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Abstract

In the framework of a b-metric space, by using the compatible and weak compatible conditions of self-
mapping pair, we discussed the existence and uniqueness of the common fixed point for a class of ¢-type
contraction mapping, some new common fixed point theorems are obtained. In the end of the paper, we
give some illustrative examples in support of our new results. The results presented in this paper extend
and improve some well-known comparable results in the existing literature. (©2016 All rights reserved.
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1. Introduction and preliminaries

In 1990, Kang et al. [12] applied the compatibility of mappings to prove common fixed point theorem of
p-contractive mappings. The same year, Liu [I5] introduced the notion of weak compatibility of mappings
and proved some common fixed point theorems. In 2011, Yu and Gu [20] studied a class of common fixed
point problem of ¢-contractive mappings and obtained a new common fixed point theorem.

Motivated and inspired by the above results, the aim of the paper is focus on the study of b-metric space
proposed by Czerwik[6]. By using the compatible and weak compatible conditions, we prove some new
common fixed point theorems for six self-maps satisfying a class of ¢-type contraction condition. Because
of the metric space is a special case of the b-metric space, our results presented in this paper extend and
improve some well-known corresponding results in the literature due to Kang et al. [I12], Roshan et al. [1§],
Jungck [I0], Diviccaro and Sessa [§], and Ding [7].
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Definition 1.1 ([6]). Let X be a nonempty set and s > 1 be a given real number. A functiond : X x X — RT
is a b-metric if the following conditions are satisfied:

(b1) d(z,y) =0z =y;

(b2) d(z,y) = d(y,z);

(b3) d(,2) < sld(z,y) + d(y, )]

for all z,y,z € X. In this case, the pair (X,d) is called a b-metric space and the number s is called the
coefficient of (X, d).

Remark 1.2. The class of b-metric spaces is effectively larger than that of metric spaces. Indeed, b-metric is
a metric if and only if s = 1. For the counter-example see [2].

In [6], Czerwik extended the Banach contraction principle from metric spaces to b-metric spaces. Since
then, a number of authors have investigated fixed point problems in b-metric spaces (see [1H4, [9] T3], 14} 16,
17, 19], and the references therein).

Definition 1.3 ([3]). Let (X,d) be a b-metric space, and let {z,,} the sequence of points in X.

(a) A sequence {x,} in X is called b-convergent if and only if there exists x € X such that d(z,,z) — 0
as n — 0o.

(b) {zn} in X is said to be b-Cauchy if and only if d(xy,, zm) — 0 as n,m — 0.
(¢) The b-metric space (X, d) is called b-complete if every b-Cauchy sequence in X is b-convergent.

Proposition 1.4 ([4]). In a b-metric space (X,d) the following assertions hold:

(i) a b-convergent sequence has a unique limit.
(ii) each b-convergent sequence is a b-Cauchy sequence.
(iii) in general, b-metric is not continuous.

Definition 1.5 ([I8]). Let (X, d) be a b-metric space. A pair {f, g} is said to be compatible if
lim d(fgzn,gfrn) =0,
n—oo

whenever {z,} is a sequence in X such that lim fz, = lim gz, =t for some t € X.
n—oo n—0o0

Definition 1.6 ([I1]). Let (X, d) be a b-metric space. A pair {f, g} is said to be weak compatible if

{te X:f(t)=g(t)} C{teX: fg(t)=gf(D)}.
In [I§] the authors proved the following result.
Theorem 1.7 ([I8, Theorem 2.1]). Suppose that A, B, S, and T are self-mappings on a b-complete b-metric
space (X,d) such that A(X) C T(X), B(X) C S(X). Suppose that the condition
k 1

d(Az, By) < 4 max {d(Aa:, Sz),d(By, Ty),d(Sz, Ty), 5 [d(Ax, Ty) + d(By, Sm)]} (1.1)
holds for all x,y € X with 0 < k <1 and s > 1 is the coefficient of (X,d). If S and T are continuous and
pairs {A, S} and {B, T} are compatible, then A, B, S, and T have a unique common fixed point in X .

The purpose of this article is to further improve and extend Theorem to the more general nonlinear
contractive type mapping.
To prove our result, we shall use the following lemma.
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Lemma 1.8 ([I]). Let (X,d) be a b-metric space with the parameter s > 1, and suppose that {z,} and {yn}
are b-converge to x and y in X, respectively. Then we have

1
—d(z,y) < lirginf d(xp, yn) < limsup d(z,, yn) < s?d(z,y).
S n—00

n—oo

In particular, if v =y, we have lim,_,oc d(xy, yn) = 0. Moreover, for each z € X, we have

1
gd(:c, z) < liminfd(x,, z) < limsupd(z,, z) < sd(z, 2).

n—roo n—00

Lemma 1.9 ([18]). Let (X,d) be a b-metric space. If there exist two sequences {x,} and {yn} such that
lim x, =t for somet € X and lim d(z,,y,) =0, then lim y, =t.

Lemma 1.10. Let (X,d) be a b-metric space.  Suppose that the sequence {y,} in X satisfies
li_>m A(YnyYnt1) = 0. If {yn} is not b-Cauchy in X, then there exists an gy > 0 and positive integer
n oo

sequences {m;} and {n;} such that
(i) mj >n; +1,n; = 00 (1 — o0);
(11) d(ymm ynz) > €05 d(ymi—h yn,) <ep, 1=1,2,3,---.

Proof. The proof is similar to the proof of Lemma 2.1 in [5], hence it is deleted. O

2. Main results

In this section, suppose that ®; be the set of functions ¢ : [0, 00)®> — [0, 00) satisfying the conditions:

(¢1) ¢ is non-decrease and upper semicontinuous about each variable.
(¢2) For all t > 0,
P(t) = max{¢ (0,0,t,t,t),6 (¢, t,t,0,2t), 0 (t,t,t,2t,0)} < t. (2.1)
Let ®5 be the set of functions ¢ : [0,00)° — [0, 00) satisfying the condition (¢1) and
(¢3) for all t > 0,

Y(t) = max{o (t,t,t,t,t), o (¢ t,t,0,2t), ¢ (t,t,t,2t,0)} < t. (2.2)
Clearly we can get: If ¢t < 4)(t), then t = 0.

Theorem 2.1. Let A, B, S, T, F, and G be six self-mappings on a b-complete b-metric space (X,d), and the
following conditions hold:

(i) A(X)CTG(X), B(X)C SF(X);
(i) AF = FA, SF = FS, BG =GB, TG = GT;
(iii) For all x,y € X,

d(Az, SFz),d(By, TGy),d(SFz,TGy), > (2.3)

1
d(Az, By) < ¢ ( d(Az,TGy),d(By, SFx)

where ¢ € ®1 and s > 1 is the coefficient of (X, d).

If it satisfies one of the following conditions, then A, B, S, T, F, and G have a unique common fized point z
in X. Moreover, z is also a unique common fized point of the pairs {A, SF} and {B,TG?}, respectively.

1) Either A or SF is continuous, {S,SF} is compatible and {B,TG} is weak compatible;
2) Either B or TG is continuous, {B, TG} is compatible and {A, SF'} is weak compatible;
3) Either SF or TG is surjection, and {A,SF} and {B, TG} are weak compatible.
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Proof. Let g € X, as A(X) C TG(X), B(X) C SF(X), there exist {zy},{yn} C X such that
Yon = Awop = TGropy1,Y2nt1 = Brony1 = SFr,42, n=0,1,2,3,---.
Suppose that there exists ng € N such that y2,, = y2n,+1, then from (2.3)) we have

d(Y2no+1: Y2ne+2) = d(Azanyt2, BToang+1)

1 d(A$2n0+27 SFx?no—‘rQ)’ d(BJ;Z'rL()—l-l) TGxQno-i—l)y
< Sj¢ d(SFzong+2, TGxong+1), d(Axong+2, TGTony+1),
d(Bxong41, SFxopy+2)

_ l(b < d(y2n0+2a anoJrl)v d(y2n0+1? ano)v d(y2n0+1a yQTbo): )
54 d(y2n0+27 y2n0)7 d(y?no—l-l) y2n0+1)

1
= 874 (d(y2n0+17 y2n0+2)7 0,0, d(y2n0+1> y2n0+2)a 0)

IN

1(;5( d(d(Y2no+1, Y2no+2) s Ad(Y2ng+1, Y2ne+2), >
st A(Y2no+15 Y2no+2) s 2d(Y2no+1, Y2ne+2), 0

1
< Sjw (d(Y2np+1, Y2no+2))
<Y (d(Y2ng+15 Y2no+2)) -

By property of 1, we obtain d(yang+1, Y2ne+2) = 0. Consequently, yon,+1 = Y2ng+2-

Similarly, we can get y2p,+2 = Y2n,+3. Hence, by the mathematical induction, we obtain y2y,, = Yon,+1 =
Yong+2 = ---. This implies that {y,}n>n, is a constant sequence. Therefore, the sequence {y,} is a
b-Cauchy sequence in (X,d). The same conclusion holds if we suppose that there exists ng € N such
that yon,+1 = Yong+2. Without loss of generality, we can suppose that y, # yn,41 for all n € N. Then
d(Yn,ynt+1) > 0 for all n € N. Hence, from we have

d(Yon, Yont1) = d(Az2,, Brop41)
igb d(Axan, SFxoy), d(Bront1, TGrany1), d(SFw2,, TGont1),
- st d(A$2na TG:UZn—&—l); d(B$2n+la SFxQn)

_ iqﬁ ( d(Y2n, Yon—1), A(Y2n+1, Y2n), A(Y2n—1, Yon), ) (2.4)
st d(Y2n; Y2n)s Ad(Y2n+1, Y2n—1)

igb ( d(y2n717y2n)7d(y2n7y2n+l)ad(anflayZn% ) _
st 0, sd(yan—1,Y2n) + $d(Y2n, Yon+1)

If d (yan—1,y2n) < d(Y2n,Y2n+1), then d (yan, yon+1) > 0 (otherwise, we have d (y2n—1,¥y2n) < 0, which is a
contradiction). In this case, from ({2.3) and the property of ¢ and ¢, we deduce that

1
d(Yan, Yan+1) < g¢ (sd(Y2n, Yan+1)s sd(Y2ns Y2n+1)s SA(Y2n,s Y2n+1), 0, 25d(Y2n, Y2n+1))
1 1 1
< Sjlb (Sd(?JZmanH)) < g (Sd(?JZmanH)) = de(yzmyZnH)a

which is a contradiction, hence d(yan—1,y2n) > d(Yon, Yon+1). Again, by (2.1)), (2.4)), and the property of ¢
and 1), we get

1
d(Yan, Yan+1) < Sjﬁb(Sd(y2n—17y2n)7Sd(an—17y2n)a3d(y2n—1792n)707 2sd(yYan—1,Y2n)) 25)
2.5

IA

1 1 1
Sj?ﬂ (sd(y2n—1,Y2n)) < Q(Sd(y2n71>y2n)) = S*3d(3/2n717y2n)-
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Also, applying ([2.3)) and the property of ¢ and v, we proceed similarly as above and obtain
1
d(Y2n+1,Y2nt2) < de(y2n7y2n+1)- (2.6)
Combining (2.5)) and (2.6)), we get
1
d(ym ynJrl) < Sigd(ynfla yn) (27)
Applying the above inequality (2.7) n times, we obtain
1 1\"
d(yna yn—i-l) < ?d(yn—hyn) <-e < g d(y(]ayl)- (28)
Taking limit as n — oo in (2.8)), we have
lim d(yn, Ynt1) = 0. (2.9)
n—oo

Next, we shall show that {y,} is a b-Cauchy sequence in X. Otherwise, from Lemma there exists

g0 > 0 and two positive integer sequences {m;} and {n;} such that
(a) mi >mn;+ 1, n; — oo (i — 00);
(b) d(ymmynz) > €o, d(ymi—la ynl) <ep, 1=1,2,3,---.

From the condition (b) and using the triangular inequality, we have

d(ymwym) < Sd(ymwymi—l) + Sd(ymi—lv yni) < Sd(ymi7ymi_1) + s€o,
d(ymi+1yyni) S Sd(ymi+1 ) ymi—l) + Sd(ymi—l, ym) S 32d(ymi+1>ymi) + 32d(ymiaymi—1) + 8607
d(ymi*b ynﬂrl) < Sd(ymifpyni) + Sd(yni7 ynﬂrl) < seg + Sd(yniv ynﬂrl)a

A(Ymi> Yni+1) < 8A(Yms Ymi—1) + 8A(Ym;—1, Yns+1)
< 8d(Ym,s Ymi—1) + S d(Ymi—1:Yn:) + 52 (Y, Yni+1)
< 5d(Ymys Ymi—1) + 5°€0 + S A(Ynis Yni41).
Taking the upper limit as i — oo in (2.10)), (2.11)), (2.12), and , we obtain

lim sup d(Yim,, yn;) < s€o,
i—00
hm sup d(ymi+1 ) ym) S SEQ,
i—00
hIIl sup d(ymi—h yni—‘rl) < sey,
i—00
lim sup d(ymm ym‘+1) < 3250'

1—>00
Again, from the condition (b) and using the triangular inequality, we have

g0 < d(ymia ym) < Sd(?/?ﬂw ymi+1) + Sd(ymﬁrlv ym)
< Sd(ymia y’mr‘rl) + SQd(ymi-‘rh ynﬁ-l) + Szd(yni-i-l? ynl)a

€o < d(ymiv ynz') < Sd(ymi7yni+l) + Sd<ym‘+17 yni)'
Taking the upper limit as i — oo in (2.18)) and (2.19), we obtain

. €0
hmsup d(ymiflvynri»l) 2 o
17— 00

lim sup d(Ym,; , Yn,+1) >

1—00

m‘g"”

Next, we discuss in following cases.

(2.10)
(2.11)
(2.12)

(2.13)

.::
—_
[}

[\]
—
D
~—  — ~—

(2.18)

(2.19)

(2.20)



L. Liu, F. Gu, J. Nonlinear Sci. Appl. 9 (2016), 5909-5930 5914

(I) Suppose that m; is even number and n; is odd number. It follows from (2.3)) that,

d(merlv ym¢+1) = d(AxniJrl? B:EmiJrl)
1 d(AxniJrl? SFxniJrl)v d(B$m¢+1a TmeHrl)a
< 74¢ d(SFxni—l—l,Tmei—‘,—l),d<Awni+17Tme,-+1)a
5 d(B.Tmi+1, SFCEnhLl)

— l¢ < d(yniJrl? ynl)a d(ymﬂrl) yml)a d(ynlv yml)7 > )
st d(ynrf-la ym,>7 d(ymi-i-la ynz)

Taking the upper limit as ¢ — oo in the above inequality, and using (2.9)), (2.14)), (2.15)), (2.17)), the condition
(b), and the property of ¢ and v, we get

€0 .
2 < limsup d(Yn;+1, Ym;+1)

1—00
( d(yni—i-l, ynz)a d(ymi—l-h yml)a d(ynl y Z/ml)7 )
d(ynﬂrla ym,)v d(ymﬂrla ynz)

IN

1.

gllmsup<b
1—00

1 2 1 2 2 2

gfb (070788075 507880) < sf4¢ (07078 €0,5 €0,S 50)

1 1 )
Qw (3250) < g(s%o) =2

IN

IN

which is a contradiction.

(IT) Suppose that m; and n; are both even numbers. It follows from (2.3)) that

d(ymi7 yni+1) = d(Axmw ani+1)
1 d(Azp,;, SFxy,,),d(Bry,+1, TGTp,41),
< ¢ | dSFzm,, TGy 41), d(ATp,;, TG, 41),
5 d(Bxp,+1, SFp,)
_ ifb ( d(ymi? ymi*1)7 d(ym+1v yni)? d(ymifla ym)v >
st AWy, Yn:) s AYni415 Ymi—1) '

Taking the upper limit as ¢ — oo in the above inequality, and using (2.9)), (2.14]), (2.16]), (2.20]), the condition
(b), and the property of ¢ and v, we get

€08 < imsup d(Ym,, Yn,+1)

71— 00

[ A(WYmys Ymi—1)s A(Yni+15 Yns )s AYmi—1, Yn,) )
—hmsu i) i ’ i ) i/ i ) Al
st po ( d(ymﬂyni)7d(yni+1aymi—l)

IN

1—00

IN

1
gd’ (07 07 €0, S€0, 850)

IN

g(ﬁ (0, 0, SE(p, SEQ, 550)

1 1
gd) (580) < E(S&)) = 87350’

IN

which is a contradiction.

(III) Suppose that m; and n; are both odd numbers. (IV) Suppose that m; is odd number and n; is even
number. Similarly, such two cases can deduce a contradiction. This implies {y,} is a b-Cauchy sequence in
X.

As X is b-complete, there exists z € X such that y,, — z (n — 00), then {y2,—1} and {y2,} b-convergent
to z, that is,
Axop = Yo — 2, SFxop = yon—1 — 2 (n — 00).
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1) Let either A or SF is continuous, {4, SF'} is compatible and {B,T'G} is weak compatible.
First, suppose that SF is continuous, then {(SF)SFxa,} and {(SF)Axa,} b-converge to SFz, since
{A, SF'} is compatible, then we have

lim d((SF)Axa,, A(SF)xa,) = 0.

n—oo

Using Lemma we obtain lim A(SF)xzg, = SFz.
n—oo
By (2.3)), we have

1 ( d(A(SF)IL‘Qn, (SF)(SF)l‘Qn), d(Bazgn,l, TGl‘anl), )
d(A(SF)IL’Qn,Bl’Qn_l)ﬁg(ﬁ d((SF)(SF):L’Qn,TGxQn_l),d(A(SF).TQn,TGIL’Qn_l), (2.21)

d(BIL‘anl, (SF)(SF)I'QH)

Taking the upper limit as i — oo in (2.21)), using Lemma and the property of ¢ and v, we obtain

%d(SFz, z) < limsup d(A(SF)xan, Bron_1)
S n—00
1 d(A(SF)xon, (SF)(SF)xay),d(Bxon—1,TGxon—_1),
< vy lim sup (Z) d((SF)(SF)JJQn, TGJ)anl), d(A(SF)LUQn, TG.%anl),
o mmeo d(Baan_1, (SF)(SF)wan,)
1
< gqb (st(SFz, SFz),s%d(z, 2),s*d(SFz,z),s?d(SFz,z),s*d(SFz, z))

1
= ggb (0, 0,5%d(SFz,z),s?d(SFz, z),s*d(SFz, z))
1
< g?/) (s°d(SFz,2)).
The above inequality becomes

$2d(SFz, z) < 1 (st(SFz, z)) .
By the property of ¥, we get s2d(SFz, z) = 0, hence SFz = 2. Again from (2.3), we get

d(Az, SFz),d(Bwan 1, TGron 1), d(SFz, TGy 1), > (2.22)

1
<
d(Az, Bron1) < ¢ < d(Az, TGxon_1),d(Bxon_1, SF?)

Taking the upper limit as ¢ — oo in (2.22)), using Lemma SFz = z, and the property of ¢ and 1, we
obtain

1
—d(Az,z) < limsupd(Az, Brap_1)
s

n—oo

1 . d(Az,SFz),d(Bxop—1,TGxon_1),d(SFz, TGxop_1),
< =
S h}jf;W ( d(Az, TGx2,_1),d(Bxo,_1,SFz)

< Si4¢ (d(Az, SF=2), $2d(z, 2), sd(SFz, 2), sd(Az, 2), sd(, SF=z))
_ Si4¢ (d(Az, 2), $%d(z, 2), 5d(z, 2), sd(Az, 2), sd(z, 2))

- Si4¢ (d(Az, 2),0,0, sd(Az, 2), 0)

< si4¢ (sd(Az, 2), sd(Az, 2), sd(Az, =), 25d(Az, 2), 0)

< S0 (sd(A2,2) £ 5 (sd(Az.2)).
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The above inequality becomes
sd(Az,z) < (sd(Az,z)).

By the property (¢3), we get sd(Az, z) = 0, which means Az = z.
As z € A(X) C TG(X), there exists p € X such that z = Az = TGp. Using (2.3) and the property of
¢ and v, we get

d(z, Bp) = d(Az, Bp)
Si4d>(d(Az, SFz),d(Bu, TGu),d(SFz,TGu),d(Az, TGu),d(Bu, SFz))
= L0 (d(z.2).d(By. 7). d(z. 2).d(z. 7). d( By, 2)

1
= g(ﬁ(o,cl(Bu, 2),0,0,d(Bu, z))

IN

56 (B 2),d(By, 2), (B, 2),0,24(B, 2)
< S0 (B, 2)) < ¥ (d(Bp.2)

By the property of v, we get d(Bu,z) = 0, this implies that By = z, and so TGu = Bu = z.
By the weak compatibility of {B, TG}, we get

TGz = (TG)Bu = B(TG)u = Bz.
Further, from (2.3)) and the property of ¢ and %,

d(z,TGz) = d(Az, Bz)

IN

1

8—4¢ (d(Az,SFz),d(Bz,TGz),d(SFz,TGz),d(Az,TGz),d(Bz,SFz))
1

= S—4¢ (d(z,2),d(TGz,TGz),d(2,TGz),d(z,TGz),d(TGz,z))

1
= S—4gb (0,0,d(2,TGz),d(z,TGz),d(z,TG=z))

IN

1
¥ (d(z,TG2)) < 4 (d(2,TG2)).
By the property of ¥, we get d(z, TGz) = 0, this implies that z = TGz, and so z = TGz = Bz. Therefore,
z2=TGz=Bz=Az= SF=.
Actually, since AF = FA,SF = FS, then
AFz=FAz=Fz, (SF)Fz=F(SF)z=F=z.
Using (2.2), z = TGz = Bz, and the property of ¢ and 1, we have

d(Fz,z) =d(FAz,Bz) = d(AFz, Bz)

1 d(AFz,(SF)Fz),d(Bz,TGz),d((SF)Fz,TGz),
< ¢ < d(AFz,TGz),d(Bz, (SF)Fz) >

= O (d(Fz, F2),d(z, ), d(F2, 2), d(F=, 2), d(z, F2))
= Si4¢(0,0,d(Fz,z),d(Fz,z),d(Fz,z))

< U (d(F2,2)) < 9 (d(Fz, 7).
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By the property of ¥, we get d(F'z,z) = 0, this implies that F'z = z. As SFz = z, we know Sz = z. So
Fz=58z==z2
Since BG = GB, TG = GT, then

BGz=GBz=Gz, (TG)Gz=G(TG)z=Gx.
By (2.3) and the property of ¢ and v, we get

d(z,Gz) = d(Az,GBz) = d(Az, BG=z)

1 d(Az,SFz),d(BGz,(TG)Gz),d(SFz, (TG)Gz),
= af ( d(Az, (TG)G2).d(BG=, SF>) )

IN

Sljgz) (d(2,2), d(G2, G2), d(2, G2), d(z, G=), d(G2, 2))
_ S%gb(O,O,d(z,Gz%d(z,Gz),d(Gz, )
< S (d(z,G2)) < ¥ (d(z,G2))

Using the property of 1, we have d(z, Gz) = 0, thisis z = Gz. Since z = TGz, then z = Tz, 80, 2 = Tz = G=z.
In the above proof, having that

z2=Tz=Gz=Az=Bz=85z=Fz,

we arrive z is the common fixed point of A, B, S, T, F, and G in X.
Second, suppose that A is continuous, then {A%xs,} and {A(SF)wz2,} converge to Az, using the com-
patibility of {A, SF'}, having that

lim d((SF)Axa,, A(SF)xa,) = 0.

n—oo
Using Lemma we obtain lim (SF)Axg, = Az.
n—oo
By (2.2)), we get

d(A2zon, (SF)Axay), d(Bxan—1, TGxan-1),
(2.23)

1
d(A%x9,, Bra,—1) < 0 d((SF)Axgn, TGrop 1), d(A*won, TGy 1),
d(Bxan—1,(SF)Axay,)

Taking the upper limit as i — oo in (2.23)), using Lemma and the property of ¢ and v, we obtain

1 .
?d(Az, z) < limsup d(Angn, Bxop-1)

n—o0

d(A%z9y,, (SF)Axay), d(Bran—1, TGron_1),
d(B.’EQn,l, (SF)A.'EQn)

1
< — limsup ¢ ( d((SF)Azon, TGran_1), d(A%29,, TGT2,-1),
S$% n—oo

IN

l4¢ (82d<A27 Az), SQd(Z, z), 32d(Az, z), szd(Az, z), szcl(z:7 Az))
s
= Si4¢ (0, 0, SQd(Az, z), s2d(Az, z), szd(Az7 z))
1
S Sjw (S2d(AZ, Z)) .

The above inequality becomes
s2d(Az,z) < (szd(Az, z)) .

By the property of ¥, we get s2d(Az,z) = 0, this is Az = 2.
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Since z € A(X) C TG(X), there exists u € X such that z = Az = TGpu. By (2.3)), we get

d(Azap, SFxoy), d(Bup, TGu), d(SFxan, TGu), > ' (2.24)

1
d(Azzn, Br) < s4¢< d(Azon, TGu),d(Bu, SFxay,)

Taking the upper limit as i — oo in (2.24)), using Lemma and the property of ¢ and v, we obtain

1
;d(z, Bu) < limsup d(Axay,, Bu)

n—oo

1. d(Axan, SFxay),d(Bu, TGu),d(SFxoy,, TGu),
<
S h{}gsogp‘? ( d(Azon, TGu),d(Bu, SFa,)

8—14d> (szd(z, 2),d(Bpu, z),sd(z, 2), sd(z, z), sd( B, z))

1
= ggb(o,d(Bu, 2),0,0,sd(Bpu, z))

IN

8—14d> (sd(Bp, z), sd(Bpu, z), sd(Bpu, z),0,2sd(Bpu, z))
< S (sd(Bp, 2)) < 5 (sd(By, 2)).

The above inequality becomes sd(Bpu, z) < v (sd(Bpu, z)). By the property of 1, we get sd(Bu,z) = 0, this
is Bu = z.
Thus TGu = Bu = z. Using the weak compatibility of {B, TG}, we obtain

TGz = (T'G)Buy = B(T'G)u = Bz.

By (2.3), we have

d(Azan, SFxon), d(Bz, TGz), d(SFxon, TGz), ) (2.25)

1
d(Awzn, B2) < gqﬁ < d(Azoy, TGz),d(Bz, SFxay,)

Taking the upper limit as i — oo in ([2.25]), using Lemma TGz = Bz, and the property of ¢ and 1, we
obtain

1
;d(z, Bz) < limsupd(Azs,, Bz)

n—oo
d(Axon, SFxay),d(Bz, TGz),d(SFxay, TGz),
d(Axo,, TGz),d(Bz, SFray)
s2d(z,2),d(Bz, Bz),sd(z, Bz),
sd(z,Bz),sd(Bz, z)

1.
< ghmsupqﬁ

n—oo

IN

1.
= lim sup ¢
n—oQ

= ;14¢ (0,0, sd(z, Bz),sd(z, Bz), sd(z, Bz))
< S0 (sd(z, B2)) < b (sd(z, B2)

The above inequality becomes sd(z, Bz) < 9 (sd(z, Bz)). By the property of ¢, we obtain sd(z, Bz) = 0,
this is z = Bz, and so z = TGz = Bz.

Since z € B(X) C SF(X), so, there exists w € X such that z = Bz = SFw. By and the property
of ¢ and 1, we have

d(Aw, SFw),d(Bz,TGz),d(SPw,TGz),
d(Aw,TGz),d(Bz,SFw)
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= 8—14¢(d(Aw,z),d(z,z),d(z,z),d(Aw,z),d(z,z))

_ Si4¢(d(Aw,z),o,o,d(Aw,z),O)

IN

26 (A Aw, 2),d(Aw, 2), d(Aw, 2), 2d(Aw, 2),0)

IA

Sim (d(Aw, 2)) < 1 (d(Aw, 2)).

By the property of 1, we get d(Aw, z) = 0, this is Aw = z, and so Aw = SPw = z. Using the compatibility
of {A,SF}, we have
Az = A(SF)w = (SF)Aw = SFz.

In the above proof, we get, z = TGz = Bz = Az = SFz, so, z is the common fixed point of A, B,SF,
and TG.

Similarly, we can also prove that z is the common fixed point of A, B, S, T, F, and G in X.

Finally, we prove that z is the unique common fixed point of A, B, S, T, F, and G in X, furthermore, z
is also the unique common point of the pairs {A, SF'} and {B, TG}, respectively.

Suppose on the contrary, that there exists z* € X such that z* # z and 2* is also the common fixed
point of the pair {B, TG} in X. Then, by and the property of ¢ and v, we obtain

d(z,2%) = d(Az, Bz")

id) d(Az,SFz),d(Bz*,TGz*),d(SFz,TGz"),
— st d(Az, TGz*),d(Bz*,SFz)

?14¢(d(z,z),d(z*,z*),d(z,z*),d(z,Z*),d(Z*%))
= ;14¢(070,d(z,z*),d(z,z*),d(z,z*))
< Sim (d(z,2%)) < ¥ (d(z,2%)).

Then, by the property of i, we get d(z,z*) = 0, this is z = z*. Thus, z is the unique common fixed point
of the pair {B, TG} in X. Similarly, z is the unique common fixed point of the pair {A, SF'} in X. Thus, z
is the unique common fixed point of A, B, S, T, F, and G in X.

2) We show that B or T'G is continuous, { B, TG} is compatible and {A, SF'} weak compatible, the proof is
similar with 1).

3) We show that SF or T'G is onto mapping, furthermore, {A, SF'} and {B,T'G} are both weak compatible.
Suppose that SF' is surjection, then there exists v € X, such that SFv = z. Using (2.3]), we get

d(Av, SFv),d(Bwan—1, TGron—1), d(SFv, TGron—1), ) (2.26)

1
d(AV’ Bx2n_1) S g(b ( d(AV, TG{/CQn_l), d(B(L‘Qn_l, SFV)

Taking the upper limit as i — oo in (2.26)), using Lemma and the property of ¢ and v, we get

1
—d(Av, z) < limsup d(Av, Bxa,_1)
s

n—o0

1.
< S—4hmsup¢>

n—oo

d(AI/, SFI/), d(B{L‘Qn_l, TG{BQn_l), d(SFl/, TGQZQn_l),
d(Av, TGzop—1),d(Bxay—1,SFVv)

< Sl4¢ (d(Av, z), s2d(z, 2), sd(z, 2), sd(Av, z), sd(z, z))

1
= S—4gb (d(Av, 2),0,0, sd(Av, z),0)
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< si‘l(b (sd(Av, z), sd(Av, z), sd(Av, z),2sd(Av, z),0)
1 1
< 8—41/1 (sd(Av, z)) < S—Qw (sd(Av,z)).

The above inequality becomes sd(Av, z) < 1 (sd(Av, z)) . Thus, by the property of ¥, we get sd(Av, z) =0,
that is Av = 2. So z = Av = SFv. Since {A,SF} is weak compatible, we have SFz = (SF)Av =
A(SF)v = Az.

We replace z with v in , then we get

(2.27)

d(Az, Baan 1) < Siﬁb < d(Az,SFz),d(Bxop—1,TGxon1),d(SFz, TGxop_1), > ‘

d(AZ, TG$2n_1), d(B.Z‘gn_l, SFZ)

Taking the upper limit as i — oo in ([2.27)), using Lemma and the property of ¢ and 1, we obtain

1
;d(Az, z) < limsupd(Az, Bxap_1)

n—oo
1 . d(AZ, SFZ), d(B."L‘anl, TG."L‘anl), d(SFZ, TGaj‘anl),
<
- st hfisipqﬁ ( d(Az, TGxop—1),d(Bxoy—1,SF2)

< 8i4¢ (d(Az, Az), s%d(2, 2), sd(Az, 2), sd(Az, 2), sd(z, Az))
= 8i4¢ (0,0, sd(Az, z), sd(Az, z), sd(Az, z))
< Si4¢ (sd(Az,z2)) < ;121/1 (sd(Az,z)).
The above inequality becomes sd(Az, z) < ¢ (sd(Az, z)). Therefore, by the property of 1, we get sd(Az, z) =

0, this is Az = z, and so Az = SFz = z. Similarly, we can prove that z is the unique common fixed point
of A,B,S,T,F, and G in X, furthermore, z is also the unique common fixed point of the pairs of {A, SF'}

and {B,TG}.
If T'G is surjection, similarly, we can prove that z is the unique common fixed point of A, B, S, T, F', and
G in X, z is also unique common fixed point of the pairs {A, SF'} and {B,TG}. O

As in the proof of Theorem [2.1] we have the following result.

Theorem 2.2. Let A,B,S, T, F, and G be six self-mappings on a b-complete b-metric space (X,d), and the
following conditions hold:
(i) A(X)CTG(X), B(X)cC SF(X);
(il) AF=FA, SF=FS, BG=GB, TG =GT;
(iii) For all x,y € X,

1 d(Az,SFz),d(By, TGy),d(SFz, TGy),
d(Al',By) < 84¢ < d(Aa:,TGy),d(By, SFZIS‘) )

where ¢ € ®o, s > 1 is the coefficient of (X, d).

If one of the following conditions is satisfied, then the mappings A, B, S, T, F', and G have a unique common
fized point z. And z is the unique common fized point of the pairs {A,SF} and {B,TG}.

1) FEither A or SF is continuous, {A, SF} is compatible and {B, TG} is weak compatible;
2) either B or TG is continuous, { B, TG} is compatible and {A, SF'} is weak compatible;
3) either SF or TG is surjection, and {A,SF} and {B, TG} are weak compatible.

Proof. Since the proof of Theorem is very similar to that of Theorem [2.1 so we omit it. O
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Remark 2.3. Theorems and improve and extend the corresponding results of Kang et al. [12] in its
three aspects:

(1) the generalization from four mappings to six mappings;

(2) by using one continuous function as opposed to two;

(3) the two pairs are both compatible decrease to one pair is compatible and another is weak compatible;
(4) the X is a metric space is replaced by the X is a b-metric space.

In Theorems and if =G =1 (I is identity mapping, the same below), we deduce the following
results of common fixed point for four self-mappings.

Corollary 2.4. Let A,B,S, and T be four self-mappings on a b-complete b-metric space (X,d) and the
following conditions hold:

(i) A(X) CcT(X), B(X)C S(X);
(ii) For all x,y € X,

d(Ax, By) < — ¢ (d(Ax, Sz),d(By,Ty),d(Sz, Ty),d(Az, Ty), d(By, Sx)) , (2.28)

1
e
where ¢ € ®1, s > 1 is the coefficient of (X,d). If it satisfies one of the following condition, then A, B,S
and T have a unique common fized point z in X. Moreover, z is also a unique common fixed point of the
pairs {A, S} and {B,T}.

1) Either A or S is continuous, {A, S} is compatible, {B, T} is weak compatible;

2) either B or T is continuous, {B,T} is compatible, {A, S} is weak compatible;
3) either S or T is surjection, and {A,S} and {B,T} are weak compatible.

Corollary 2.5. Let A, B,S, and T be four self-mappings on a b-complete b-metric space (X,d), and the
following conditions hold:

(i) A(X) CcT(X),B(X) C S(X);
(ii) For all x,y € X,

d(Az, By) < 6 (d(Ax, 5x), d(By, Ty),d(Sz, Ty), d(Ar, Ty), d(By, 52)), (2.29)

where ¢ € Oy, and s > 1 is the coefficient of (X, d). If one of the following conditions is satisfied, then the
mappings A, B, S and T have a unique common fized point z. And z is the unique common fixzed point of
the pairs {A,S} and {B,T}.

1) Either A or SP is continuous, {A, S} is compatible and {B,T} is weak compatible;

2) either B or T is continuous, {B,T} is compatible and {A, S} is weak compatible;

3) either SP or T is surjection, and {A, S} and {B,T} are weak compatible.

Remark 2.6. Corollaries and improve and extend Theorem 2.1 of Roshan et al. [I§] in its three
aspects:

(1) The contractive condition (|1.1)) is replaced by the new contractive condition defined by (2.28) and
(2-29);

(2) by using one continuous function as opposed to two;

(3) the two pairs maps are both compatible decrease to one pair is compatible and another is weak
compatible.

Remark 2.7. Theorems 2.2 and Corollaries [2.4] generalize and extend the corresponding results in
Jungck [10], Diviccaro and Sessa [§], and Ding [7].
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If there exists a function ¢ : [0,00)® — [0, 00) in Theorem and Corollary [2.4] such that
k 1
¢ (t1,t2,t3,t4,15) = 51 max t17t2,t3,§(t4+t5)

for all (t1,t2,t3,t4,t5) € [0,00)°, k € (0,1) and s > 1, then we can obtain the following results.

Corollary 2.8. Let A, B,S,T, F, and G be siz self-mappings on a b-complete b-metric space (X,d) and the
following conditions hold:

(i) A(X)CTG(X),B(X) C SF(X);
(i) AF = FA,SF = FS, BG = GB, TG = GT’;
(iii) For all x,y € X,

d(Az,By) < 854 max {d(Aa:,SFx),d(By,TGy),d(SF:c,TGy), d(42 TGy) + d(BvaFm)}

2

where k € (0,1) and s > 1 is the coefficient of (X,d). If it satisfies one of the following condition, then
A, B,S,T,F and G have a unique common fixzed point z in X. Moreover, z is also a unique common fixed
point of the pairs {A,SF} and {B,TG}.

1) Either A or SF is continuous, {A, SF} is compatible and { B, TG} is weak compatible;

2) either B or TG is continuous, {B, TG} is compatible and {A, SF'} is weak compatible;

3) either SF or TG is surjection, and {A,SF'} and {B, TG} are weak compatible.

Corollary 2.9. Let A, B,S, and T are four self mappings on a b-complete b-metric space (X,d), and the

following conditions hold:

(i) A(X)CcT(X),B(X)CS(X);
(ii) For allx,y € X,

5 (2.30)

k d(Az, T d(By, S
A, By) < o {d(Az, S0). d(By, Ty).d( 5z, Ty), DT LAEL Y
where k € (0,1) and s > 1 is the coefficient of (X,d). If it satisfies one of the following condition, then
A, B, S, and T have a unique common fixzed point z in X. Moreover, z is also a unique common fized point
of the pairs {A, S} and {B,T}.
1) Either A or S is continuous, {A, S} is compatible, { B, T} is weak compatible;
2) Either B or T is continuous, {B,T} is compatible, {A, S} is weak compatible;

3) Either S or T is surjection, and {A,S} and {B,T} are weak compatible.
Remark 2.10. Corollary [2.9|improve and extend the main results in Kang et al. [I2] and Roshan et al. [18].

Corollary 2.11. Let A,B,S,T,F, and G be siz self-mappings on a b-complete b-metric space (X,d), and
the following conditions hold:

(i) A(X)CTG(X),B(X) Cc SF(X);
(i) AF =FA,SF =FS,BG=GB, TG =GT;
(iii) For all x,y € X,

d(Az, By) < — (c1d(Az, SFx) + cod(By, TGy) + c3d(SFx, TGy) + c4d(Az, TGy) + c5d(By, SFx)),

1
54
where ¢y, 2, C3,cq4,¢5 > 0 with ¢1 + co + c3 + 2max{cy,c5} <1 and s > 1 is the coefficient of (X, d). If one
of the following conditions is satisfied, then the mappings A, B,S, T, F and G have a unique common fized
point z, and z is the unique common fized point of the pairs {A, SF} and {B,TG}.
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1) Either A or SF is continuous, {A, SF} is compatible and {B, TG} is weak compatible;
2) either B or TG is continuous, { B, TG} is compatible and {A, SF'} is weak compatible;
3) either SF or TG is surjection, and {A,SF} and {B,TG} are weak compatible.

Proof. Tt suffices to take ¢(t1,to,t3,tq,t5) = c1t1 + cato + c3ts + ¢4ty + c5ts in Theorem O

In Corollary if we take F' = G = I, we deduce the following result of common fixed point for four
self-mappings.

Corollary 2.12. Let A, B, S, and T be four self-mappings on a b-complete b-metric space (X,d) and the
following conditions hold:

(i) AX)CT(X),B(X)CSX);
(ii) Forallxz,y € X,

d(Az, By) < — (c1d(Ax,Sx)+cad(By,Ty)+c3d(Sz,Ty) +cad(Ax,Ty) +c5d(By,Sx)) , (2.31)

1
54
where ¢y, ca, c3,¢4,¢5 > 0 with ¢1 + c2 + ¢35 + 2max{cq,c5} < 1 and s > 1 is the coefficient of (X,d). If one

of the following conditions is satisfied, then the mappings A, B,S and T have a unique common fixed point
z, and z is the unique common fixed point of the pairs {A, S} and {B,T}.

1) Either A or S is continuous, {A, S} is compatible and {B,T} is weak compatible;
2) either B or T is continuous, {B,T} is compatible and {A, S} is weak compatible;
3) either S or T is surjection, and {A, S} and {B,T} are weak compatible.

Remark 2.13. Let a, 8> 0 and o + 8 = 2, then
€1+ ca+ 3+ acy+ Pes < e+ o+ 3+ (a+ B)max{cy,c5} = 1 + c2 + ¢3 + 2max{cy, c5}.

Therefore, if the condition ¢1+ca+ec3+2max{cy, c5} < 1is replaced by the condition ¢j+co+cg+acy+LPes < 1
in Corollary then the conclusion of corollary is still holds. Hence, Corollary improves and
extends Theorem 2.7 of Roshan et al. [18] in its three aspects:

(1) the contractive condition is replaced by the new contractive condition defined by (2.31));

(2) by using one continuous function as opposed to two;
(3) the two pairs maps are both compatible decrease to one pair is compatible and another is weak
compatible.
Remark 2.14. If we take: (1) A=B; (2) S=T;3)S=T=1;(4) A=Band S=T; (5) A= B and
S =T = I in Corollaries and then several new results can be obtained, and here we omit
them.

Now we introduce some examples to support our new result.

Example 2.15. Let X = [0,2], and (X,d) be a b- metric space defined by d(z,y) = (z — y)? for all z,y in
X. Suppose that A, B, S and T be four self-mappings defined by

. 9 2el0,1]
= — . = 4’ ’ ’
Ax 1 Va € [0,2]; Bz { Iore(1,2),
17 T € [0, ]a éa T € [0’ 1]’
S{I} _ %7 = (1’2)’ Ty = g xTr & (172)7
%) r=2 L, T =2

Note that A is continuous in X, and B, S and T are not continuous functions in X.
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It is easy to show that (X,d) is b-complete b-metric space, A(X) C T(X), B(X) C S(X) and s = 2 is
the coefficient of (X, d).
By the definition of the functions of A and S, only for {z,} C (1,2), we have

lim Az, = lim Sz, =t (z 7) .

n—o00 n—00 4

At this time -
lim d(ASz,, SA,x) =d < > =0,

n—o0 4’4
this implies that the pair {A, S} is compatible.
By the definition of the functions of B and T, only for x € (1,2), Bx = Tx = %, at this time

BTz = B(Z) - Z - T(Z)

so BTz = T Bz, which implies that the pair {B,T'} is weakly compatible.
Now, we will show that the functions A, B, S and T are satisfying the condition ({2.28]) of Corollary
4 with k € [23¢ 1) and control function ¢(ty,t2,t3,t4,t5) = kmax {tl,tg,tg, t4;t5 } For this purpose, we

289"
con81der the following five cases:

=TBzx,

Case 1. z,y € [0,1]. In this case, we have

d(Az, By)_dG i) <;>2:1

¢ (d(Az, Sz),d(By, Ty),d(Sz, Ty), d(Az, Ty),

A 0 M
(076 0)
el 5 272

and

)

Therefore, we give that

1 1 256 289 1 289
d(Azxz,By) = - = — < — k-
(Az, By) = 1 =91 280 64 = of 64

1

—4<Z>( (Az, Sz),d(By, Ty),d(Sz,Ty),d(Az,Ty),d(By, St)) .

Case 2. z € [0,1],y € (1,2]. Obviously, we have

d(Az, By) = d (1 1) —0.< L6 (d(Az, 2. d(By. Ty). d(S, Ty). d(Ax. Ty). d(By. S)).

Case 3. z € (1,2),y € [0,1]. In this case, we obtain

d( Az, By)_d<z i) <;>2:i
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and

¢ (d(Az, Sz),d(By, Ty), d(Sz, Ty), d(Az, Ty), d(By, Sz))
A EICHRICHRIFRIEH)
2 2 2 2
- (n(3)-()()6))
= k:max{oz, <187>2’ <183>2’(183)22—|_(%)2}

289
=k

Hence, we deduce that

1 1 256 289 1 289
d( Az By) — £ — 1 .20 289 1
Az, By) = 1 =57 380 61 ~21 ¥ s

= 6 (d(Ar, S2),d(By, Ty), d(Sr, Ty), d(Az, Ty), d(By, 51)).

Case 4. x = 2,y € [0,1]. In this case, we have

79 1
d(Aa:,By) =d <4, 4> =1

and

¢ (d(Az, Sz),d(By, Ty),d(Sz, Ty), d(Azx, Ty), d(By, Sx))
o (4(5) a8) 1 () o) o (0)
2 2 2 2
ORCRGRCE
{6 () (3) )

289

64

Thus, we get that

1 1 256 289 1 _ 289
Arz. By) =-= - . — . "~ < _ .2
d( A, BY) = 1 =57 589 64 ~ A 64

1
Case 5. z,y € (1,2]. Clearly, we have

s, By) = (§.1) =0 £ 50(d(An,Sa).d(By, Ty), (S0, Ty). d(Av. Ty) d(By, 52)).

Then in all the above cases, the mappings A, B, S and T are satisfying the condition (2.28)) of the Corollary
with k € [220,1) and ¢(t1,to, t3, 14, t5) = kmax {tl, to, 3, t4J2rt5 } So that all the conditions of Corollary

289>
.4 are satisfied. Clearly, % is the unique common fixed point for all of the mappings A, B, S and T
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Example 2.16. Let X = [0,+00) and (X, d) be b—metric space on X given by d(z,y) = (z — y)? for all
x,y € X. Define self-maps A, B, S, and T on X by

A:L‘zln(l—l—g), B:Uzln(l—k%), Sz =e* -1, Te=e*—1, Vo e X.
Obviously, (X, d) is b-complete b-metric space with the coefficient s = 2, and

A(X) = B(X) = S(X) = T(X) = [0, +00).

Since

(Sx—Aaz)2:((e”—l)—ln(l—l—%))QZO & =0,

then for all {z,,} C X satisfying z,, — 0, we have lim,,_,oc Ax;,, = lim,, 00 Szp(= 0). At this time, we have

lim d(ASz,, ASx,) = 0.
n—oo
Otherwise, lim, oo Axy # limy, o0 Sz Therefore, the pair {A, S} is compatible.
By the definition of the functions of B and T, only for x = 0, we get Bx = Tx(= 0). At this time
BTz =TBx(=0). Otherwise, B(x) # T'(z). Hence, the pair {B,T'} is weak compatible.

Next we show that the maps A, B, S, and T are satisfying the condition (2.30) of Corollary with
k=21 In fact
1

2
d(Ax,By):(Ax—By)zz{ln (H% I (1+%)}
z _y\_ 1 2o _ 1 .4 2\2
<(Z2-2) = —(4z — < —(efr _ o
<3 4> 64(4$ 2y) _64(6 e*)
1 4 2 2
< = (1) — (¥ -1
< (e -1 - (@ 1)
_ 1 2 11
< 2i4 . %max {d(A:L‘, Sx),d(By,Ty),d(Sz,Ty), d(Az, Ty) —;—d(By, 5z) } )

Therefore, in all the above cases, the mappings A, B, S, and T are satisfying all the conditions of the
Corollary Obviously, 0 is the unique common fixed point for all of the mappings A, B, S, and T

Example 2.17. Let X = [0,1], and (X,d) be a b-metric space defined by d(z,y) = (z — y)? for all z,y in
X. Suppose that A, B, S, and T be four self-mappings defined by

1, =x¢€ 0,1, M, T e O,l
Aa;:{15 0, 3] Ba::{%g [l2
2

167 xE(%,l], 16" 1176( ,1],

1, =z¢€ [0,%),

Sz = x; Tx = %, T € {Tli,%]
%7 S (571]'

We know that S is continuous in X, and A, B and T are not continuous mappings in X.

It is easy to see that (X, d) is b-complete b-metric space, s = 2 is the coefficient of (X, d), and A(X) C
T(X) and B(X) C S(X).

By the definition of the mappings of A and S, only for {x,} C (%, 1], we have

lim Az, = lim Sz, =t (: 15) .

n—00 n—00 16
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At this time

‘ ' 15 15 15
nh_)rgo d(ASzy,, SAx,) = nh_)n{)lod (Amn,s <16)> d (16 16) 0

so we can get the pair {A, S} is compatible.
By the definition of the mappings of B and T, only for = € (%,1], Br = Tz = 16, at this time

BTz = B(1) = 4 = T(32) = TBuz, so BTz = TBuz, thus we can obtain the pair {B,T} is weakly

compatible.
Now we prove that the mappings A, B, S and T are satisfying the condition (2.31)) of Corollary
with ¢y = ¢y = ¢c3 = %, Ccy =cC5 = i. So we consider the following cases:

Case 1. For all z,y € [0, ], we show that

14 1\? 1
Az, By) = —) ==
d(Az, By) = d< 15> (15) 295’

then, we divide the study in two subcases.

(i) If y € [0, 1), thus we have
c1d(Ax, Sz) + cod(By, Ty) + c3d(Sx, Ty) + cad( Az, Ty) + csd(By, Sx)

:é-da )+6 dGé >+6 d(z, 1)+% d(l, 1)+% d(iié )
2 2
:é-u—x)%é.(i‘;—l) —i—é-(az—l) +E o%% (1‘51—:,;>
1 , 1 1\ 1 [14 2
:3'“‘x>+6‘<w)‘*m'(1‘w>
13, 6 2813
30 75 6750
>B.<1>2_M.(1>+2843
— 30 2 75 2 6750
2Tt
27000

Thus we have

1 1 16 1 1920 1 2777

d(Az. B Sl sl e L
(Az, By) = 505 = 51 995 = 21 27000 < 21" 27000

—4[cld(Aa: Sx) + cod(By, Ty) + c3d(Sx, Ty) + cad(Az, Ty) + csd(By, Sz)].

_

(ii) If y € [%, 3], then we obtain

c1d(Azx, Sx) + CQd(By, Ty) + c3d(Sz, Ty) + cad(Az, Ty) + c5d(By, Sx)

14 1 1 1 1 1 14
Sd(1 - : il 1. =
d{l,2)+ 6 d<15 5>+6 d( 5>+1O d(75>+10 d<15 )

1

6

SRR (14_1)11.(95_1)11.(1_1)2+1.(M_x)2
6 6 15 5 6 5 10 5) 10 15
13 , 44 559

“30 " T T 13m0

13 (1)2 44 <1> 559

>__ . (= —— )+ ==

— 30 2 75 2 1350

1237

-
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Hence we have

1 1 16 1 384 1 1237
d(Az. B S e i
(A, BY) = 595 = 51 225 = 21 5400 ~ 21 5400
1
j[cld(Ax Sz) + cod(By, Ty) + c3d(Sx, T'y) + c4d(Ax, Ty) + c5d(By, Sz)].

Case 2. For all z € [0, %],y € (%, 1], we get
15\ 2 1\ 1
A B = = _— [ p——
d(Aw, By) = d( 16> <16) 256

c1d(Az, Sz) + cod(By, T'y) + c3d(Sx, Ty) + cad(Azx, Ty) + c5d(By, Sz)
1 1 15 15 1 15 1 15 1 15
—-.d(1 Z . — 1.2 — 4=
d(1,2) + 6 d(lﬁ 16)+6 d( 16>+1O d( ’16)_'_10 d<16’$>

1 1 15 1 15\ 1 (15 2
=22+ 2.024+2 (=== — (1= = =
(I=—2)+5- 00+ (x 16) 10 < 16) T (16 x)

, 5 3083

13 | 3083
30 ° 76 T 7630

13 /1\? 5 /1 3083
>_— (2] =2 (=) + ==
=30 \2 6 \2 7680
143

-~ 1536°

and

D= O

Hence, we deduce that

1 1 16 1 96 1 143
d(Az.By) = —— = — . — — — . 22
(A, By) = ox6 = 51 956 = 21 1536 ~ 21 1536
1
=

< . [c1d(Az, Sz) + cod(By, T'y) + c3d(Sx, T'y) + cad(Azx, Ty) + csd(By, Sz)].

Case 3. For all z € (3, 1],y € [0, 5], we show that

15 14 12 1
d(Az, By) = d =) =
(Az, By) (16 15) <240> 57600

Next, we divide the study in two subcases.

(i) If y € [0, 1), then we have

Cld(Al‘ Sx) + cod(By, Ty) + c3d(Sz, Ty) + c4d(Ax, Ty) + c5d(By, St)
14 1 15 1 14
- —-d(z,1)+ —-d —-d
< >+ d(15 >+6 @D+ 35 <16 >+10 <15 )
15 21 (14 S| s 1 (15 1 (14 2

3 5 333 86701

=307 " 200 " 216000

4 .13 86701 (@)2
30 216000 400

— 13
4-33

6979

~4492800°

6
_ L
6
1
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Therefore, we deduce that

1 1 161 1248 <i 6979
7600 24 57600 24 4492800 24 4492800

1
< g[cld(Ax, Sz) + cod(By, T'y) + c3d(Sx, Ty) + c4d(Az, Ty) + c5d(By, Sz)).

d(Az, By)

(ii) If y € [§, 3], then we have

c1d(Ax, Sz) + cod(By, Ty) + c3d(Sx, Ty) + c4d( Az, Ty) + c5d(By, Sx)
15 1 /14 1\ 1 1\ 1 15 1\ 1 14

dl = 24l =z Z.d - —dl =z —.dl=
(16’x>+6 (15’5>+6 (x’5>+10 <16’5)+10 <15’x>
LIRSS S A IS L RN S SRS L RN A IS B R B AC S
16 6 \15 5 6 5 10 \16 5 10 \15

13 5, 679 16601

=307 ~ 1200 7T 13200
2

13 16601 679
4'% 43200 (Too)
- 4.13
30
_ 4483151

22464000

D= =

Hence we have

11 6 1 6240 _ 1 4483151
57600 24 57600 24 22464000 24 22464000

1
< g[cld(Ax, Sz) + cod(By, Ty) + c3d(Sz, Ty) + c4d(Ax, Ty) + c5d(By, Sz)].

d(Az, By) =

Case 4. For all z,y € (%, 1], we show that

15 15

< —[e1d(Az, Sz) + cod(By, Ty) + c3d(Sx, T'y) + cad(Ax, Ty) + c5d(By, Sz)].

1
e
Then in all the above cases, the mappings A, B, S and T are satisfying the condition (2.31]) of Corollary

with ¢(t1, ta, t3,tg,t5) = %tl + %tz + %tg + 1—10t4 + %t& So that all the conditions of Corollary are

satisfied. Obviously, % is the unique common fixed point for all of the mappings A, B, S and T
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