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Abstract

In this work, we investigate the existence of solutions of p-Laplacian fractional differential equations with
integral boundary value conditions. Using the five functionals fixed point theorem, the existence of multiple
positive solutions is obtained for the boundary value problems. An example is also given to illustrate the
effectiveness of our main result. c©2016 All rights reserved.
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1. Introduction

The equation with p-Laplacian operator arises in the modeling of different physical and natural phenom-
ena, non-Newtonian mechanics, nonlinear flow laws and many other branches of engineering. The study of
differential equations with p-Laplacian operator was initiated by many authors, one may see [1]–[8], [11],
[12]–[14] and references therein.

In [6], Guo et al. discussed the existences of solution for the following boundary value problems for the
p-Laplacian equation:

(φp(u
′(t)))′ + a(t)f(t, u(t)) = 0, t ∈ (0, 1),

subject to one of the following boundary conditions:
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φp(u
′(0)) =

m−2∑
i=1

aiφp(u
′(ξi)), u(1) =

m−2∑
i=1

biu(ξi),

or

u(0) =
m−2∑
i=1

aiu(ξi), φp(u
′(1)) =

m−2∑
i=1

biφp(u
′(ξi)).

Using the five functionals fixed point theorem, they obtained the existence of multiple (at least three)
positive solutions for above boundary value problems.

Chen et al. [3] showed the existence solutions by coincidence degree for the Caputo fractional p-Laplacian
equations:

Dβ
0+
φp(D

α
0+x(t)) = f(t, x(t), Dα

0+x(t)), 0 < t < 1,

Dα
0+x(0) = Dα

0+x(1) = 0,

where 0 < α, β ≤ 1 and 1 < α + β ≤ 2, φp(s) = |s|p−2s, p > 1, f : [0, 1]× R2 → R is continuous, Dβ
0+

and

Dα
0+ are the Caputo fractional derivatives. They used Lu = Dβ

0+
φp(D

α
0+x(t)) with Dα

0+x(0) = Dα
0+x(1) = 0

and obtained dim kerL = 1.
Zhang et al. [14] discussed the eigenvalue problem for a class of singular p-Laplacian fractional differential

equations involving the Riemann-Stieltjes integral boundary conditions

−Dβ
t

(
φp(D

α
t x)
)

(t) = λf(t, x(t)), t ∈ (0, 1),

x(0) = 0, Dα
t x(0) = 0, x(1) =

∫ 1

0
x(s)dA(s),

where Dβ
t and Dα

t are the standard Riemann-Liouville fractional derivatives with 1 < α ≤ 2, 0 < β ≤ 1,

A is a function of bounded variation and
∫ 1
0 x(s) dA(s) denotes the Riemann-Stieltjes integral of x with

respect to A, f(t, x) : (0, 1)× (0,∞)→ [0,∞) is continuous and may be singular at t = 0, 1 and x = 0. their
results are derived based on the method of upper and lower solutions and the Schauder fixed point theorem.

Motivated by the aforementioned works, this paper is concerned with the existence of positive solutions
for the coupled system of p-Laplacian fractional differential equations with integral boundary value conditions

Dβ
0+

(φp(D
α
0+u(t))) + f(t, u(t)) = 0, t ∈ (0, 1), (1.1)

φp(D
α
0+u(0))(i) = 0, i = 1, 2, . . . , l − 1, (1.2)

φp(D
α
0+u(1)) =

∫ 1

0
h(t)φp(D

α
0+u(t))dt, (1.3)

u(j)(0) = 0, j = 1, 2, . . . , n− 1, (1.4)

u(0) =

∫ 1

0
k(t)u(t)dt, (1.5)

where φp(u) = |u|p−2u, p > 1. Dβ
0+

and Dα
0+ are the Caputo fractional derivatives, l − 1 < β ≤ l, n − 1 <

α ≤ n, l ≥ 1, n ≥ 1 and l + n − 1 < α + β ≤ l + n. Using the five functionals fixed point theorem, the
existence of multiple positive solutions is obtained for the aforementioned boundary value problems.

We will suppose the following conditions are satisfied:
(H1) k(t), h(t) ∈ L1[0, 1], k(t) ≥ 0, h(t) ≥ 0, 0 <

∫ 1
0 k(t)dt < 1 and 0 <

∫ 1
0 h(t)dt < 1;

(H2) f(t, u) : [0, 1]× [0,∞)→ [0,∞) is continuous.

2. Background and definitions

For the convenience, we present some necessary basic knowledge and definitions about fractional calculus
theory, which can be found in [9, 10].
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Definition 2.1. The fractional integral of order α > 0 of a function y : (0,∞)→ R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds,

provided that the right side is pointwise defined on (0,∞).

Definition 2.2. For a continuous function y : (0,∞)→ R, the Caputo derivative of fractional order α > 0
is defined as

Dα
0+y(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1y(n)(s)ds,

where n = [α] + 1, provided that the right side is pointwise defined on (0,∞).

Lemma 2.3. Let α > 0 and u ∈ ACN−1[0, 1]. Then the fractional differential equation Dα
0+u(t) = 0 has

u(t) = c0 + c1t+ c2t
2 + . . .+ cN−1t

N−1, ci ∈ R, i = 1, 2, . . . , N

as the unique solution, where N is the smallest integer greater than or equal to α.

Let K be a cone in real Banach space E and γ, ϕ, θ be nonnegative continuous convex functional on K
and let ω, ψ be nonnegative continuous concave functional on K. Then for nonnegative numbers h, a, b, d
and c, we define the following convex sets

P (γ, c) = {x ∈ K|γ(x) < c},
P (γ, ω, a, c) = {x ∈ K|a ≤ ω(x), γ(x) ≤ c},
Q(γ, ϕ, d, c) = {x ∈ K|ϕ(x) ≤ d, γ(x) ≤ c},

P (γ, θ, ω, a, b, c) = {x ∈ K|a ≤ ω(x), θ(x) ≤ b, γ(x) ≤ c},
Q(γ, ϕ, ψ, h, d, c) = {x ∈ K|h ≤ ψ(x), ϕ(x) ≤ d, γ(x) ≤ c}.

Theorem 2.4. Let K be a cone in real Banach space E. Suppose there exist nonnegative continuous concave
functionals ω and ψ on K, and nonnegative continuous convex functionals γ, ϕ, and θ on K such that for
some positive numbers c and m,

ω(x) ≤ ϕ(x), and ‖x‖ ≤ mγ(x) for all x ∈ P (γ, c).

Suppose further that T : P (γ, c) → P (γ, c) is completely continuous and there exist h, d, a, b ≥ 0 with
0 < d < a such that each of the following is satisfied:

(C1) {x ∈ P (γ, θ, ω, a, b, c)|ω(x) > a} 6= ∅ and ω(Tx) > a for x ∈ P (γ, θ, ω, a, b, c),
(C2) {x ∈ Q(γ, ϕ, ψ, h, d, c)|ϕ(x) < d} 6= ∅ and ϕ(Tx) < d for x ∈ Q(γ, ϕ, ψ, h, d, c),
(C3) ω(Tx) > a provided x ∈ P (γ, ω, a, c) with θ(Tx) > b,
(C4) ϕ(Tx) < d provided x ∈ Q(γ, ϕ, d, c) with ψ(Tx) < h.

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, c) such that

ϕ(x1) < d, a < ω(x2) and d < ϕ(x3) with ω(x3) < a.

3. Preliminary lemmas

Lemma 3.1. The boundary value problems (1.1)–(1.5) has a solution u(t) if and only if u(t) solves the
equation

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1r(s)ds+ b0, (3.1)
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where

r(s) = φq

(
a0 −

1

Γ(β)

∫ s

0
(s− τ)β−1fdτ

)
, (3.2)

a0 =

∫ 1
0 (1− τ)β−1fdτ −

∫ 1
0 h(t)

[∫ t
0 (t− τ)β−1fdτ

]
dt

Γ(β)
[
1−

∫ 1
0 h(t)dt

] , (3.3)

b0 =

∫ 1
0 k(t)

[∫ t
0 (t− s)α−1r(s)ds

]
dt

Γ(α)
[
1−

∫ 1
0 k(t)dt

] . (3.4)

φq(s) is the inverse function of φp(s), a.e., φq(s) = |s|q−2s, 1
p + 1

q = 1.

Proof. From (1.1), we get

Dβ
0+

(φp(D
α
0+u(t))) = −f(t, u(t)).

For t ∈ [0, 1], integrate from 0 to t, in view of Lemma 2.3, we have

φp(D
α
0+u(t)) = − 1

Γ(β)

∫ t

0
(t− τ)β−1f(τ, u(τ))dτ + a0 + a1t+ · · ·+ al−1t

l−1.

By (1.2), we obtain a1 = · · · = al−1 = 0. i.e.,

φp(D
α
0+u(t)) = − 1

Γ(β)

∫ t

0
(t− τ)β−1f(τ, u(τ))dτ + a0. (3.5)

From (1.3), we get

a0 =

∫ 1
0 (1− τ)β−1fdτ −

∫ 1
0 h(t)

[∫ t
0 (t− τ)β−1fdτ

]
dt

Γ(β)
[
1−

∫ 1
0 h(t)dt

] .

In view of (3.5), we have

Dα
0+u(t) = φq

(
a0 −

1

Γ(β)

∫ t

0
(t− τ)β−1fdτ

)
.

For t ∈ [0, 1], integrate from 0 to t, in view of Lemma 2.3, we get

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1r(s)ds+ b0 + b1t+ · · ·+ bn−1t

n−1.

By (1.4), we get b1 = · · · = bn−1 = 0. i.e.,

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1r(s)ds+ b0.

From (1.5), we get

b0 =

∫ 1
0 k(t)

[∫ t
0 (t− s)α−1r(s)ds

]
dt

Γ(α)
[
1−

∫ 1
0 k(t)dt

] .

So we have

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1r(s)ds+ b0.

The proof is complete.
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Lemma 3.2. Every solution satisfied in Lemma 3.1 is non-negative and non-decreasing function for all
t ∈ [0, 1].

Proof. For f(t, u(t)) ≥ 0, h(t) ≥ 0 and 0 <
∫ 1
0 h(t)dt < 1, in view of (3.2), we get

r(s) = φq

(
a0 −

1

Γ(β)

∫ s

0
(s− τ)β−1fdτ

)
,

= φq

(∫ 1
0 (1− τ)β−1fdτ −

∫ 1
0 h(t)

[∫ t
0 (t− τ)β−1fdτ

]
dt

Γ(β)
[
1−

∫ 1
0 h(t)dt

] −
∫ s
0 (s− τ)β−1fdτ

Γ(β)

)

≥ φq
(∫ 1

0 (1− τ)β−1fdτ −
∫ 1
0 h(t)

[∫ 1
0 (1− τ)β−1fdτ

]
dt

Γ(β)
[
1−

∫ 1
0 h(t)dt

] −
∫ 1
0 (1− τ)β−1fdτ

Γ(β)

)

= φq

(∫ 1
0 (1− τ)β−1fdτ

Γ(β)
−
∫ 1
0 (1− τ)β−1fdτ

Γ(β)

)
= 0,

thus,

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1r(s)ds+ b0

is nondecreasing. u(0) is minimum of u(t) for t ∈ [0, 1]. In view of k(t) ≥ 0, 0 <
∫ 1
0 k(t)dt < 1, and

u(0) = b0 =

∫ 1
0 k(t)

[∫ t
0 (t− s)α−1r(s)ds

]
dt

Γ(α)
[
1−

∫ 1
0 k(t)dt

] ,

so u(0) ≥ 0. Thus, we obtain u(t) ≥ 0 for t ∈ [0, 1]. The proof is complete.

4. Main results

Let E be the real Banach space C[0, 1] with the maximum norm and define the cone K ⊂ E by

K =
{
u |u ∈ E and u(t) are non-negative, nondecreasing function on [0, 1]

}
.

Define the operator T on K by

Tu(t) =
1

Γ(α)

∫ t

0
(t− s)α−1r(s)ds+ b0, (4.1)

where r(s), b0, is defined by (3.2) and (3.4). Obviously, u is a solution of equation (1.1)–(1.5) if and only if
u is a fixed point of operator T . In order to obtain the result, we define the nonnegative continuous concave
functionals ω, ψ and the nonnegative continuous convex functionals θ, ϕ, γ on K by

ω(u) = min
t∈[t1,t2]

u(t) = u(t1), (4.2)

ψ(u) = min
t∈[ 1

λ
,1]
u(t) = u

(
1

λ

)
, (4.3)

θ(u) = max
t∈[t1,t2]

u(t) = u(t2), (4.4)

ϕ(u) = max
t∈[ 1

λ
,1]
u(t) = u(1), (4.5)

γ(u) = max
t∈[0,1]

u(t) = u(1), (4.6)

where 0 < t1 < t2 < 1, 0 < 1
λ < 1. It is easy to see that, for each u ∈ K,
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ω(u) = u(t1) ≤ u(1) = ϕ(u) and ‖u‖ = γ(u).

Now, for the convenience, we introduce the following notations. Let

e1 =
1

Γ(α+ 1)
[
1−

∫ 1
0 k(t)dt

] , e2 =
1

Γ(β + 1)
[
1−

∫ 1
0 h(t)dt

] ,
e3 =

tα1
Γ(α+ 1)

+

∫ 1
0 k(t)tαdt

Γ(α+ 1)
[
1−

∫ 1
0 k(t)dt

] , e5 =
1− (1− 1

λ)β

Γ(β + 1)
[
1−

∫ 1
0 h(t)dt

] ,
e4 =

∫ t2
t1
h(t)((1− t)β − (1− t2)β)dt

Γ(β + 1)
[
1−

∫ 1
0 h(t)dt

] , e6 =
(1− 1

λ)β

Γ(β + 1)
[
1−

∫ 1
0 h(t)dt

] ,
e7 =

(
t1
t2

)α
, e8 = λα.

The following theorem is main result in this paper.

Theorem 4.1. Suppose that the conditions (H1) and (H2) hold. In addition, assume there exist nonnegative
numbers d, a and c such that 0 < h < e8h ≤ d < a < a

e7
≤ b ≤ c, and f(t, u) satisfies the following growth

conditions:
(H3) f(t, u) ≤ 1

e2
φp

(
c
e1

)
, for t ∈ [0, 1] and u ∈ [0, c],

(H4) f(t, u) > 1
e4
φp

(
a
e3

)
, for t ∈ [t1, t2] and u ∈ [a, b],

(H5) f(t, u) <
φp

(
d
e1

)
− e5
e2
φp

(
c
e1

)
e6

, for t ∈ [ 1λ , 1] and u ∈ [h, d].
Then the boundary value problems (1.1)–(1.5) have at least three positive solutions u1, u2 and u3 such that

‖ui‖ < c, for i = 1, 2, 3,
‖u1‖ < d, a < ω(u2), and ‖u3‖ > d, ω(u3) < a.

Proof. First, we show that T : P (γ, c)→ P (γ, c) is a completely continuous operator.
Let u ∈ K, in view of (4.1), we have Tu(t) are nonnegative and nondecreasing, consequently, T : K → K.

Applying the Arzela-Ascoli Theorem and standard arguments, we conclude that T is a completely continuous
operator. If u ∈ P (γ, c), in view of (4.1), we have

Tu(t) =
1

Γ(α)

∫ t

0
(t− s)α−1r(s)ds+ b0,

so ‖ Tu ‖= Tu(1), where r(s) and b0 are defined in (3.2) and (3.4). By (3.2) and condition (H3), we have

r(s) = φq

(
a0 −

1

Γ(β)

∫ s

0
(s− τ)β−1fdτ

)
≤ φq

( ∫ 1
0 (1− τ)β−1fdτ

Γ(β)
[
1−

∫ 1
0 h(t)dt

])

≤ φq
(

1

e2
φp

(
c

e1

) ∫ 1
0 (1− τ)β−1dτ

Γ(β)
[
1−

∫ 1
0 h(t)dt

]) = φq

(
1

e2
φp

(
c

e1

)
1

Γ(β + 1)
[
1−

∫ 1
0 h(t)dt

]) =
c

e1
.

By (4.1), we have

Tu(1) =
1

Γ(α)

∫ 1

0
(1− s)α−1r(s)ds+ b0
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=

∫ 1
0 (1− s)α−1r(s)ds

Γ(α)
+

∫ 1
0 k(t)

[∫ t
0 (t− s)α−1r(s)ds

]
dt

Γ(α)
[
1−

∫ 1
0 k(t)dt

]
≤ c

e1

 1

Γ(α+ 1)
+

∫ 1
0 k(t)dt

Γ(α+ 1)
[
1−

∫ 1
0 k(t)dt

]


=
c

e1

 1

Γ(α+ 1)
[
1−

∫ 1
0 k(t)dt

]
 = c.

Thus, ‖Tu‖ ≤ c. Consequently, we show T : P (γ, c)→ P (γ, c).
Next, we show that conditions (C1)− (C4) in Theorem 2.4 are satisfied for T . It is easy to see that

{u ∈ P (γ, θ, ω, a, b, c)|ω(u) > a} 6= ∅,

{u ∈ Q(γ, ϕ, ψ, h, d, c)|ϕ(u) < d} 6= ∅.

To prove that the second part of condition (C1) holds, let u ∈ P (γ, θ, ω, a, b, c), in view of (4.2) and
(4.4), we get

ω(u) = u(t1) ≥ a, θ(u) = u(t2) ≤ b.

It implies that a ≤ u(t) ≤ b for t ∈ [t1, t2]. From (3.2) and condition (H4), we get

r(s) = φq

(
a0 −

1

Γ(β)

∫ s

0
(s− τ)β−1fdτ

)
≥ φq

(
a0 −

1

Γ(β)

∫ 1

0
(1− τ)β−1fdτ

)

= φq

∫ 1
0 h(t)dt ·

∫ 1
0 (1− τ)β−1fdτ −

∫ 1
0 h(t)

∫ t
0 (t− τ)β−1fdτdt

Γ(β)
[
1−

∫ 1
0 h(t)dt

]


≥ φq

∫ 1
0 h(t)

∫ 1
t (1− τ)β−1fdτdt

Γ(β)
[
1−

∫ 1
0 h(t)dt

] )
≥ φq

(∫ t2
t1
h(t)

∫ t2
t (1− τ)β−1fdτdt

Γ(β)
[
1−

∫ 1
0 h(t)dt

]


> φq

φp
(
a
e3

)
e4

∫ t2
t1
h(t)

∫ t2
t (1− τ)β−1dτdt

Γ(β)
[
1−

∫ 1
0 h(t)dt

]


≥ φq

φp
(
a
e3

)
e4

∫ t2
t1
h(t)((1− t)β − (1− t2)β)dt

Γ(β + 1)
[
1−

∫ 1
0 h(t)dt

]
 ≥ a

e3
.

By (4.1), we have

Tu(t1) =
1

Γ(α)

∫ t1

0
(t1 − s)α−1r(s)ds+ b0

=

∫ t1
0 (t1 − s)α−1r(s)ds

Γ(α)
+

∫ 1
0 k(t)

[∫ t
0 (t− s)α−1r(s)ds

]
dt

Γ(α)
[
1−

∫ 1
0 k(t)dt

]
>

a

e3

∫ t10 (t1 − s)α−1ds
Γ(α)

+

∫ 1
0 k(t)

[∫ t
0 (t− s)α−1ds

]
dt

Γ(α)
[
1−

∫ 1
0 k(t)dt

]
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=
a

e3

 tα1
Γ(α+ 1)

+

∫ 1
0 k(t)tαdt

Γ(α+ 1)
[
1−

∫ 1
0 k(t)dt

]


= a.

Thus, in view of (4.2), we get ω(Tu) = Tu(t1) > a.
To show that the second part of condition (C2) holds, let u ∈ Q(γ, ϕ, ψ, h, d, c), in view of (4.3) and

(4.5), we get

ψ(u) = u(
1

λ
) ≥ h, ϕ(u) = u(1) ≤ d.

It implies that h ≤ u(t) ≤ d for t ∈ [ 1λ , 1], and 0 ≤ u ≤ c for t ∈ [0, 1]. In view of conditions (H3), (H5) and
(3.2), we get

r(s) = φq

(
a0 −

1

Γ(β)

∫ s

0
(s− τ)β−1fdτ

)
≤ φq(a0)

= φq

∫ 1
0 (1− τ)β−1fdτ −

∫ 1
0 h(t)

[∫ t
0 (t− τ)β−1fdτ

]
dt

Γ(β)
[
1−

∫ 1
0 h(t)dt

]


≤ φq

 ∫ 1
0 (1− τ)β−1fdτ

Γ(β)
[
1−

∫ 1
0 h(t)dt

]
 ≤ φq

 ∫ 1
λ
0 (1− τ)β−1fdτ

Γ(β)
[
1−

∫ 1
0 h(t)dt

] +

∫ 1
1
λ

(1− τ)β−1fdτ

Γ(β)
[
1−

∫ 1
0 h(t)dt

]


< φq

 1

e2
φp

(
c

e1

) ∫ 1
λ
0 (1− τ)β−1dτ

Γ(β)
[
1−

∫ 1
0 h(t)dt

] +
φp

(
d
e1

)
− e5

e2
φp

(
c
e1

)
e6

∫ 1
1
λ

(1− τ)β−1dτ

Γ(β)
[
1−

∫ 1
0 h(t)dt

]


≤ φq

 1

e2
φp

(
c

e1

)
1− (1− 1

λ)β

Γ(β + 1)
[
1−

∫ 1
0 h(t)dt

] +
φp

(
d
e1

)
− e5

e2
φp

(
c
e1

)
e6

(1− 1
λ)β

Γ(β + 1)
[
1−

∫ 1
0 h(t)dt

]


=
d

e1
.

By (4.1), we have

Tu(1) =
1

Γ(α)

∫ 1

0
(1− s)α−1r(s)ds+ b0

=

∫ 1
0 (1− s)α−1r(s)ds

Γ(α)
+

∫ 1
0 k(t)

[∫ t
0 (t− s)α−1r(s)ds

]
dt

Γ(α)
[
1−

∫ 1
0 k(t)dt

]
<

d

e1

∫ 1
0 (1− s)α−1ds

Γ(α)
+

∫ 1
0 k(t)

[∫ t
0 (t− s)α−1ds

]
dt

Γ(α)
[
1−

∫ 1
0 k(t)dt

]


=
d

e1

 1

Γ(α+ 1)
+

∫ 1
0 k(t)dt

Γ(α+ 1)
[
1−

∫ 1
0 k(t)dt

]


=
d

e1

 1

Γ(α+ 1)
[
1−

∫ 1
0 k(t)dt

]
 = d.

So, we have ϕ(Tu) = Tu(1) < d. To see that (C3) is satisfied, let u ∈ P (γ, ω, a, c) with θ(Tu) > b, that is,
Tu(t2) > b. By (4.1), we have
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Tu(t1) =

∫ t1
0 (t1 − s)α−1r(s)ds

Γ(α)
+ b0.

For ∫ t1
0 (t1 − s)α−1r(s)ds∫ t2
0 (t2 − s)α−1r(s)ds

=
tα1
∫ 1
0 (1− v)α−1r(t1v)dv

tα2
∫ 1
0 (1− v)α−1r(t2v)dv

≥ tα1
tα2

= e7,

so, we get

Tu(t1) ≥
e7
∫ t2
0 (t2 − s)α−1r(s)ds

Γ(α)
+ b0 ≥ e7

{∫ t2
0 (t2 − s)α−1r(s)ds

Γ(α)
+ b0

}
= e7Tu(t2).

Thus, we have

ω(Tu) = Tu(t1) ≥ e7Tu(t2) > e7b ≥ a.

Finally, to show (C4), we take u ∈ Q(γ, ϕ, d, c) with ψ(Tu) < h, that is Tu
(
1
λ

)
< h. By (4.1), we have

Tu(1) =

∫ 1
0 (1− s)α−1r(s)ds

Γ(α)
+ b0.

For ∫ 1
0 (1− s)α−1r(s)ds∫ 1
λ
0 ( 1

λ − s)α−1r(s)ds
=

∫ 1
0 (1− s)α−1r(s)ds(

1
λ

)α ∫ 1
0 (1− v)α−1r( vλ)dv

≤ λα = e8,

thus, we have

Tu(1) ≤
e8
∫ 1
λ
0 ( 1

λ − s)
α−1r(s)ds

Γ(α)
+ b0 ≤ e8

{∫ 1
λ
0 ( 1

λ − s)
α−1r(s)ds

Γ(α)
+ b0

}
≤ e8Tu

(
1

λ

)
.

Therefore, the hypotheses of Theorem 2.4 are satisfied. So the boundary value problems (1.1)–(1.5) have at
least three positive solutions u1, u2 and u3 such that

‖ui‖ < c for i = 1, 2, 3,
‖u1‖ < d, a < ω(u2) and ‖u3‖ > d, ω(u3) < a.

The proof is complete.

5. Example

In this section, we present a simple example to explain our result.
Consider the following boundary value problems

D0.82
0+ (φp(D

0.7
0+u(t))) + f(t, u(t)) = 0, t ∈ (0, 1),

φp(D
0.7
0+u(1)) =

∫ 1
0 (1− t)0.11φp(D0.7

0+u(t))dt,

u(0) =
∫ 1
0 t

0.1u(t)dt,

where

f(t, u) =


0.2, t ∈ [0, 1], 0 ≤ u ≤ 105,
3(u− 105) + 0.2, t ∈ [0, 1], 105 < u ≤ 106,
3.2 + 0.1

√
u− 106, t ∈ [0, 1], 106 < u ≤ 870,

3.2 + 0.1
√

764, t ∈ [0, 1], 870 < u.



Y. Li, G. Li, J. Nonlinear Sci. Appl. 9 (2016), 717–726 726

And we notice that α = 0.7, β = 0.82. If we take t1 = 0.05, t2 = 0.99, λ = 10, then 0 < t1 < t2 < 1.
It follows from a direct calculation that

e1 = 12.106009, e2 = 10.771129, e3 = 6.860732, e4 = 4.845449,

e5 = 0.891513, e6 = 9.879617, e7 = 0.123690, e8 = 5.001872.

In addition, if we take p = 2, h = 1, d = 105, a = 106, b = 870, and c = 920, if f(t, u) satisfies the following
growth conditions:

f(t, u) ≤ 1

e2
φp

(
c

e1

)
= 7.055464, t ∈ [0, 1], u ∈ [0, 920],

f(t, u) >
1

e4
φp

(
a

e3

)
= 3.188610, t ∈ [0.05, 0.99], u ∈ [106, 870],

f(t, u) <
φp

(
d
e1

)
− e5

e2
φp

(
c
e1

)
e6

= 0.241238, t ∈ [0.1, 1], u ∈ [1, 105],

then all conditions of Theorem 4.1 are satisfied. Therefore, by Theorem 4.1, we know that the boundary
value problems have at least three positive solutions u1, u2 and u3 such that

‖ui‖ < 920 for i = 1, 2, 3,
‖u1‖ < 105, ω(u2) > 106, and ‖u3‖ > 105, ω(u3) < 106.
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