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Abstract

We introduce a modified asymmetric GF(ψϕ)-contractive mapping with respect to a general family of
functions G∗ and establish asymmetric type fixed point results for such mappings. As an application of
our results, we deduce Suzuki type fixed point results via these mappings. We also derive certain fixed
point results for asymmetric type mappings in partial G-metric spaces. Moreover, we discuss an illustrative
example to highlight the realized improvements. c©2016 All rights reserved.
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1. Introduction

The study of fixed points of given mappings satisfying certain contractive conditions has been at the
center of vigorous research activity. There are many concepts of generalized metric spaces. For example,
in 2005, Mustafa and Sims introduced a new class of generalized metric spaces (see [4, 5]), which are called
G-metric spaces. A G-metric assigns a real number to every triplet of a set. Many fixed point results on
such spaces, for mappings satisfying various contractive conditions appeared in [1, 2, 6].

Recently, Samet et al. [8] and Vetro and Vetro [9], used a semicontinuous function to establish new fixed
point results. As consequences, we deduce some results on fixed point in the setting of partial metric spaces.
In this paper, we use the ideas from [8, 9] and the notion of modified asymmetric type mapping to establish
existence and uniqueness of fixed points in the setting of G-metric spaces. As consequences, we deduce some
results on fixed point in the setting of partial G-metric spaces. An example is furnished to demonstrate the
validity of the obtained results.
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2. Preliminaries

In this section, we present necessary definitions and results in G-metric and partial G-metric spaces,
which will be useful further on; for more details, we refer to [4, 5, 7]. Denote by N the set of all positive
integers.

Definition 2.1. Let X be a nonempty set. A function G : X ×X ×X −→ [0,+∞) is called a G-metric if
the following conditions are satisfied:

(G1) If x = y = z, then G(x, y, z) = 0;

(G2) 0 < G(x, y, y), for any x, y ∈ X with x 6= y;

(G3) G(x, x, y) ≤ G(x, y, z) for any points x, y, z ∈ X, with y 6= z;

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , symmetry in all three variables;

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for any x, y, z, a ∈ X.

Then the pair (X,G) is called a G-metric space.

Definition 2.2. Let (X,G) be a G-metric space and {xn} a sequence in X.

(i) {xn} is a G-Cauchy sequence if for any ε > 0, there is an N ∈ N such that for all n,m, l ≥ N ,
G(xn, xm, xl) < ε.

(ii) {xn} is G-convergent to x ∈ X if for any ε > 0, there is N ∈ N such that for all n,m ≥ N ,
G(x, xn, xm) < ε.

A G-metric space (X,G) is said to be complete if every G-Cauchy sequence in X is G-convergent in X.

Proposition 2.3. Let (X,G) be a G-metric space. The followings are equivalent:

(1) (xn) is G-convergent to x;

(2) G(xn, xn, x)→ 0 as n→ +∞;

(3) G(xn, x, x)→ 0 as n→ +∞.

From (G5) and (G3), we obtain the following lemma.

Lemma 2.4 ([3]). Let (X,G) be a G-metric space and x1, x2, y1, y2, z1, z2, a ∈ X where x1 6= x2, y1 6= y2
and z1 6= z2. Then the following inequality holds.

G(x1, y1, z1) ≤ G(x1, x2, a) +G(y1, y2, a) +G(z1, z2, a).

Definition 2.5 ([7]). Let X be a nonempty set. A function P : X ×X ×X −→ [0,+∞) is called a partial
G-metric if the following conditions are satisfied:

(P1) If x = y = z, then P (x, y, z) = P (x, x, x) = P (y, y, y) = P (z, z, z);

(P2) P (x, x, x) + P (y, y, y) + P (z, z, z) ≤ 3P (x, y, z) for all x, y, z ∈ X;

(P3) 1
3P (x, x, x) + 2

3P (y, y, y) < P (x, y, y) for all x, y ∈ X with x 6= y;

(P4) P (x, x, y)− 1
3P (x, x, x) ≤ P (x, y, z)− 1

3P (z, z, z) for all x, y, z ∈ X, with y 6= z;

(P5) P (x, y, z) = P (x, z, y) = P (y, z, x) = · · · , symmetry in all three variables;

(P6) P (x, y, z) ≤ P (x, a, a) + P (a, y, z)− P (a, a, a) for any x, y, z, a ∈ X.
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Then the pair (X,P ) is called a partial G-metric space (in brief PGMS).

The following lemma shows that to every partial G-metric, we can associate one G-metric.

Lemma 2.6 ([7], Lemma 2.2). Let (X,P ) be a PGMS. Define Gp : X ×X ×X → [0,+∞) by

Gp(x, y, z) = 3P (x, y, z)− P (x, x, x)− P (y, y, y)− P (z, z, z).

Then Gp is a G-metric function on X and the pair (Gp, X) is a G-metric space.

Example 2.7 ([7], Example 2.3). Let X = [0,+∞) and define P (x, y, z) = 1
3

(
max{x, y} + max{y, z} +

max{x, z}
)

, for all x, y, z ∈ X. Then (X,P ) is a PGMS.

The following proposition gives some properties of partial G-metric.

Proposition 2.8 ([7], Proposition 2.4). Let (X,P ) be a partial G-metric space; then for any x, y, z, a ∈ X
the following properties hold:

(i) If P (x, y, z) = P (x, x, x) = P (y, y, y) = P (z, z, z), then x = y = z;

(ii) If P (x, y, z) = 0, then x = y = z;

(iii) If x 6= y, then P (x, y, y) > 0;

(iv) P (x, y, z) ≤ P (x, x, y) + P (x, x, z)− P (x, x, x);

(v) P (x, y, y) ≤ 2P (x, x, y)− P (x, x, x);

(vi) P (x, y, z) ≤ P (x, a, a) + P (y, a, a) + P (z, a, a)− 2P (a, a, a);

(vii) P (x, y, z) ≤ P (x, a, z) + P (a, y, z)− 2
3P (a, a, a)− 1

3P (z, z, z) with y 6= z;

(viii) P (x, y, y) ≤ P (x, y, a) + P (a, y, y)− 2
3P (a, a, a)− 1

3P (y, y, y) with x 6= y.

Definition 2.9. Let (X,P ) be a PGMS and {xn} a sequence in X.

(1) {xn} is P -G-convergent to x ∈ X if and only if

P (x, x, x) = lim
n→+∞

P (x, x, xn) = lim
n→+∞

P (x, xn, xn).

(2) {xn} is a (PG)∗-Cauchy sequence if

lim
m,n,l→+∞

P (xn, xm, xl) = lim
m,n,l→+∞

[
P (xn, xn, xn) + P (xm, xm, xm) + P (xl, xl, xl)

3

]
.

(3) (X,P ) is said to be a (PG)∗-complete partial G-metric space if and only if every (PG)∗-Cauchy
sequence in X is P -G-convergent to a point x ∈ X such that lim

n→+∞
P (xn, xn, xn) = P (x, x, x).

Lemma 2.10. Let (X,P ) be a partial G-metric space, x, y ∈ X and {xn} a sequence in X. Assume that
lim

n→+∞
P (x, xn, xn) = lim

n→+∞
P (xn, y, y) = 0; then x = y.

Proof. By (P6), we have
P (x, y, y) ≤ P (x, xn, xn) + P (xn, y, y).

Letting n→ +∞, we get that P (x, y, y) = 0 and so by (ii) of Proposition 2.8 we deduce that x = y.
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Lemma 2.11. Let (X,P ) be a partial G-metric space such that P (x, x, x) ≤ P (x, y, y) for all x, y ∈ X.
Then P (x, x, x) is lower Gp-semicontinuous in (Gp, X).

Proof. Let {xn} be a sequence in the G-metric space (Gp, X) with xn → x as n→ +∞. Then,

0 = lim
n→+∞

Gp(x, xn, xn) = lim
n→+∞

[3P (x, xn, xn)− P (x, x, x)− 2P (xn, xn, xn)],

which implies
3 lim
n→+∞

P (x, xn, xn) = P (x, x, x) + 2 lim
n→+∞

P (xn, xn, xn).

Now since P (x, x, x) ≤ P (x, y, y) for all x, y ∈ X, then

3P (x, x, x) ≤ 3 lim
n→+∞

P (x, xn, xn) = P (x, x, x) + 2 lim
n→+∞

P (xn, xn, xn),

that is
P (x, x, x) ≤ lim

n→+∞
P (xn, xn, xn).

Lemma 2.12. If (X,P ) is a (PG)∗-complete partial G-metric space, then (X,Gp) is a complete G-metric
space.

Proof. Let (X,P ) be a (PG)∗-complete partial G-metric space. Assume that {xn} is a Cauchy sequence in
(X,Gp). We have

lim
m,n,l→+∞

Gp(xn, xm, xl) = 0,

which implies,

lim
m,n,l→+∞

P (xn, xm, xl) = lim
m,n,l→+∞

[
P (xn, xn, xn) + P (xm, xm, xm) + P (xl, xl, xl)

3

]
.

Thus {xn} is a (PG)∗-Cauchy sequence in the partial G-metric space (X,P ). Completeness of (X,P ) ensures
that there exists an x ∈ X such that

P (x, x, x) = lim
n→+∞

P (x, x, xn) = lim
n→+∞

P (x, xn, xn),

where lim
n→+∞

P (xn, xn, xn) = P (x, x, x). Hence,

lim
n→+∞

Gp(x, x, xn) = 3 lim
n→+∞

P (x, x, xn)− P (x, x, x)− P (x, x, x)− lim
n→+∞

P (xn, xn, xn)

= 3P (x, x, x)− P (x, x, x)− P (x, x, x)− lim
n→+∞

P (xn, xn, xn)

= P (x, x, x)− lim
n→+∞

P (xn, xn, xn) = 0,

that is, {xn} converges to x with respect to G-metric Gp.

3. Main result

We denote by GF the set of continuous functions GF : [0,+∞)4 → [0,+∞) satisfying the following
conditions:

(G∗1) max{a, b} ≤ GF(a, b, c, d) for all a, b, c, d ∈ [0,+∞);

(G∗2) if GF(a, b, c, d) = 0, then a = 0;

(G∗3) GF is nondecreasing in fourth variable.

As examples, the following functions belong to GF:
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• GF(a, b, c, d) = (a+ b+ c)(d+ 1);

• GF(a, b, c, d) = a+ b+ c+ d;

• GF(a, b, c, d) = max{a, b, c, d};

• GF(a, b, c, d) = a+ max{a, b, c, d}.

We denote by Ψ the set of nondecreasing functions ψ : [0,+∞) → [0,+∞) such that
+∞∑
n=1

ψn(t) < +∞ for

each t > 0, where ψn is the n-th iterate of ψ.
It is not difficult to show that if ψ ∈ Ψ, then ψ(t) < t for every t > 0.

Definition 3.1. Let (X,G) be a G-metric space, T : X → X and α, η : X2 → [0,+∞). We say that T is
an α-admissible mapping with respect to η if α(Tx, Ty) ≥ η(Tx, Ty) whenever α(x, y) ≥ η(x, y).

Definition 3.2. Let (X,G) be a G-metric space, T : X → X, α, η : X2 → [0,+∞) and ϕ : [0,+∞) →
[0,+∞). We say that T is a modified asymmetric GF(ψϕ)-contractive mapping if there exist ψ ∈ Ψ and
GF ∈ GF such that for all x, y ∈ X with α(x, y) ≥ η(x, Tx) we have

GF (G(Tx, T 2x, Ty), ϕ(Tx), ϕ(T 2x), ϕ(Ty)
)
≤ ψ

(
GF(G(x, Tx, y), ϕ(x), ϕ(Tx), ϕ(y))

)
.

Our main result is given by the following theorem.

Theorem 3.3. Let (X,G) be a G-complete G-metric space and ϕ : X → [0,+∞) a lower G-semicontinuous
mapping. Let T : X → X be a self-mapping satisfying the following assertions:

(i) T is an α-admissible mapping with respect to η;

(ii) T is a G-continuous modified asymmetric GF(ψϕ)-contractive mapping;

(iii) there exists an x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0).

Then T has a fixed point z ∈ X such that ϕ(z) = 0. Moreover, T has a unique fixed point whenever
α(x, y) ≥ η(x, x) for all x, y ∈ Fix(T ).

Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ η(x0, Tx0) and let {xn} be the sequence of Picard starting at
x0, that is, xn = Tnx0 = Txn−1 for all n ∈ N. Now, since T is an α-admissible mapping with respect to η,
we deduce that

α(x1, x2) = α(Tx0, T
2x0) ≥ η(Tx0, T

2x0) = η(x1, Tx1).

By continuing this process, we get

α(xn−1, xn) ≥ η(xn−1, Txn−1) for all n ∈ N.

Now if, for some n0 ∈ N, we have xn0 = xn0+1, then xn0 is a fixed point of T and we have nothing to prove.
Hence, we assume xn−1 6= xn for all n ∈ N. Therefore, using condition (ii) with x = xn−1 and y = xn, we
obtain that

GF (G(Txn−1, T
2xn−1, Txn), ϕ(Txn−1), ϕ(T 2xn−1), ϕ(Txn)

)
≤ ψ

(
GF(G(xn−1, Txn−1, xn), ϕ(xn−1), ϕ(Txn−1), ϕ(xn))

)
,

which implies

GF (G(xn, xn+1, xn+1), ϕ(xn), ϕ(xn+1), ϕ(xn+1))

≤ ψ
(
GF(G(xn−1, xn, xn), ϕ(xn−1), ϕ(xn), ϕ(xn))

)
.
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By using monotony of the function ψ, we obtain that

GF (G(xn, xn+1, xn+1), ϕ(xn), ϕ(xn+1), ϕ(xn+1))

≤ ψn
(
GF(G(x0, x1, x1), ϕ(x0), ϕ(x1), ϕ(x1))

)
for every n ∈ N. Finally, by (G∗1), we get

max{G(xn, xn+1, xn+1), ϕ(xn)} ≤ GF (G(xn, xn+1, xn+1), ϕ(xn), ϕ(xn+1), ϕ(xn+1))

≤ ψn
(
GF(G(x0, x1, x1), ϕ(x0), ϕ(x1), ϕ(x1))

)
(3.1)

for every n ∈ N.
Note that, if GF(G(x0, x1, x1), ϕ(x0), ϕ(x1), ϕ(x1)) = 0, by (G∗2), G(x0, x1, x1) = 0 and by (G2), we

have x0 = x1 = Tx0. Then x0 is a fixed point of T and we have nothing to prove. Therefore, we assume
GF(G(x0, x1, x1), ϕ(x0), ϕ(x1), ϕ(x1)) > 0.

Fix ε > 0 and let h = h(ε) be a positive integer such that

+∞∑
n=h

ψn
(
GF(G(x0, x1, x1), ϕ(x0), ϕ(x1), ϕ(x1))

)
< ε.

Let m > n ≥ h. Using condition (G5) and (3.1), we obtain

G(xn, xm, xm) ≤
m−1∑
k=n

G(xk, xk+1, xk+1)

≤
+∞∑
n=h

ψn
(
GF(G(x0, x1, x1), ϕ(x0), ϕ(x1), ϕ(x1))

)
< ε.

Consequently, {xn} is a G-Cauchy sequence. Since (X,G) is G-complete, there exists an z ∈ X such that
xn → z as n → +∞. Finally, the G-continuity of T implies that z = Tz. The lower G-semicontinuity of ϕ
and (3.1) give ϕ(z) = 0.

The uniqueness of the fixed point follows from the hypothesis that T is a modified asymmetric GF(ψϕ)-
contractive mapping. In fact, if y ∈ Fix(T ) with y 6= z and G(z, z, y) > 0, then

GF (G(z, z, y), ϕ(z), ϕ(z), ϕ(y)) > 0.

Since α(z, y) ≥ η(z, z), we deduce that

GF (G(z, z, y), ϕ(z), ϕ(z), ϕ(y)) ≤ ψ
(
GF(G(z, z, y), ϕ(z), ϕ(z), ϕ(y))

)
< GF (G(z, z, y), ϕ(z), ϕ(z), ϕ(y)) .

This is a contradiction and hence G(z, z, y) = 0, which implies z = y by condition (G2).

In the following theorem, we omit the G-continuity hypothesis of T .

Theorem 3.4. Let (X,G) be a G-complete G-metric space and ϕ : X → [0,+∞) be a lower G-semicontinuous
mapping. Let T : X → X be a self-mapping satisfying the following assertions:

(i) T is an α-admissible mapping with respect to η;

(ii) T is a modified asymmetric GF(ψϕ)-contractive mapping with respect to a continuous ψ ∈ Ψ;

(iii) there exists an x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);
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(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) with xn → z as n→ +∞, then either

η(Txn, T
2xn) ≤ α(Txn, z) or η(T 2xn, T

3xn) ≤ α(T 2xn, z)

holds for all n ∈ N.

Then T has a fixed point z ∈ X such that ϕ(z) = 0. Moreover, T has a unique fixed point whenever
α(x, y) ≥ η(x, x) for all x, y ∈ Fix(T ).

Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0). As in the proof of Theorem 3.3, we can conclude
that the Picard sequence {xn}, starting at x0, satisfies the following conditions:

α(xn−1, xn) ≥ η(xn−1, Txn−1), lim
n→+∞

xn = z ∈ X and ϕ(z) = lim
n→+∞

ϕ(xn) = 0. (3.2)

So, from condition (iv), either

η(Txn, T
2xn) ≤ α(Txn, z) or η(T 2xn, T

3xn) ≤ α(T 2xn, z)

holds for all n ∈ N. This implies that either

η(xn+1, xn+2) ≤ α(xn+1, z) or η(xn+2, xn+3) ≤ α(xn+2, z)

holds for all n ∈ N. Equivalently, there exists a subsequence {xnk
} of {xn} such that

η(xnk
, Txnk

) = η(xnk
, xnk+1) ≤ α(xnk

, z) for all k ∈ N.

Now, from (ii), we obtain

GF (G(Txnk
, T 2xnk

, T z), ϕ(Txnk
), ϕ(T 2xnk

), ϕ(Tz)
)

≤ ψ
(
GF(G(xnk

, Txnk
, z), ϕ(xnk

), ϕ(Txnk
), ϕ(z))

)
,

that is,

GF (G(xnk+1, xnk+2, T z), ϕ(xnk+1), ϕ(xnk+2), ϕ(Tz))

≤ ψ
(
GF(G(xnk

, xnk+1, z), ϕ(xnk
), ϕ(xnk+1), 0)

)
.

Now, we claim that z is a fixed point of T . AssumeG(z, z, Tz) > 0; this implies thatGF (G(z, z, Tz), 0, 0, 0) >
0. Letting k → +∞ in the above inequality, by the continuity of the functions GF, G and ψ and (3.2), we
get

GF (G(z, z, Tz), 0, 0, ϕ(Tz)) ≤ ψ
(
GF (G(z, z, Tz), 0, 0, 0)

)
< GF (G(z, z, Tz), 0, 0, 0) .

This is a contradiction since GF is nondecreasing and so G(z, z, Tz) = 0. Consequently, z = Tz, that is, z
is a fixed point of T .

Example 3.5. Let X = [0,+∞). Define, G : X3 → [0,+∞) by

G(x, y, z) =

{
0, ifx = y = z,
max{x, y}+ max{y, z}+ max{x, z}, otherwise.

Clearly, (X,G) is a G-complete G-metric space. Define T : X → X, α, η : X2 → [0,+∞), ψ : [0,+∞) →
[0,+∞), GF : [0,+∞)4 → [0,+∞) and ϕ : X → [0,+∞) by

Tx =

{
1
8x, if x ∈ [0, 1],

xsin x+2|x−2||x−3| ln(x+1)
2 , if x ∈ (1,+∞),
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α(x, y) =

{
t
2 , if x, y ∈ [0, 1], η(x, y) = 1

4 ,
0, otherwise,

ψ(t) =
t

2
, GF(a, b, c, d) = a+ b+ c+ d and ϕ(t) = t.

Let α(x, y) ≥ η(x, Tx); then x, y ∈ [0, 1]. At first, we assume that x ≤ y. Then

GF(G(x, Tx, y), ϕ(x), ϕ(Tx), ϕ(y))

= max{x, Tx}+ max{Tx, y}+ max{x, y}+ x+
1

8
x+ y

=
17

8
x+ 3y,

and

GF(G(Tx, T 2x, Ty), ϕ(Tx), ϕ(T 2x), ϕ(Ty))

= max{Tx, T 2x}+ max{T 2x, Ty}+ max{Tx, Ty}+ ϕ(Tx) + ϕ(T 2x) + ϕ(Ty)

=
17

64
x+

3

8
y.

Next, assume that y < x. Then

GF(G(x, Tx, y), ϕ(x), ϕ(Tx), ϕ(y))

= max{x, Tx}+ max{Tx, y}+ max{x, y}+ x+
1

8
x+ y

=
25

8
x+ y + max{1

8
x, y},

and

GF(G(Tx, T 2x, Ty), ϕ(Tx), ϕ(T 2x), ϕ(Ty))

= max{Tx, T 2x}+ max{T 2x, Ty}+ max{Tx, Ty}+ Tx+ T 2x+ Ty

=
25

64
x+

1

8
y +

1

8
max{1

8
x, y}.

Therefore,

GF(G(Tx, T 2x, Ty), ϕ(Tx), ϕ(T 2x), ϕ(Ty)) ≤ ψ(GF(G(x, Tx, y), ϕ(x), ϕ(Tx), ϕ(y))).

Now, if α(x, y) ≥ η(x, y), then x, y ∈ [0, 1]. On the other hand, for all w ∈ [0, 1], we have Tw ∈ [0, 1].
Hence α(Tx, Ty) ≥ η(Tx, Ty). This implies that T is an α-admissible mapping with respect to η. Clearly,
α(0, T0) ≥ η(0, T0). If {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) with xn → x as
n→ +∞, then Txn, T

2xn, T
3xn ∈ [0, 1] for all n ∈ N and hence

η(Txn, T
2xn) ≤ α(Txn, x) and η(T 2xn, T

3xn) ≤ α(T 2xn, x)

hold for all n ∈ N. Thus all of the hypotheses of Theorem 3.4 hold and T has a fixed point.

4. Consequences

In this section, if we choose opportunely the function GF, then we obtain different kinds of contractive
conditions. By taking GF(a, b, c, d) = (a+ b+ c)(d+ 1) in Theorem 3.3, we deduce the following result.

Corollary 4.1. Let (X,G) be a G-complete G-metric space, ϕ : X → [0,+∞) be a lower G-semicontinuous
mapping and α, η : X2 → [0,+∞). Let T : X → X be a self-mapping satisfying the following assertions:
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(i) T is a G-continuous α-admissible mapping with respect to η;

(ii) there exist xz[a] ψ ∈ Ψ such that for all x, y ∈ X with α(x, y) ≥ η(x, Tx), we have

G(Tx, T 2x, Ty) ≤ ψ ((G(x, Tx, y) + ϕ(x) + ϕ(Tx))(ϕ(y) + 1))

ϕ(Ty) + 1
− ϕ(Tx)− ϕ(T 2x);

(iii) there exists an x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0).

Then T has a fixed point z ∈ X such that ϕ(z) = 0. Moreover, T has a unique fixed point whenever
α(x, y) ≥ η(x, x) for all x, y ∈ Fix(T ).

By taking GF(a, b, c, d) = (a+ b+ c)(d+ 1) in Theorem 3.4, we deduce the following result.

Corollary 4.2. Let (X,G) be a G-complete G-metric space, ϕ : X → [0,+∞) be a lower G-semicontinuous
mapping and α, η : X2 → [0,+∞). Let T : X → X be a self-mapping satisfying the following assertions:

(i) T is an α-admissible mapping with respect to η;

(ii) there exists a continuous ψ ∈ Ψ such that for all x, y ∈ X with α(x, y) ≥ η(x, Tx), we have

G(Tx, T 2x, Ty) ≤ ψ ((G(x, Tx, y) + ϕ(x) + ϕ(Tx))(ϕ(y) + 1))

ϕ(Ty) + 1
− ϕ(Tx)− ϕ(T 2x);

(iii) there exists an x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);

(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) with xn → x as n→ +∞, then either

η(Txn, T
2xn) ≤ α(Txn, x) or η(T 2xn, T

3xn) ≤ α(T 2xn, x)

holds for all n ∈ N.

Then T has a fixed point z ∈ X such that ϕ(z) = 0. Moreover, T has a unique fixed point whenever
α(x, y) ≥ η(x, x) for all x, y ∈ Fix(T ).

By taking GF(a, b, c, d) = a+ b+ c+ d in Theorem 3.3, we deduce the following result.

Corollary 4.3. Let (X,G) be a G-complete G-metric space, ϕ : X → [0,+∞) be a lower G-semicontinuous
mapping and α, η : X2 → [0,+∞). Let T : X → X be a self-mapping satisfying the following assertions:

(i) T is a G-continuous α-admissible mapping with respect to η;

(ii) there exists a ψ ∈ Ψ such that for all x, y ∈ X with α(x, y) ≥ η(x, Tx), we have

G(Tx, T 2x, Ty) ≤ ψ (G(x, Tx, y) + ϕ(x) + ϕ(Tx) + ϕ(y))− ϕ(Tx)− ϕ(T 2x)− ϕ(Ty);

(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0).

Then T has a fixed point z ∈ X such that ϕ(z) = 0. Moreover, T has a unique fixed point whenever
α(x, y) ≥ η(x, x) for all x, y ∈ Fix(T ).

By taking GF(a, b, c, d) = a+ b+ c+ d in Theorem 3.4, we deduce the following result.

Corollary 4.4. Let (X,G) be a G-complete G-metric space, ϕ : X → [0,+∞) be a lower G-semicontinuous
mapping and α, η : X2 → [0,+∞). Let T : X → X be a self-mapping satisfying the following assertions:

(i) T is an α-admissible mapping with respect to η;

(ii) there exists a continuous ψ ∈ Ψ such that for all x, y ∈ X with α(x, y) ≥ η(x, Tx), we have

G(Tx, T 2x, Ty) ≤ ψ (G(x, Tx, y) + ϕ(x) + ϕ(Tx) + ϕ(y))− ϕ(Tx)− ϕ(T 2x)− ϕ(Ty);

(iii) there exists an x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);
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(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) with xn → x as n→ +∞, then either

η(Txn, T
2xn) ≤ α(Txn, x) or η(T 2xn, T

3xn) ≤ α(T 2xn, x)

holds for all n ∈ N.

Then T has a fixed point z ∈ X such that ϕ(z) = 0. Moreover, T has a unique fixed point whenever
α(x, y) ≥ η(x, x) for all x, y ∈ Fix(T ).

From the previous corollary, if we choose ψ(t) = rt for all t ≥ 0 where r ∈ (0, 1), we get the following
corollary.

Corollary 4.5. Let (X,G) be a G-complete G-metric space, ϕ : X → [0,∞) be a lower G-semicontinuous
mapping and α, η : X2 → [0,+∞). Let T : X → X be a self-mapping satisfying the following assertions:

(i) T is an α-admissible mapping with respect to η;

(ii) there exists an r ∈ (0, 1) such that for all x, y ∈ X with α(x, y) ≥ η(x, Tx), we have

G(Tx, T 2x, Ty) ≤ r [(x, Tx, y) + ϕ(x) + ϕ(Tx) + ϕ(y)]− ϕ(Tx)− ϕ(T 2x)− ϕ(Ty);

(iii) there exists an x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);

(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) with xn → x as n→ +∞, then either

η(Txn, T
2xn) ≤ α(Txn, x) or η(T 2xn, T

3xn) ≤ α(T 2xn, x)

holds for all n ∈ N.

Then T has a fixed point z ∈ X such that ϕ(z) = 0. Moreover, T has a unique fixed point whenever
α(x, y) ≥ η(x, x) for all x, y ∈ Fix(T ).

5. Suzuky type results

In this section, we give some results on fixed point for self-mappings that satisfy a Suzuki type condition.

Theorem 5.1. Let (X,G) be a G-complete G-metric space, ϕ : X → [0,+∞) be a lower G-semicontinuous
mapping. Let T : X → X be a G-continuous self-mapping such that for all x, y ∈ X with

G(x, Tx, Tx) + ϕ(Tx) ≤ G(x, Tx, y) + ϕ(y),

we have

GF (G(Tx, T 2x, Ty), ϕ(Tx), ϕ(T 2x), ϕ(Ty)
)
≤ ψ

(
GF(G(x, Tx, y), ϕ(x), ϕ(Tx), ϕ(y))

)
.

Then T has a unique fixed point z ∈ X such that ϕ(z) = 0.

Proof. First, we note that for each x ∈ Fix(T ), we have GF(G(x, x, x), ϕ(x), ϕ(x), ϕ(x)) = 0 and hence
ϕ(x) = 0. Define α, η : X ×X → [0,+∞) by

α(x, y) = η(x, y) = G(x, Tx, y) + ϕ(y)

for all x, y ∈ X. Clearly, η(x, y) ≤ α(x, y) for all x, y ∈ X. This ensures that T is an α-admissible mapping
with respect to η(x, y) and that condition (iii) of Theorem 3.3 holds. Let η(x, Tx) ≤ α(x, y); then

G(x, Tx, Tx) + ϕ(Tx) ≤ G(x, Tx, y) + ϕ(y)

and so by assumption, we get

GF (G(Tx, T 2x, Ty), ϕ(Tx), ϕ(T 2x), ϕ(Ty)
)
≤ ψ

(
GF(G(x, Tx, y), ϕ(x), ϕ(Tx), ϕ(y))

)
.

Hence, all the conditions of Theorem 3.3 hold and T has a fixed point. The uniqueness of the fixed point
follows since α(x, y) ≥ η(x, x) for all x, y ∈ Fix(T ).
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By taking GF(a, b, c, d) = (a+ b+ c)(d+ 1) in Theorem 5.1, we deduce the following result.

Corollary 5.2. Let (X,G) be a G-complete G-metric space, ϕ : X → [0,+∞) be a lower G-semicontinuous
mapping. Let T : X → X be a G-continuous self-mapping such that for all x, y ∈ X with

G(x, Tx, Tx) + ϕ(Tx) ≤ G(x, Tx, y) + ϕ(y),

we have

G(Tx, T 2x, Ty) ≤ ψ (G(x, Tx, y) + ϕ(x) + ϕ(Tx))(ϕ(y) + 1))

ϕ(Ty) + 1
− ϕ(Tx)− ϕ(T 2x).

Then T has a unique fixed point z ∈ X such that ϕ(z) = 0.

By taking GF(a, b, c, d) = a+ b+ c+ d in Theorem 5.1, we deduce the following result.

Corollary 5.3. Let (X,G) be a G-complete G-metric space, ϕ : X → [0,+∞) be a lower G-semicontinuous
mapping. Let T : X → X be a G-continuous self-mapping such that for all x, y ∈ X with

G(x, Tx, Tx) + ϕ(Tx) ≤ G(x, Tx, y) + ϕ(y),

we have

G(Tx, T 2x, Ty) ≤ ψ (G(x, Tx, y) + ϕ(x) + ϕ(Tx) + ϕ(y))− ϕ(Tx)− ϕ(T 2x)− ϕ(Ty).

Then T has a unique fixed point z ∈ X such that ϕ(z) = 0.

Theorem 5.4. Let (X,G) be a G-complete G-metric space, ϕ : X → [0,+∞) be a lower G-semicontinuous
mapping. Let T : X → X be a self-mapping and let there exist an r ∈ (0, 1) such that for all x, y ∈ X with

1

1 + 2r
[G(x, Tx, Tx) + ϕ(x) + ϕ(Tx) + ϕ(Tx))] ≤ G(x, Tx, y) + ϕ(x) + ϕ(Tx) + ϕ(y),

we have

G(Tx, T 2x, Ty) ≤ r [G(x, Tx, y) + ϕ(x) + ϕ(Tx) + ϕ(y)]− ϕ(Tx)− ϕ(T 2x)− ϕ(Ty).

Then T has a fixed point z ∈ X such that ϕ(z) = 0.

Proof. First, we note that for each x ∈ Fix(T ), we have ϕ(x) = 0. Define α, η : X ×X → [0,+∞) by

α(x, y) = G(x, Tx, y) + ϕ(x) + ϕ(Tx) + ϕ(y)

and

η(x, y) =
1

1 + 2r
(G(x, Tx, y) + ϕ(x) + ϕ(Tx) + ϕ(y))

for all x, y ∈ X. Clearly, η(x, y) ≤ α(x, y) for all x, y ∈ X, that is, T is an α-admissible mapping with
respect to η(x, y). Let {xn} be a sequence with xn → x as n→ +∞. Since

1

1 + 2r
[G(Txn, T

2xn, T
2xn) + ϕ(Txn) + 2ϕ(T 2xn)] ≤ G(Txn, T

2xn, T
2xn) + ϕ(Txn) + 2ϕ(T 2xn)

for all n ∈ N, then by assumption, we get

G(T 2xn, T
3xn, T

3xn) + ϕ(T 2xn) + ϕ(T 3xn) + ϕ(T 3xn)

≤ r
[
G(Txn, T

2xn, T
2xn) + ϕ(Txn) + ϕ(T 2xn) + ϕ(T 2xn)

]
(5.1)
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for all n ∈ N. Assume there exists n0 ∈ N such that

η(Txn0 , T
2xn0) > α(Txn0 , x) and η(T 2xn0 , T

3xn0) > α(T 2xn0 , x),

then

1

1 + 2r

(
G(Txn0 , T

2xn0 , T
2xn0) + ϕ(Txn0) + ϕ(T 2xn0) + ϕ(T 2xn0)

)
> G(Txn0 , T

2xn0 , x) + ϕ(Txn0) + ϕ(T 2xn0) + ϕ(x), (5.2)

and

1

1 + 2r

(
G(T 2xn0 , T

3xn0 , T
3xn0) + ϕ(T 2xn0) + ϕ(T 3xn0) + ϕ(T 3xn0)

)
> G(T 2xn0 , T

3xn0 , x) + ϕ(T 2xn0) + ϕ(T 3xn0) + ϕ(x). (5.3)

Since x1 = Txn0 6= T 2xn0 = x2 and y1 = z1 = T 2xn0 6= T 3xn0 = y2 = z2, by Lemma 2.4, we deduce

G(Txn0 , T
2xn0 , T

2xn0) ≤ G(Txn0 , T
2xn0 , x) + 2G(T 2xn0 , T

3xn0 , x). (5.4)

Therefore, by (5.1), (5.2), (5.3), and (5.4), we get

G(Txn0 , T
2xn0 , T

2xn0) + ϕ(Txn0) + ϕ(T 2xn0) + ϕ(T 2xn0)

≤ G(Txn0 , T
2xn0 , x) + 2G(T 2xn0 , T

3xn0 , x) + ϕ(Txn0) + ϕ(T 2xn0) + ϕ(T 2xn0)

≤ [G(Txn0 , T
2xn0 , x) + ϕ(Txn0) + ϕ(T 2xn0) + ϕ(x)]

+ 2[G(T 2xn0 , T
3xn0 , x) + ϕ(T 2xn0) + ϕ(T 3xn0) + ϕ(x)]

<
1

1 + 2r
(G(Txn0 , T

2xn0 , T
2xn0) + ϕ(Txn0) + ϕ(T 2xn0) + ϕ(T 2xn0))

+
2

1 + 2r
(G(T 2xn0 , T

3xn0 , T
3xn0) + ϕ(T 2xn0) + ϕ(T 3xn0) + ϕ(T 3xn0))

≤ 1

1 + 2r
(G(Txn0 , T

2xn0 , T
2xn0) + ϕ(Txn0) + ϕ(T 2xn0) + ϕ(T 2xn0))

+
2r

1 + 2r
(G(Txn0 , T

2xn0 , T
2xn0) + ϕ(Txn0) + ϕ(T 2xn0) + ϕ(T 2xn0))

= G(Txn0 , T
2xn0 , T

2xn0) + ϕ(Txn0) + ϕ(T 2xn0) + ϕ(T 2xn0),

which is a contradictions. Hence, either

η(Txn, T
2xn) ≤ α(Txn, x) or η(T 2xn, T

3xn) ≤ α(T 2xn, x)

holds for all n ∈ N. Let η(x, Tx) ≤ α(x, y). Thus

1

1 + 2r
[G(x, Tx, Tx) + ϕ(x)+, ϕ(Tx) + ϕ(Tx))] ≤ G(x, Tx, y) + ϕ(x)+, ϕ(Tx) + ϕ(y).

Then from assumption, we get

G(Tx, T 2x, Ty) ≤ r [G(x, Tx, y) + ϕ(x) + ϕ(Tx) + ϕ(y)]− ϕ(Tx)− ϕ(T 2x)− ϕ(Ty).

Hence, all the conditions of Corollary 4.5 hold and T has a fixed point. The uniqueness of the fixed point
follows since α(x, y) ≥ η(x, x) for all x, y ∈ Fix(T ).

If in Theorem 5.4 we choose ϕ(x) = 0 for all x ∈ X, then we get the following corollary.
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Corollary 5.5. Let (X,G) be a G-complete G-metric space. Let T : X → X be a self-mapping and let there
exist an r ∈ (0, 1) such that for all x, y ∈ X with

1

1 + 2r
G(x, Tx, Tx) ≤ G(x, Tx, y),

we have
G(Tx, T 2x, Ty) ≤ rG(x, Tx, y).

Then T has a unique fixed point.

6. Some results in partial G-metric spaces

In this section, using the previous results, we give some results on fixed points in the setting of partial
G-metric spaces.

Theorem 6.1. Let (X,P ) be a (PG)∗-complete partial G-metric space. Let T : X → X be a self-mapping
satisfying the following assertions:

(i) T is an α-admissible mapping with respect to η;

(ii) there exists a ψ ∈ Ψ such that for all x, y ∈ X with α(x, y) ≥ η(x, Tx), we have

P (Tx, T 2x, Ty) ≤ ψ(P (x, Tx, y));

(iii) there exists an x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);

(iv) P (x, x, x) ≤ P (x, y, y) for all x, y ∈ X;

(v) T is a Gp-continuous mapping in (X,Gp).

Then T has a fixed point. Moreover, T has a unique fixed point whenever α(x, y) ≥ η(x, x) for all x, y ∈
Fix(T ).

Proof. LetG(x, y, z) :=
Gp(x,y,z)

3 for all x, y ∈ X, ϕ(x) = P (x,x,x)
3 for all x ∈ X andGF(a, b, c, d) = a+b+c+d.

From Lemma 2.6 we get

P (x, y, z) =
Gp(x, y, z)

3
+
P (x, x, x)

3
+
P (y, y, y)

3
+
P (z, z, z)

3
= G(x, y, z) + ϕ(x) + ϕ(y) + ϕ(z). (6.1)

Now, if α(x, y) ≥ η(x, Tx), then from (ii), we have

P (Tx, T 2x, Ty) ≤ ψ(P (x, Tx, y))

and so from (6.1), we get

GF (G(Tx, T 2x, Ty), ϕ(Tx), ϕ(T 2x), ϕ(Ty)
)
≤ ψ

(
GF(G(x, Tx, y), ϕ(x), ϕ(Tx), ϕ(y))

)
.

Note that by Lemma 2.11 and (iv), the function ϕ is lower G-semicontinuous. Therefore, all the conditions
of Theorem 3.3 hold true and T has a fixed point.

In the following theorem, we omit the Gp-continuity hypothesis of T .

Theorem 6.2. Let (X,P ) be a (PG)∗-complete partial G-metric space. Let T : X → X be a self-mapping
satisfying the following assertions:
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(i) T is an α-admissible mapping with respect to η;

(ii) there exists a ψ ∈ Ψ such that for all x, y ∈ X with α(x, y) ≥ η(x, Tx), we have

P (Tx, T 2x, Ty) ≤ ψ(P (x, Tx, y));

(iii) there exists an x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);

(iv) P (x, x, x) ≤ P (x, y, y) for all x, y ∈ X;

(v) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) with xn → x as n→ +∞, then either

η(Txn, T
2xn) ≤ α(Txn, x) or η(T 2xn, T

3xn) ≤ α(T 2xn, x)

holds for all n ∈ N.

Then T has a fixed point. Moreover, T has a unique fixed point whenever α(x, y) ≥ η(x, x) for all
x, y ∈ Fix(T ).

If in the previous theorem we choose ψ(t) = rt for some r ∈ (0, 1), then we deduce the following corollary.

Corollary 6.3. Let (X,P ) be a (PG)∗-complete partial G-metric space. Let T : X → X be a self-mapping
satisfying the following assertions:

(i) T is an α-admissible mapping with respect to η;

(ii) there exists an r ∈ (0, 1) such that for all x, y ∈ X with α(x, y) ≥ η(x, Tx), we have

P (Tx, T 2x, Ty) ≤ rP (x, Tx, y);

(iii) there exists an x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);

(iv) P (x, x, x) ≤ P (x, y, y) for all x, y ∈ X;

(v) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) with xn → x as n→ +∞, then either

η(Txn, T
2xn) ≤ α(Txn, x) or η(T 2xn, T

3xn) ≤ α(T 2xn, x)

holds for all n ∈ N.

Then T has a fixed point. Moreover, T has a unique fixed point whenever α(x, y) ≥ η(x, x) for all
x, y ∈ Fix(T ).

7. Suzuky type results in partial G-metric spaces

By using a similar proof as in Theorem 6.1 (and applying Theorem 5.1) we can deduce the following
Suzuki type result.

Theorem 7.1. Let (X,P ) be a (PG)∗-complete partial G-metric space such that P (x, x, x) ≤ P (x, y, y) for
all x, y ∈ X. Let T : X → X be a G-continuous self-mapping and let there exist an r ∈ (0, 1) such that for
all x, y ∈ X with P (x, Tx, Tx) ≤ P (x, Tx, y), we have

P (Tx, T 2x, Ty) ≤ ψ(P (x, Tx, y)).

Then T has a fixed point.

By using a similar proof as that in Theorem 6.1 (and applying Theorem 5.4) we can deduce the following
Suzuki type result.

Theorem 7.2. Let (X,P ) be a (PG)∗-complete partial G-metric space such that P (x, x, x) ≤ P (x, y, y) for
all x, y ∈ X. Let T : X → X be a self-mapping and let there exist an r ∈ (0, 1) such that for all x, y ∈ X
with 1

1+2rP (x, Tx, Tx) ≤ P (x, Tx, y), we have

P (Tx, T 2x, Ty) ≤ rP (x, Tx, y).

Then T has a fixed point.
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