then

c1 + c2 + c3 + αc4 + βc5 ≤ c1 + c2 + c3 + (α+ β) max{c4, c5} = c1 + c2 + c3 + 2 max{c4, c5}.

Therefore, if the condition c1+c2+c3+2 max{c4, c5} < 1 is replaced by the condition c1+c2+c3+αc4+βc5 < 1
in Corollary 2.12, then the conclusion of corollary 2.12 is still holds. Hence, Corollary 2.12 improves and
extends Theorem 2.7 of Roshan et al. [18] in its three aspects:

(1) the contractive condition is replaced by the new contractive condition defined by (2.31);

(2) by using one continuous function as opposed to two;

(3) the two pairs maps are both compatible decrease to one pair is compatible and another is weak
compatible.

Remark 2.14. If we take: (1) A = B; (2) S = T ; (3) S = T = I; (4) A = B and S = T ; (5) A = B and
S = T = I in Corollaries 2.4, 2.5, 2.9 and 2.12, then several new results can be obtained, and here we omit
them.

Now we introduce some examples to support our new result.

Example 2.15. Let X = [0, 2], and (X, d) be a b- metric space defined by d(x, y) = (x− y)2 for all x, y in
X. Suppose that A, B, S and T be four self-mappings defined by

Ax =
7

4
∀x ∈ [0, 2]; Bx =

{
9
4 , x ∈ [0, 1],
7
4 , x ∈ (1, 2],

Sx =


1, x ∈ [0, 1],
7
4 , x ∈ (1, 2),
9
4 , x = 2,

Tx =


1
8 , x ∈ [0, 1],
7
4 , x ∈ (1, 2),
1, x = 2.

Note that A is continuous in X, and B, S and T are not continuous functions in X.
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It is easy to show that (X, d) is b-complete b-metric space, A(X) ⊂ T (X), B(X) ⊂ S(X) and s = 2 is
the coefficient of (X, d).

By the definition of the functions of A and S, only for {xn} ⊂ (1, 2), we have

lim
n→∞

Axn = lim
n→∞

Sxn = t

(
=

7

4

)
.

At this time

lim
n→∞

d(ASxn, SAnx) = d

(
7

4
,
7

4

)
= 0,

this implies that the pair {A,S} is compatible.
By the definition of the functions of B and T , only for x ∈ (1, 2), Bx = Tx = 7

4 , at this time

BTx = B(
7

4
) =

7

4
= T (

7

4
) = TBx,

so BTx = TBx, which implies that the pair {B, T} is weakly compatible.
Now, we will show that the functions A, B, S and T are satisfying the condition (2.28) of Corollary

2.4 with k ∈ [256289 , 1) and control function φ(t1, t2, t3, t4, t5) = kmax
{
t1, t2, t3,

t4+t5
2

}
. For this purpose, we

consider the following five cases:

Case 1. x, y ∈ [0, 1]. In this case, we have

d(Ax,By) = d

(
7

4
,
9

4

)
=

(
1

2

)2

=
1

4

and

φ (d(Ax, Sx), d(By, Ty), d(Sx, Ty), d(Ax, Ty), d(By, Sx))

= φ

(
d

(
7

4
, 1

)
, d

(
9

4
,
1

8

)
, d

(
1,

1

8

)
, d

(
7

4
,
1

8

)
, d

(
9

4
, 1

))
= φ

((
3

4

)2

,

(
17

8

)2

,

(
7

8

)2

,

(
13

8

)2

,

(
5

4

)2
)

= kmax

{(
3

4

)2

,

(
17

8

)2

,

(
7

8

)2

,

(
13
8

)2
+
(
5
4

)2
2

}
= k · 289

64
.

Therefore, we give that

d(Ax,By) =
1

4
=

1

24
· 256

289
· 289

64
≤ 1

24
· k · 289

64

=
1

s4
φ (d(Ax, Sx), d(By, Ty), d(Sx, Ty), d(Ax, Ty), d(By, Sx)) .

Case 2. x ∈ [0, 1], y ∈ (1, 2]. Obviously, we have

d(Ax,By) = d

(
7

4
,
7

4

)
= 0 ≤ 1

s4
φ (d(Ax, Sx), d(By, Ty), d(Sx, Ty), d(Ax, Ty), d(By, Sx)) .

Case 3. x ∈ (1, 2), y ∈ [0, 1]. In this case, we obtain

d(Ax,By) = d

(
7

4
,
9

4

)
=

(
1

2

)2

=
1

4
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and

φ (d(Ax, Sx), d(By, Ty), d(Sx, Ty), d(Ax, Ty), d(By, Sx))

= φ

(
d

(
7

4
,
7

4

)
, d

(
9

4
,
1

8

)
, d

(
7

4
,
1

8

)
, d

(
7

4
,
1

8

)
, d

(
9

4
,
7

4

))
= φ

(
02,

(
17

8

)2

,

(
13

8

)2

,

(
13

8

)2

,

(
1

2

)2
)

= kmax

{
02,

(
17

8

)2

,

(
13

8

)2

,

(
13
8

)2
+
(
1
2

)2
2

}
= k · 289

64
.

Hence, we deduce that

d(Ax,By) =
1

4
=

1

24
· 256

289
· 289

64
≤ 1

24
· k · 289

64

=
1

s4
φ (d(Ax, Sx), d(By, Ty), d(Sx, Ty), d(Ax, Ty), d(By, Sx)) .

Case 4. x = 2, y ∈ [0, 1]. In this case, we have

d(Ax,By) = d

(
7

4
,
9

4

)
=

1

4

and

φ (d(Ax, Sx), d(By, Ty), d(Sx, Ty), d(Ax, Ty), d(By, Sx))

= φ

(
d

(
7

4
,
9

4

)
, d

(
9

4
,
1

8

)
, d

(
9

4
,
1

8

)
, d

(
7

4
,
1

8

)
, d

(
9

4
,
9

4

))
= φ

((
1

2

)2

,

(
17

8

)2

,

(
17

8

)2

,

(
13

8

)2

, 02

)

= kmax

{(
1

2

)2

,

(
17

8

)2

,

(
17

8

)2

,

(
13
8

)2
+ 0

2

}
= k · 289

64
.

Thus, we get that

d(Ax,By) =
1

4
=

1

24
· 256

289
· 289

64
≤ 1

24
· k · 289

64

=
1

s4
φ (d(Ax, Sx), d(By, Ty), d(Sx, Ty), d(Ax, Ty), d(By, Sx)) .

Case 5. x, y ∈ (1, 2]. Clearly, we have

d(Ax,By) = d

(
7

4
,
7

4

)
= 0 ≤ 1

s4
φ (d(Ax, Sx), d(By, Ty), d(Sx, Ty), d(Ax, Ty), d(By, Sx)) .

Then in all the above cases, the mappings A, B, S and T are satisfying the condition (2.28) of the Corollary
2.4 with k ∈ [256289 , 1) and φ(t1, t2, t3, t4, t5) = kmax

{
t1, t2, t3,

t4+t5
2

}
. So that all the conditions of Corollary

2.4 are satisfied. Clearly, 7
4 is the unique common fixed point for all of the mappings A, B, S and T .
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Example 2.16. Let X = [0,+∞) and (X, d) be b−metric space on X given by d(x, y) = (x − y)2 for all
x, y ∈ X. Define self-maps A,B, S, and T on X by

Ax = ln
(

1 +
x

2

)
, Bx = ln

(
1 +

x

4

)
, Sx = e4x − 1, Tx = e2x − 1, ∀x ∈ X.

Obviously, (X, d) is b-complete b-metric space with the coefficient s = 2, and

A(X) = B(X) = S(X) = T (X) = [0,+∞).

Since

(Sx−Ax)2 =
(

(e4x − 1)− ln
(

1 +
x

2

))2
= 0 ⇔ x = 0,

then for all {xn} ⊂ X satisfying xn → 0, we have limn→∞Axn = limn→∞ Sxn(= 0). At this time, we have

lim
n→∞

d(ASxn, ASxn) = 0.

Otherwise, limn→∞Axn 6= limn→∞ Sxn. Therefore, the pair {A,S} is compatible.
By the definition of the functions of B and T , only for x = 0, we get Bx = Tx(= 0). At this time

BTx = TBx(= 0). Otherwise, B(x) 6= T (x). Hence, the pair {B, T} is weak compatible.
Next we show that the maps A, B, S, and T are satisfying the condition (2.30) of Corollary 2.9 with

k = 1
4 . In fact

d(Ax,By) = (Ax−By)2 =
{

ln
(

1 +
x

2

)
− ln

(
1 +

y

4

)}2

≤
(x

2
− y

4

)2
=

1

64
(4x− 2y)2 ≤ 1

64
(e4x − e2y)2

≤ 1

64

{
(e4x − 1)− (e2y − 1)

}2
=

1

64
(Sx− Ty)2 =

1

24
· 1

4
d(Sx, Ty)

≤ 1

24
· 1

4
max

{
d(Ax, Sx), d(By, Ty), d(Sx, Ty),

d(Ax, Ty) + d(By, Sx)

2

}
.

Therefore, in all the above cases, the mappings A, B, S, and T are satisfying all the conditions of the
Corollary 2.9. Obviously, 0 is the unique common fixed point for all of the mappings A, B, S, and T .

Example 2.17. Let X = [0, 1], and (X, d) be a b-metric space defined by d(x, y) = (x − y)2 for all x, y in
X. Suppose that A, B, S, and T be four self-mappings defined by

Ax =

{
1, x ∈ [0, 12 ],
15
16 , x ∈ (12 , 1],

Bx =

{
14
15 , x ∈ [0, 12 ],
15
16 , x ∈ (12 , 1],

Sx = x; Tx =


1, x ∈ [0, 14),
1
5 , x ∈ [14 ,

1
2 ]

15
16 , x ∈ (12 , 1].

We know that S is continuous in X, and A, B and T are not continuous mappings in X.
It is easy to see that (X, d) is b-complete b-metric space, s = 2 is the coefficient of (X, d), and A(X) ⊂

T (X) and B(X) ⊂ S(X).
By the definition of the mappings of A and S, only for {xn} ⊂ (12 , 1], we have

lim
n→∞

Axn = lim
n→∞

Sxn = t

(
=

15

16

)
.
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At this time

lim
n→∞

d(ASxn, SAxn) = lim
n→∞

d

(
Axn, S

(
15

16

))
= d

(
15

16
,
15

16

)
= 0,

so we can get the pair {A,S} is compatible.
By the definition of the mappings of B and T , only for x ∈ (12 , 1], Bx = Tx = 15

16 , at this time
BTx = B(1516) = 15

16 = T (1516) = TBx, so BTx = TBx, thus we can obtain the pair {B, T} is weakly
compatible.

Now we prove that the mappings A, B, S and T are satisfying the condition (2.31) of Corollary 2.12
with c1 = c2 = c3 = 1

6 , c4 = c5 = 1
10 . So we consider the following cases:

Case 1. For all x, y ∈ [0, 12 ], we show that

d(Ax,By) = d

(
1,

14

15

)
=

(
1

15

)2

=
1

225
,

then, we divide the study in two subcases.

(i) If y ∈ [0, 14), thus we have

c1d(Ax, Sx) + c2d(By, Ty) + c3d(Sx, Ty) + c4d(Ax, Ty) + c5d(By, Sx)

=
1

6
· d (1, x) +

1

6
· d
(

14

15
, 1

)
+

1

6
· d (x, 1) +

1

10
· d (1, 1) +

1

10
· d
(

14

15
, x

)
=

1

6
· (1− x)2 +

1

6
·
(

14

15
− 1

)2

+
1

6
· (x− 1)2 +

1

10
· 02 +

1

10
·
(

14

15
− x
)2

=
1

3
· (1− x)2 +

1

6
·
(

1

15

)2

+
1

10
·
(

14

15
− x
)2

=
13

30
x2 − 64

75
x+

2843

6750

≥ 13

30
·
(

1

2

)2

− 64

75
·
(

1

2

)
+

2843

6750

=
2777

27000
.

Thus we have

d(Ax,By) =
1

225
=

1

24
· 16

225
=

1

24
· 1920

27000
<

1

24
· 2777

27000

≤ 1

s4
[c1d(Ax, Sx) + c2d(By, Ty) + c3d(Sx, Ty) + c4d(Ax, Ty) + c5d(By, Sx)].

(ii) If y ∈ [14 ,
1
2 ], then we obtain

c1d(Ax, Sx) + c2d(By, Ty) + c3d(Sx, Ty) + c4d(Ax, Ty) + c5d(By, Sx)

=
1

6
· d (1, x) +

1

6
· d
(

14

15
,
1

5

)
+

1

6
· d
(
x,

1

5

)
+

1

10
· d
(

1,
1

5

)
+

1

10
· d
(

14

15
, x

)
=

1

6
· (1− x)2 +

1

6
·
(

14

15
− 1

5

)2

+
1

6
·
(
x− 1

5

)2

+
1

10
·
(

1− 1

5

)2

+
1

10
·
(

14

15
− x
)2

=
13

30
· x2 − 44

75
· x+

559

1350

≥ 13

30
·
(

1

2

)2

− 44

75
·
(

1

2

)
+

559

1350

=
1237

5400
.
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Hence we have

d(Ax,By) =
1

225
=

1

24
· 16

225
=

1

24
· 384

5400
<

1

24
· 1237

5400

=
1

s4
[c1d(Ax, Sx) + c2d(By, Ty) + c3d(Sx, Ty) + c4d(Ax, Ty) + c5d(By, Sx)].

Case 2. For all x ∈ [0, 12 ], y ∈ (12 , 1], we get

d(Ax,By) = d

(
1,

15

16

)2

=

(
1

16

)2

=
1

256
,

and

c1d(Ax, Sx) + c2d(By, Ty) + c3d(Sx, Ty) + c4d(Ax, Ty) + c5d(By, Sx)

=
1

6
· d (1, x) +

1

6
· d
(

15

16
,
15

16

)
+

1

6
· d
(
x,

15

16

)
+

1

10
· d
(

1,
15

16

)
+

1

10
· d
(

15

16
, x

)
=

1

6
· (1− x)2 +

1

6
· 02 +

1

6
·
(
x− 15

16

)2

+
1

10
·
(

1− 15

16

)2

+
1

10
·
(

15

16
− x
)2

=
13

30
· x2 − 5

6
· x+

3083

7680

≥ 13

30
·
(

1

2

)2

− 5

6
·
(

1

2

)
+

3083

7680

=
143

1536
.

Hence, we deduce that

d(Ax,By) =
1

256
=

1

24
· 16

256
=

1

24
· 96

1536
<

1

24
· 143

1536

≤ 1

s4
[c1d(Ax, Sx) + c2d(By, Ty) + c3d(Sx, Ty) + c4d(Ax, Ty) + c5d(By, Sx)].

Case 3. For all x ∈ (12 , 1], y ∈ [0, 12 ], we show that

d(Ax,By) = d

(
15

16
,
14

15

)
=

(
1

240

)2

=
1

57600
.

Next, we divide the study in two subcases.

(i) If y ∈ [0, 14), then we have

c1d(Ax, Sx) + c2d(By, Ty) + c3d(Sx, Ty) + c4d(Ax, Ty) + c5d(By, Sx)

=
1

6
· d
(

15

16
, x

)
+

1

6
· d
(

14

15
, 1

)
+

1

6
· d (x, 1) +

1

10
· d
(

15

16
, 1

)
+

1

10
· d
(

14

15
, x

)
=

1

6
·
(

15

16
− x
)2

+
1

6
·
(

14

15
− 1

)2

+
1

6
· (x− 1)2 +

1

10
·
(

15

16
− 1

)2

+
1

10
·
(

14

15
− x
)2

=
13

30
· x2 − 333

400
· x+

86701

216000

≥
4 · 1330 ·

86701
216000 −

(
333
400

)2
4 · 1330

=
6979

4492800
.
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Therefore, we deduce that

d(Ax,By) =
1

57600
=

1

24
· 16

57600
=

1

24
· 1248

4492800
<

1

24
· 6979

4492800

≤ 1

s4
[c1d(Ax, Sx) + c2d(By, Ty) + c3d(Sx, Ty) + c4d(Ax, Ty) + c5d(By, Sx)].

(ii) If y ∈ [14 ,
1
2 ], then we have

c1d(Ax, Sx) + c2d(By, Ty) + c3d(Sx, Ty) + c4d(Ax, Ty) + c5d(By, Sx)

=
1

6
· d
(

15

16
, x

)
+

1

6
· d
(

14

15
,
1

5

)
+

1

6
· d
(
x,

1

5

)
+

1

10
· d
(

15

16
,
1

5

)
+

1

10
· d
(

14

15
, x

)
=

1

6
·
(

15

16
− x
)2

+
1

6
·
(

14

15
− 1

5

)2

+
1

6
·
(
x− 1

5

)2

+
1

10
·
(

15

16
− 1

5

)2

+
1

10
·
(

14

15
− x
)2

=
13

30
· x2 − 679

1200
· x+

16601

43200

≥
4 · 1330 ·

16601
43200 −

(
679
1200

)2
4 · 1330

=
4483151

22464000
.

Hence we have

d(Ax,By) =
1

57600
=

1

24
· 16

57600
=

1

24
· 6240

22464000
<

1

24
· 4483151

22464000

≤ 1

s4
[c1d(Ax, Sx) + c2d(By, Ty) + c3d(Sx, Ty) + c4d(Ax, Ty) + c5d(By, Sx)].

Case 4. For all x, y ∈ (12 , 1], we show that

d(Ax,By) = d

(
15

16
,
15

16

)
= 0

≤ 1

s4
[c1d(Ax, Sx) + c2d(By, Ty) + c3d(Sx, Ty) + c4d(Ax, Ty) + c5d(By, Sx)].

Then in all the above cases, the mappings A, B, S and T are satisfying the condition (2.31) of Corollary
2.12 with φ(t1, t2, t3, t4, t5) = 1

6 t1 + 1
6 t2 + 1

6 t3 + 1
10 t4 + 1

10 t5. So that all the conditions of Corollary 2.12 are
satisfied. Obviously, 15

16 is the unique common fixed point for all of the mappings A, B, S and T .
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