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Abstract

In the present paper, we introduce a method in order to obtain some new interesting relations and
identities of the Apostol-Bernoulli polynomials of higher order, which are derived from Bernoulli polynomial
basis. Finally, by utilizing this method, we also get formulas for the convolutions of Bernoulli and Euler
polynomials in terms of Apostol-Bernoulli polynomials of higher order. c©2016 All rights reserved.
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1. Introduction

For t ∈ C, the Euler polynomials have the following Taylor expansion at t = 0 (known as generating
function):

∞∑
n=0

En (x)
tn

n!
= etE(x) =

2

et + 1
ext, (|t| < π) (1.1)

∗Corresponding author
Email addresses: bagdasar@member.ams.org (Armen Bagdasaryan), mtsrkn@hotmail.com (Serkan Araci),

acikgoz@gantep.edu.tr (Mehmet Acikgoz), hyyhe@aliyun.com (Yuan He)

Received 2015-10-05



A. Bagdasaryan, et al., J. Nonlinear Sci. Appl. 9 (2016), 2697–2704 2698

with the usual convention about replacing of (E (x))n := En (x), (see [1, 4, 9, 10, 11, 14, 16, 20]).
There are also explicit formulas for the Euler polynomials, e.g.,

En(x) =
n∑

k=0

(
n

k

)
Ek

2k

(
x− 1

2

)n−k
,

where Ek means the Euler numbers. Conversely, the Euler numbers are expressed with the Euler polynomials
through Ek = 2kEk(1/2). These numbers can be computed by:

(E + 1)n + (E − 1)n =

{
2 if n = 0
0 if n 6= 0,

(see [7] and [17]).
For |t| < 2π with t ∈ C, the Bernoulli polynomials are defined by means of the following generating

function:
∞∑
n=0

Bn (x)
tn

n!
= etB(x) =

t

et − 1
ext,

where we have used (B (x))n := Bn (x), symbolically. In the case x = 0, we have Bn (0) := Bn that stands
for n-th Bernoulli number. This number can be computed via

(B + 1)n −Bn = δn,1,

where δn,1 stands for Kronecker delta, (see [3, 5, 11, 15]).
The Euler polynomials of order k are defined by the exponential generating function as follows:(

2

et + 1

)k

ext = etE
(k)(x) =

∞∑
n=0

E(k)
n (x)

tn

n!
(k ∈ Z+ = N ∪ {0}), (1.2)

with the usual convention about replacing (E(k)(x))n by E
(k)
n (x). In the special case, x = 0, E

(k)
n (0) := E

(k)
n

are called Apostol-Euler numbers of order k, (see [14] and [16]).
In the complex plane, Apostol-Euler polynomials En (x | λ) and Apostol-Bernoulli polynomials Bn (x | λ)

are given by [16]

2

λet + 1
ext =

∞∑
n=0

En (x | λ)
tn

n!
, (|t| < log (−λ)) , (1.3)

t

λet − 1
ext =

∞∑
n=0

Bn (x | λ)
tn

n!
, (|t| < log λ) . (1.4)

In [16], Apostol-Euler polynomials of higher order E
(k)
n (x | λ) and Apostol-Bernoulli polynomials of

higher order B
(k)
n (x | λ) are given by the following generating functions:(

2

λet + 1

)k

ext =

∞∑
n=0

E(k)
n (x | λ)

tn

n!
, (|t| < log (−λ)) , (1.5)

tk

(λet − 1)k
ext =

∞∑
n=0

B(k)
n (x | λ)

tn

n!
, (|t| < log λ) . (1.6)

In the above expressions, we take the principal value of the logarithm log λ, i.e., log λ = log |λ| +
i arg λ (−π < arg λ ≤ π) when λ 6= 1; set log 1 = 0 when λ = 1. Additionally, in the special case, x = 0 or

λ = 1 in (1.5) and (1.6), we have E
(k)
n (0 | λ) := E

(k)
n (λ) and B

(k)
n (0 | λ) := B

(k)
n (λ), E

(k)
n (x | 1) := E

(k)
n (x)
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and B
(k)
n (x | 1) := B

(k)
n (x) that stand for Apostol-Euler numbers, Apostol-Bernoulli numbers, the Euler

polynomials of order k and the Bernoulli polynomials of order k.
Apostol-Euler polynomials of higher order and Apostol-Bernoulli polynomials of higher order can be

expressed in terms of their numbers as follows:

E(k)
n (x | λ) =

n∑
l=0

(
n

l

)
xlE

(k)
n−l (λ) (1.7)

and

B(k)
n (x | λ) =

n∑
l=0

(
n

l

)
xlB

(k)
n−l (λ) . (1.8)

From (1.1), (1.2), (1.3), (1.4), (1.5) and (1.6) we have

E(1)
n (x | λ) := En (x | λ) and E(1)

n (x | 1) := En (x | 1) := En (x) ,

B(1)
n (x | λ) := Bn (x | λ) and B(1)

n (x | 1) := Bn (x | 1) := Bn (x) .

By (1.1), we easily get
E(0)

n (x | λ) = B(0)
n (x | λ) = xn. (1.9)

Applying derivative operator in the both sides of (1.8), we have

d

dx
B(k)

n (x | λ) = nB
(k)
n−1 (x | λ) . (1.10)

Using (1.6), we arrive to

λB
(k)
n+1(x+ 1 | λ)−B(k)

n+1(x | λ)

n+ 1
= B(k−1)

n (x | λ), (see [16]) . (1.11)

The linear operators Λ and D on the space of real-valued differentiable functions are considered as: For
n ∈ N

Λf(x) = λf(x+ 1)− f(x) and Df(x) =
df(x)

dx
. (1.12)

Notice that ΛD = DΛ . By (1.12), we have

Λ2f (x) = Λ (Λf (x)) = λ2f (x+ 2)− 2λf (x+ 1) + f (x)

=

2∑
l=0

(
2

l

)
(−1)l λlf (x+ l) .

By continuing this way, we obtain

Λkf (x) =
k∑

l=0

(−1)l
(
k

l

)
λlf (x+ l) .

Consequently, we give the following Lemma.

Lemma 1.1. Let f be real valued function and k ∈ N, we have

Λkf (x) =
k∑

l=0

(−1)l
(
k

l

)
λlf (x+ l) .

In particular,

Λkf (0) =
k∑

l=0

(−1)l
(
k

l

)
λlf (l) . (1.13)
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Let Pn = {q(x) ∈ Q[x] | deg q(x) ≤ n} be the (n + 1)-dimensional vector space over Q. Likely,
{1, x, · · · , xn} is the most natural basis for Pn.

Additionally, {B(k)
0 (x | λ) , B

(k)
1 (x | λ) , · · · , B(k)

n (x | λ)} is also a good basis for the space Pn for our
objective of arithmetical applications of Apostol-Bernoulli polynomials of higher order.

If q(x) ∈ Pn, then q(x) can be written as

q(x) =
n∑

j=0

bjB
(k)
j (x | λ) . (1.14)

Recently, many mathematicians have studied on the applications of polynomials and q-polynomials for
their finite evaluation schemes, closure under addition, multiplication, differentiation, integration and com-
position and they are also richly utilized in construction of their generating functions for finding many
identities and formulas, (see [1]–[22]).

In this paper, we discover methods for determining bj from the expression of q(x) in (1.14) and apply

those results to arithmetically and combinatorially interesting identities involving B
(k)
0 (x | λ), B

(k)
1 (x | λ),

. . ., B
(k)
n (x | λ).

2. Identities on the Apostol-Bernoulli polynomials of higher order

By (1.11) and (1.12), we see that

ΛB(k)
n (x | λ) = λB(k)

n (x+ 1 | λ)−B(k)
n (x | λ) = nB

(k−1)
n−1 (x | λ) , (2.1)

and
DB(k)

n (x | λ) = nB
(k)
n−1(x | λ). (2.2)

Let us assume that q(x) ∈ Pn. Then q(x) can be generated by means of B
(k)
0 (x | λ), B

(k)
1 (x | λ),. . . ,

B
(k)
n (x | λ) as follows:

q(x) =
n∑

j=0

bjB
(k)
j (x | λ). (2.3)

Thus, by (2.3) we get

Λq (x) =
n∑

j=0

bjΛB
(k)
j (x | λ) =

n∑
j=1

bljB
(k−1)
j−1 (x | λ)

and

Λ2q(x) = Λ [Λq (x)] =

n∑
j=2

bjj (j − 1)B
(k−2)
j−2 (x | λ).

By continuing this way, we have

Λkq(x) =

n∑
j=k

bjj (j − 1) · · · (j − k + 1)B
(0)
j−k(x | λ). (2.4)

By (1.9) and (2.4), we see that

DsΛkq(x) =
n∑

j=k+s

bj
j!

(j − k − s)!
xj−k−s. (2.5)
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Let us take x = 0 in (2.5), then we derive the following:

1

(k + s)!
DsΛkq(0) = bk+s. (2.6)

From (1.13) and (2.6), we have

bk+s =
1

(k + s)!
DsΛkq(0) =

1

(k + s)!
ΛkDsq(0)

=
1

(k + s)!

k∑
a=0

(−1)a
(
k
a

)
λaDsq(a).

(2.7)

Therefore, by (2.3) and (2.7), we have the following theorem.

Theorem 2.1. For k ∈ Z+ and q (x) ∈ Pn, we have

q(x) =

n∑
j=k

(
1

j!

k∑
a=0

(−1)a
(
k
a

)
λaDj−kq(a)

)
B

(k)
j (x | λ).

Let us take q(x) = xn ∈ Pn. Then we derive that Dj−kxn = n!
(n−j+k)!x

n−j+k.

Thus, by Theorem 2.1, we get

xn =
n∑

j=k

(
1

j!

k∑
a=0

(−1)a
(
k
a

)
λa

n!

(n− j + k)!
an−j+k

)
B

(k)
j (x | λ). (2.8)

Therefore, by (2.8), we arrive at the following corollary.

Corollary 2.2. For k, n ∈ Z+, we have

xn =

n∑
j=k

(
1

j!

k∑
a=0

(−1)a
(
k
a

)
λa

n!

(n− j + k)!
an−j+k

)
B

(k)
j (x | λ).

Let q (x) = E
(k)
n (x) ∈ Pn. Also, it is well known in [11] that

Dj−kE(k)
n (x) =

n!

(n− j + k)!
E

(k)
n−j+k (x) . (2.9)

By Theorem 2.1 and (2.9), we get the following theorem.

Theorem 2.3. For k, n ∈ Z+, we have

E(k)
n (x) =

n∑
j=k

k∑
a=0

n−j+k∑
l=0

(
k
a

)(
n−j+k

l

)
al (−λ)a n!

j! (n− j + k)!
E

(k)
n−j+k−lB

(k)
j (x | λ).

Let us consider q (x) = B
(k)
n (x) ∈ Pn. Then we see that

Dj−kB(k)
n (x) =

n!

(n− j + k)!
B

(k)
n−j+k (x) . (2.10)

Thanks to Theorem 2.1 and (2.10), we obtain the following theorem.
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Theorem 2.4. For k, n ∈ Z+, we have

B(k)
n (x) =

n∑
j=k

k∑
a=0

n−j+k∑
l=0

(−λ)a
(
k
a

)(
n−j+k

l

)
aln!

j! (n− j + k)!
B

(k)
n−j+k−lB

(k)
j (x | λ).

Hansen [7] derived the following convolution formula:

m∑
k=0

(
m

k

)
Bk (x)Bm−k (y) = (1−m)Bm (x+ y) + (x+ y − 1)mBm−1 (x+ y) . (2.11)

We note that the special case x = y = 0 of the last identity

Bm = −
∑m−2

k=2

(
m
k

)
BkBm−k

m+ 1

is originally constructed by Euler and Ramanujan (cf. [5]).
Let us now write the following

q (x) =
n∑

k=0

(
n

k

)
Bk (x)Bn−k (y) ∈ Pn. (2.12)

By using derivative operator Ds in the both sides of (2.11), we derive

Dj−kq (x) = (1− n)
n!

(n− j + k)!
Bn−j+k (x+ y) + (x+ y − 1)

n!

(n− j + k − 1)!
Bn−j+k−1 (x+ y)

+ (j − k)
n!

(n− j + k)!
Bn−j+k (x+ y)

(2.13)

By Theorem 2.1, (2.12) and (2.13), we arrive at the following theorem.

Theorem 2.5. For k, n ∈ Z+, we have

n∑
k=0

(
n

k

)
Bk (x)Bn−k (y) =

n∑
j=k

1

j!

k∑
a=0

(−1)a
(
k
a

)
λa{(1− n)

n!

(n− j + k)!
Bn−j+k (a+ y)

+ (a+ y − 1)
n!

(n− j + k − 1)!
Bn−j+k−1 (a+ y)

+ (j − k)
n!

(n− j + k)!
Bn−j+k (a+ y)}B(k)

j (x | λ).

Dilcher [5] introduced the following interesting identity:

n∑
k=0

(
n

k

)
Ek (x)En−k (y) = 2 (1− x− y)En (x+ y) + 2En+1 (x+ y) .

Let
∑n

k=0

(
n
k

)
Ek (x)En−k (y) ∈ Pn, then we write that

q (x) =
n∑

k=0

(
n

k

)
Ek (x)En−k (y) . (2.14)

By (2.14), we have

Dj−kq (x) = 2{ n!

(n− j + k)!
(1− x− y)En−j+k (x+ y)− (j − k)

n!

(n− j + k + 1)!
En−j+k+1 (x+ y)

+
(n+ 1)!

(n+ 1− j + k)!
En+1−j+k (x+ y)}.

As a result of the last identity and Theorem 2.1, we derive the following.
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Theorem 2.6. The following equality holds:

n∑
k=0

(
n

k

)
Ek (x)En−k (y) = 2

n∑
j=k

1

j!

k∑
a=0

(−1)a
(
k
a

)
λa{ n!

(n− j + k)!
(1− x− y)En−j+k (x+ y)

− (j − k)
n!

(n− j + k + 1)!
En−j+k+1 (x+ y)

+
(n+ 1)!

(n+ 1− j + k)!
En+1−j+k (x+ y)}B(k)

j (x | λ).

Remark 2.7. Throughout this paper when we take λ = 1, our results can easily be related to Bernoulli
polynomials of higher order.

Remark 2.8. Theorem 2.1 seems to be plenty large enough for obtaining interesting identities related to
special functions in connection with Apostol-Bernoulli polynomials of higher order.
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